International Journal of Earth Sciences

U–Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways --Manuscript Draft--

Manuscript Number:	IJES-D-14-00245R2
Full Title:	U–Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways
Article Type:	Original Paper
Keywords:	loess; zircon; U–Pb geochronology; Hf isotope geochemistry; provenance
Corresponding Author:	Gabor Ujvari, Ph.D. MTA Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute Sopron, HUNGARY
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	MTA Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute
Corresponding Author's Secondary Institution:	
First Author:	Gabor Ujvari, Ph.D.
First Author Secondary Information:	
Order of Authors:	Gabor Ujvari, Ph.D.
	Urs S Klötzli, Ph.D.
Order of Authors Secondary Information:	
Abstract:	Loess sediments in Austria deposited ca. 30–20 ka ago yield different zircon age signatures for samples collected around Krems (SE Bohemian Massif; samples K23 and S1) and Wels (half-way between the Bohemian Massif and the Eastern Alps; sample A16). CL imaging reveals both old, multi-stage zircons with complex growth histories and inherited cores, and young, first cycle magmatic zircons. Paleoproterozoic ages between 2200 and 1800 Ma (K23 and S1), an age gap of 1800-1000 Ma for S1 and abundant Cadomian grains indicate NW African/North Gondwanan derivation of these zircons. Also A16 yields ages between 630-600 Ma that can be attributed to 'Pan-African' orogenic processes. Significant differences are seen for the <500 Ma part of the age spectra with major age peaks at 493-494 Ma and 344-335 Ma (K23 and S1), and 477 and 287 Ma (A16). All three samples show negative initial cHf signatures (–25 to –10, except one grain with +9.4) implying zircon crystallization from magmas derived by recycling of older continental crust. Hf isotopic compositions of 330-320 Ma old zircons from S1 and K23 preclude a derivation from Bavarian Forest granites and intermediate granitoids. Rather all the data suggest strong contributions of eroded local rocks (South Bohemian pluton, Gföhl unit) to loess material at the SE edge of the Bohemian Massif (K23 and S1), and sourcing of zircons from sediment donor regions in the Eastern Alps for loess at Wels (A16). We tentatively infer primary fluvial transport and secondary aeolian reworking and re-deposition of detritus from western/southwestern directions. Finally, our data highlight that loess zircon ages are fundamentally influenced by fluvial transport, its directions, the interplay of sediment donor regions through the mixing of detritus and zircon fertility of rocks, rather than paleo-wind directions.

Response to reviewers

Reviewer #1: Review of manuscript IJES-D-14-00245R1

The authors did a good job in revising the manuscript according to the reviewers comments. Only a few minor issues still need some attention, as outlined below. After that the manuscript will be ready for publication without further review. *Thank you!*

Line 41: Write "Johnsson 1993" Corrected.

Line 71: Replace "CL maps" by "CL images" *Modified*.

Lines 107-108: Write "The last ca. 0.8 million years were characterized by ... " *Corrected*. Line 118: Check the usage of hyphens, i.e. write "... late- to post-tectonic plutonic rocks ..." *Corrected*.

Line 145: Check the usage of hyphens, i.e. write "... was intruded late- syn- to post-tectonically into the gneisses ..." *Corrected*.

Line 156: Write "Permian- Mesozoic" Modified.

Lines 254, 258, 989, 990, and 991: Why are you using "D" before the percentage values when you also use "<" and ">" respectively? I suggest deleting "D". *All deleted*.

Line 317: Replace "mm" by "µm" Corrected.

Line 336: Write "... low- to medium-grade rocks ..." Amended.

Lines 492 and 526: I suggest writing "F" in "Formation" with capital letter. *Corrected, also in the caption of Fig. 1.*

Line 726: Delete "e" between "Europe" and "its" Deleted.

Line 730: Insert full stop (.) after "histories" Inserted.

Line 993: Write "DensityPlotter" without space. Corrected.

Line 997: Write "Cadomian/Pan-African" Corrected.

Table 3:

- In the interpretation for the Bavarian forest rocks replace "Upper" by "Late" and "Lower" by Early" *Corrected*.

- In the interpretation for the Dobra gneiss replace "protholith" by "protolith" Corrected.

1	U– Pb ages and Hf isotopic composition of zircons in Austrian last glacial
2	loess: constraints on heavy mineral sources and sediment transport
3	pathways
4	
5	Gábor Újvári ^{1*} , Urs Klötzli ²
6	¹ Geodetic and Geophysical Institute, MTA Research Centre for Astronomy and Earth
7	Sciences, H-9400 Sopron, Csatkai E. u. 6-8., Hungary
8	² Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna,
9	Austria
10	*Corresponding author: ujvari.gabor@csfk.mta.hu (G. Újvári)
11	
12	Abstract
13	Loess sediments in Austria deposited ca. 30-20 ka ago yield different zircon age signatures
14	for samples collected around Krems (SE Bohemian Massif; samples K23 and S1) and Wels
15	(half-way between the Bohemian Massif and the Eastern Alps; sample A16). CL imaging
16	reveals both old, multi-stage zircons with complex growth histories and inherited cores, and
17	young, first cycle magmatic zircons. Paleoproterozoic ages between 2200 and 1800 Ma (K23
18	and S1), an age gap of 1800-1000 Ma for S1 and abundant Cadomian grains indicate NW
19	African/North Gondwanan derivation of these zircons. Also A16 yields ages between 630-600
20	Ma that can be attributed to 'Pan-African' orogenic processes. Significant differences are seen
21	for the <500 Ma part of the age spectra with major age peaks at 493-494 Ma and 344-335 Ma
22	(K23 and S1), and 477 and 287 Ma (A16). All three samples show negative initial ϵ Hf
23	signatures (- 25 to - 10, except one grain with +9.4) implying zircon crystallization from
24	magmas derived by recycling of older continental crust. Hf isotopic compositions of 330-320
25	Ma old zircons from S1 and K23 preclude a derivation from Bavarian Forest granites and

intermediate granitoids. Rather all the data suggest strong contributions of eroded local rocks 26 (South Bohemian pluton, Gföhl unit) to loess material at the SE edge of the Bohemian Massif 27 (K23 and S1), and sourcing of zircons from sediment donor regions in the Eastern Alps for 28 loess at Wels (A16). We tentatively infer primary fluvial transport and secondary aeolian 29 reworking and re-deposition of detritus from western/southwestern directions. Finally, our 30 data highlight that loess zircon ages are fundamentally influenced by fluvial transport, its 31 32 directions, the interplay of sediment donor regions through the mixing of detritus and zircon fertility of rocks, rather than paleo-wind directions. 33

34

35 Keywords: loess; zircon; U– Pb geochronology; Hf isotope geochemistry; provenance

36

37 Introduction

38 Siliciclastic sediments such as wind-blown loess deposits reflect the history of the source terrain from which they were derived and provide insight into sedimentary dispersal systems. 39 Mechanical disaggregation and abrasion, sorting and chemical weathering during erosion, 40 transport and deposition of detritus obscure the rendering of sediment provenance (Johnsson 41 1993). To minimize these effects refractory minerals such as zircon are widely used in 42 43 provenance studies (Fedo et al. 2003). What makes zircon a unique provenance proxy is its durability and remarkable chemical stability over a wide range of lithospheric pressures, 44 temperatures, and fluid/melt compositions (Harrison and Watson 1983; Watson and Harrison 45 1983; Watson 1996; Moecher and Samson 2006), and that, via the U-Pb and Lu-Hf isotopic 46 systems, it provides information on both the timing of thermotectonic history of source 47 terrains and the geochemical environment in which the zircon crystallized (e.g. Patchett et al. 48 1981; Amelin et al. 2000; Kinny and Maas 2003; Hawkesworth and Kemp, 2006; Scherer et 49 al. 2007; Howard et al. 2009; Weber et al 2012). 50

Recent loess provenance studies have recognized and demonstrated that single-grain zircon 51 geochronology is more diagnostic in identifying source areas of loess deposits than the bulk 52 mineralogical, elemental, and isotopic approaches (Aleinikoff et al. 1999, 2008; Stevens et al. 53 2010; Pullen et al. 2011; Újvári et al. 2012; Xiao et al. 2012; Stevens et al. 2013). All of these 54 works, however, have applied the in-situ, single-grain technique without proper 55 characterization of internal structures of zircon grains by high-magnification 56 57 cathodoluminescence (CL) or backscattered electron (BSE) imaging. It has long been recognized that zircons are variable in external morphology (Pupin 1980), and that internal 58 zonation patterns are of petrogenetic significance (e.g. Hanchar and Miller 1993; Corfu et al. 59 60 2003). CL images reveal complex, delicate zonation patterns often reflecting multiple stages of zircon growth and are useful guides of U- Pb measurements. Without detailed CL images, 61 the laser or ion beam could straddle multiple growth zones that may result in mixed ages that 62 63 are often complicated to interpret (Whitehouse et al. 1999; Hietpas et al. 2011). In this study, we enhance the quality of in-situ U- Pb age information from single zircons in 64 Austrian loess by mapping their internal structures thereby tapping the full potential of zircon 65 geochronology. Attempts have been made to do this on a quantitative or semi-quantitative 66 basis, i.e. by analyzing a sufficient number of grains (Vermeesch 2004; Andersen 2005), 67 68 despite the fact that sample preparation and handling have demonstrably larger effects on the reproducibility of zircon age spectra than the number of grains analyzed per sample (Sláma 69 and Košler 2012). To further improve provenance interpretations we aimed at coupling U-Pb 70 ages to Hf isotope geochemistry, again, aided by CL images. The Lu-Hf system in zircon is 71 very resistant to disturbance and it effectively preserves the initial ¹⁷⁶Hf/¹⁷⁷Hf ratio thereby 72 providing a record of Hf isotopic composition of its source environment at the time of 73 crystallization (Kinny and Maas 2003; Scherer et al. 2007). Thus, the Hf isotopic composition 74 of zircon can be utilized as a geochemical tracer of the origin of its host rock and enables to 75

determination of whether crustal samples were formed by melting of the depleted mantle
(DM), old crust, or combinations of both (Scherer et al. 2007). In many cases U– Pb age
spectra of detrital zircons from different crustal domains are similar and this often obscures
provenance interpretations. In such situations combined U– Pb and Hf isotope studies of
zircons may allow distinguishing between grains having the same crystallization ages but
formed in crustal domains separated from the mantle at different times (Amelin et al. 2000;
Scherer et al. 2007).

This analytical approach is here applied to wind-blown loess sediments from the northeastern 83 Alpine foreland in Austria. The sampling strategy focused on collecting coeval loess 84 85 deposited at around the last glacial maximum (LGM: 19-26 ka, MIS 2). Two loess sections located east of the southern edge of the Bohemian Massif (BM) (Krems, Stratzing) have been 86 studied together with a third one (Wels) situated on top of a terrace of the Traun-Enns-Plain, 87 half way between the BM and the Eastern Alps (EA). Although previous studies on Moravian 88 loess deposits adjacent to the BM presented evidence for a local source and short distance 89 (50-100 km) aeolian entrainment for quartz, garnet and zircon grains (Cilek 2001; Lisá 2004; 90 91 Lisá and Uher 2006; Lisá et al. 2009), we attempted to further constrain the origin of detrital zircons in loess nearby the BM in Austria, track paleo-transport pathways and sediment 92 93 dispersal patterns.

Here we show that zircons in loess at Krems and Stratzing were likely eroded from local
rocks (<10km transport) of the South Bohemian Pluton and Gföhl units, delivered by the
Paleo-Danube and subsequently reworked and re-deposited by winds at the sampling sites.
Detrital zircons in loess at Wels certainly experienced the same event-sequence, but were
derived from Eastern Alpine sources (>50km transport).

99

101 Geological setting

102 Quaternary loess deposits are widespread in the northeastern Alpine foreland along the

103 Danube and its tributaries in Lower and Upper Austria (Fink 1961; van Husen 1981). Loess

- sedimentation is believed to have commenced in this region from ca. 2.6 Ma, at the turn of the
- 105 Gauss and Matuyama chrons (Frank et al. 1997) and numerous (at least 17) glacial-
- 106 interglacial cycles were recorded in the Krems loess-paleosoil sequence after the Olduvai
- event (from ca. 1.7 Ma) as reported by Fink and Kukla (1977). The last ca. 0.8 million years
- 108 were characterized by pronounced glacier advances in the EA, as demonstrated by terminal

109 moraines and outwash terraces (Deckenschotter), the remnants of glacial activity (van Husen

- 110 2000; Reitner 2007). Glacial grinding has likely been the main mechanism to produce debris
- in the EA for subsequent loess accumulation in the foreland, while silt production in the BM
- 112 may be attributable to physical erosion (frost shattering, Cilek 2001) and chemical
- 113 weathering. The evolution and geological settings of these two possible hinterlands (BM and
- 114 EA) for loess deposits in Austria are distinct.
- Three major tectonic units form the southeast part of the Variscan orogen in Central Europe, of which only the Moldanubian Zone is relevant to our discussion. This comprises the largest part of the southern Bohemian Massif in Austria (Fig. 1). Within this zone a number of different basement series and late- to post-tectonic plutonic rocks can be distinguished mainly based on lithological criteria (Wendt et al. 1994; Petrakakis 1997; Klötzli et al. 1999; Finger et al. 2007). All of the tectono-stratigraphic units are separated from each other by more or less discrete, sub-horizontal shear zones. These are from bottom to top:
- 122 The so-called Monotonous Series (Monotone Serie, Ostrong unit) forms the lowermost
- 123 basement sequence. Major lithologies are masses of monotonous stromatitic to nebulitic
- 124 gneisses. Subordinate are lenses of orthogneisses, calc-silicate-gneisses and eclogite-

amphibolites. Low pressure/high temperature (LP/HT) amphibolite facies metamorphism withcordierite bearing assemblages is typical for this unit.

The granitic to granodioritic 1.38 Ga old Dobra gneiss forms the base of the next higher unit 127 in the east (Gebauer and Friedl 1993), the Varied Series (Bunte Serie, Variegated series, 128 Drosendorf unit). This rather inhomogeneous rock suite is built up by partly migmatitic 129 garnet-sillimanite-biotite-plagioclase gneisses, quartzites, more or less graphite-bearing 130 131 marbles and calc-silicate rocks, and granitic orthogneisses. Abundant amphibolites closely associated with ultrabasic rocks, marbles, and granitic gneisses (Rehberg and Buschandlwand 132 units) are also present (Petrakakis 1997; Finger et al. 2007). 133 134 The next higher units form characteristic klippen on top of the Moldanubian nappe sequence. The so called Gföhl gneiss, a widespread and monotonous alkalifeldspar-rich orthogneiss of 135 granitic composition builds up the lower part of these klippen. Locally transitions to acid 136 137 granulites can be found (Klötzli et al. 1999; Finger et al. 2007; Friedl et al. 2011). The highest unit of the Moldanubian Zone is formed by granulites. More massive, less 138 deformed light coloured varieties prevail in the Dunkelstein Wald area, south of the Danube, 139 140 whereas strongly deformed platy and banded varieties are typical for the St. Leonhard and Blumau occurrences in the north. In the Dunkelsteiner Wald small inclusions of basic 141 142 granulites and garnet-pyroxenites are also found (Petrakakis 1997; Klötzli et al. 1999; Friedl et al. 2011). 143

To the west of the Moldanubian basement series large parts of the Moldanubian Zone are
occupied by the so-called South Bohemian pluton which was intruded late- syn- to posttectonically into the gneisses of the Monotonous Series during the Carboniferous. Intrusion
ages range from ca. 345 Ma for the oldest plutonites to 300 Ma for the youngest ones (Klötzli
et al. 1999; Finger et al. 2007). Ar-Ar cooling ages for hornblende and muscovite suggest

high cooling rates and that temperature reached 300 °C before ca. 325 Ma (Dallmeyer et al.
150 1992).

151 From top to bottom the Eastern Alps in Austria are made up of 3 major tectonic units (Schmid152 et al. 2004; Hoinkes et al. 2010):

153 1. Austroalpine and Southalpine units derived from the Adriatic/Apulian microcontinent

154 2. Penninic units derived from the Mesozoic Alpine Tethys domain

3. Helvetic and Sub-Penninic units derived from the Variscan European continent and its
Permian-Mesozoic cover.

157

158 Austoalpine units

The Austroalpine unit forms a complex nappe stack of crustal material which can be 159 subdivided into Lower and Upper Austroalpine units. The Lower Austroalpine unit formed 160 161 the continental margin towards the Alpine Tethys ocean and was affected by tectonism during the opening and closing of this oceanic realm (Alpine event). It overlies the Penninic Nappes 162 of the Eastern Alps. The Upper Austroalpine unit represents an eo-Alpine nappe pile. Its 163 lowermost unit is the Silvretta-Seckau Nappe system consisting of a basement with a 164 dominating Variscan metamorphic imprint and remnants of Permian-Triassic cover. During 165 the eo-Alpine event it was overprinted by sub-greenschist to greenschist-facies conditions. To 166 the north, the Silvretta-Seckau Nappe system is overlain by the nappes of the Greywacke 167 zone, which consists of greenschist-facies metamorphic Paleozoic sequences, and the nappe 168 system of the Northern Calcareous Alps, comprising unmetamorphosed to lowermost 169 greenschist-facies metamorphic Permian-Mesozoic sediments deposited on the shelf facing 170 originally towards the Meliata ocean. To the south, the Silvretta-Seckau Nappe system is 171 overlain by the Koralpe-Wölz Nappe system which represents an eo-Alpine metamorphic 172 extrusion wedge. The Ötztal-Bundschuh Nappe system shows a similar lithological 173

composition to the Silvretta-Seckau Nappe system, but is positioned on top of the Koralpe-174 175 Wölz Nappe system. The overlying Drauzug-Gurktal Nappe system is made up of a Variscan metamorphic basement, anchizonal to greenschist-facies Paleozoic metasedimentary 176 177 sequences and by unmetamorphosed Permian-Triassic sediments. Within the Ötztal-Bundschuh and Drauzug- Gurktal Nappe systems the eo-Alpine metamorphic grade decreases 178 upwards from amphibolite facies at the base to diagenetic conditions at the top of the nappe 179 pile. The Upper Cretaceous to Paleogene sediments of the Gosau Group represent syn- to 180 postorogenic sediments with respect to the eo-Alpine orogenic event. 181

182

183 Penninic units

The Lower Penninic Nappes consist predominantly of material from the Mesozoic Valais 184 oceanic province and from the northern parts of the joint oceanic basin in the east and make 185 186 up the central part of the Lower Engadine Window in western Austria. The lower nappes of the mainly Cretaceous Rhenodanubian flysch zone, which are present along the northern 187 margin of the Eastern Alps represent a continuation of the Central Alpine Valais basin 188 sediments into the Eastern Alps. The Glockner Nappe system of the Tauern Window, as well 189 as the nappes of the Rechnitz Window Group, consisting of calcareous flyschoid 190 191 metasediments and metaophiolites, is thought to be a southern continuation of the lower nappes of the Rhenodanubian flysch zone. 192

193

194 Helvetic and Sub-Penninic units

The European continent consists of a Variscan continental crust, rich in mostly Carboniferous
plutonic rocks covered by Carboniferous to Miocene sedimentary sequences. The so-called
Sub-Penninic Nappes represent the distal European margin, forming ductilely deformed

198 Variscan basement and cover nappes. They form the Venediger Nappe system in the Tauern199 Window.

200

201 Eocene to Miocene magmatism

202 The Periadriatic intrusions comprise calc-alkaline tonalites, granodiorites and granites, and

203 minor alkaline basaltic dykes. They are Eocene to Oligocene in age and related to the break-

off of the subducted Alpine Tethys oceanic lithosphere from the distal European margin.

205

206 Methods

207 Sampling, heavy mineral separation and imaging

208 Loess samples were collected from two loess outcrop located in proximity to the Bohemian

209 Massif at Krems– Wachtberg (sample K23) and Stratzing (sample S1), and from a third

section at Wels, (sample A16), situated closer to the Eastern Alps (Fig. 1) (further details in

211 Újvári et al., 2013). All three profiles have previously been dated by ¹⁴C or OSL/IRSL

(Einwögerer et al. 2009; Preusser and Fiebig 2009; Thiel et al. 2010; Terhorst et al. 2012;

Lomax et al. 2014), thereby allowing the sampling of last glacial loess material from all three

profiles accumulated around the coldest period of marine isotope stage 2 (MIS 2).

For heavy mineral separation, samples were wet-sieved at 25 and 250 microns under running

216 water, washed in weak acetic acid (5%), then water and acetone and subsequently dried in

oven at 50 °C. Zircon grains were extracted from the bulk sediment using heavy liquid

separation and Frantz magnetic separator (Krogh 1982). The grains were then handpicked

219 under the binocular and mounted in epoxy resin. To minimize bias in the age spectra, the

220 morphology and size of the grains were ignored when selecting grains for analysis. It must be

admitted, however, that even with a conscious effort to pick representative grains this still

introduces a bias towards larger grains, as shown by Sláma and Košler (2012). After

polishing, all zircon crystals were cathodoluminescence (CL)-imaged using a FEI Inspect S50
SEM at the Scanning Electron Microscopy and Focused Ion Beam Laboratory, Department of
Lithospheric Research, University of Vienna or using a VEGA TESCAN SEM at the Austrian
Geological Survey GBA. CL images were subsequently used to classify each zircon crystal
into groups with magmatic or metamorphic origin, and also to find the best positions of laser
ablation trenches for in situ isotopic analyses.

229

230 Mass spectrometry

In situ U- Pb isotopic analyses of detrital zircons were done using a Nu Plasma II multi-231 232 collector ICP-MS coupled to a New Wave Research UP-193 solid state laser system at the BigNano Laboratory, Department of Environmental Geosciences, University of Vienna. 233 During the analyses, masses of 238 and 232 were measured in Faraday cups, while masses 234 235 208, 207, 206, 204, and 202 were detected in discrete ion counters by using the time resolved protocol of the software package of Nu Instruments. Isotopic measurements were done using 236 a He carrier gas flow of 650 mL min⁻¹ and laser settings specified in Table S1 237 (Supplementary material). Total ablation time varied between 100 and 250 s, including a 30 s 238 gas blank (background) measurement for which the laser shutter remained closed. Repeated 239 240 measurements of the Plešovice zircon standard (Sláma et al. 2008) were systematically done to correct for laser-induced, depth- and time-dependent elemental fractionation and 241 instrumental mass bias. During the ablation procedure firing of trenches was preferred instead 242

of drilling spots thereby minimizing laser-induced fractionation. Data processing and

reduction has been done off-line, using version 3 of LamTool U- Th- Pb (U. Klötzli,

unpublished). Raw signal intensities were corrected for IC non-linearity using the method of

Richter et al. (2001), and for gas blank based on selection of 'blank' and 'sample' signal ratio

247 intervals for each measurement. The Pb/U elemental fractionation were corrected for using

248	the 'intercept method' of Sylvester and Ghaderi (1997). This correction utilized regression of
249	standard measurements by a quadratic function. ²⁰⁴ Hg corrections on mass 204 were made
250	using 204 Hg/ 202 Hg=0.2299. No common Pb correction was applied to the data. Zircon U– Pb
251	ages were calculated with Isoplot 3.71 (Ludwig 2008) and plotted as kernel density estimates
252	using DensityPlotter (Vermeesch, 2012), with the $^{206}U/^{238}Pb$ ages used for zircons dated as
253	<1.0 Ga, and the ²⁰⁷ Pb/ ²⁰⁶ Pb series used for grains >1.0 Ga (Nemchin and Cawood 2005). To
254	filter results, zircon ages showing >10% discordance and age uncertainty >10% were rejected.
255	As excessive cutoff severity for discordant ages may compromise the representativeness of
256	the dataset due to selective removal of specific age populations (Nemchin and Cawood 2005;
257	Malusa et al. 2013), a second U- Pb age dataset was established from each loess sample with
258	zircons showing <20% discordance and age uncertainty <20% and both of these datasets are
259	displayed for comparison. This is further justified by the fact that 207 Pb/ 206 Pb ages are often
260	unreliable for young grains (e.g. low-U zircons with ages $<0.5-0.6$ Ga) and therefore useless
261	for calculating discordancy (Nemchin and Cawood 2005; Aleinikoff et al. 2008).
262	In situ Lu- Hf isotopic analyses of detrital zircons were undertaken using the same Nu Plasma
263	II MC-ICP-MS instrument as for U-Pb geochronology at the University of Vienna and
264	closely followed the procedures described by Klötzli et al. (2009) and Fisher et al. (2011).
265	Laser settings and cup configurations for Lu- Hf are shown in Tables S1 and S2. Each LA-
266	MC-ICP-MS analysis consisted of 30 s of gas background data followed by 100 to 200 s of
267	ablation. Raw ratios from MS intensity data were calculated using the method described by
268	Fietzke et al. (2008). Mass bias effects on Hf were corrected using an exponential law and a
269	179 Hf/ 177 Hf value of 0.7325 for normalization (Kemp et al. 2009). β Yb was determined using
270	the measured 173 Yb/ 171 Yb and 173 Yb/ 171 Yb=1.13269 for normalization (Chu et al., 2002;
271	Fisher et al. 2011). The ¹⁷⁶ Yb isobaric interference on ¹⁷⁶ Hf was corrected using the
272	interference-free ¹⁷³ Yb and ¹⁷⁶ Yb/ ¹⁷³ Yb was calculated using the measured β Yb and the 'true'

¹⁷⁶Yb/¹⁷³Yb of 0.7962 (Chu et al., 2002; Fisher et al. 2011). The ¹⁷⁶Lu isobaric interference on ¹⁷⁶Hf was determined using the measured, interference-free mass ¹⁷⁵Lu, setting β Lu= β Yb and using the 'true' ¹⁷⁶Lu/¹⁷⁵Lu of 0.026549 (Vervoort et al. 2004; Kemp et al. 2009; Fisher et al. 2011). The calculated ¹⁷⁶Lu and ¹⁷⁶Yb intensities on the total 176 signal were subtracted, the remaining mass 176 signal is taken as solely being ¹⁷⁶Hf and the interference-corrected ¹⁷⁶Hf/¹⁷⁷Hf was calculated thereof. The ¹⁷⁶Lu/¹⁷⁷Hf and ¹⁷⁶Yb/¹⁷⁷Hf were corrected for mass bias using β Hf.

Outlier rejection of the ¹⁷⁶Hf/¹⁷⁷Hf for each analysis was done using a two-standard deviation criterion, while no outlier rejections were performed for ¹⁷⁶Lu/¹⁷⁷Hf and ¹⁷⁶Yb/¹⁷⁷Hf as these ratios often vary considerably in both synthetic and natural zircon crystals (Fisher et al. 2011). Additionally, the very small signal intensities on Lu and Hf resulted in comparably large errors.

Reported errors are two standard errors of the mean (2SE). As analytical errors on single 285 measurements are significantly larger than the overall reproducibility of the Mud Tank MM-286 1 reference zircon the overall uncertainty of this latter was not propagated into the final errors. 287 The Mud Tank MM-1 zircon was used as external standard to determine overall uncertainties 288 and accuracy. During the course of this study 39 measurements were made on Mud Tank 289 MM-1 (dimensions: 20 µm diameter and 200 µm length) and 37 out of 39 measurements 290 give the following mean values: 176 Hf/ 177 Hf=0.28250±0.00002 (0.006%), 291 176 Lu/ 177 Hf=0.00005±0.00004 (76%), and 176 Yb/ 177 Hf=0.00177±0.00209 (118%). The 292 remaining two measurements yielded too low ¹⁷⁶Hf/¹⁷⁷Hf and were not taken into account. 293 The mean ¹⁷⁶Hf/¹⁷⁷Hf ratio given above is within error identical to the recommended values 294 reported by Woodhead and Hergt (2005), Griffin et al. (2006), and Kemp et al. (2009) for 295 laser ablation analysis. This demonstrates that the experimental setup allows for valid ¹⁷⁶Lu 296 and ¹⁷⁶Yb corrections and results in reliable zircon ¹⁷⁶Hf/¹⁷⁷Hf ratios. 297

298	Present-day ϵ Hf values (ϵ Hf ₀) have been calculated using the new chondritic Hf data of
299	176 Hf/ 177 Hf _{CHUR-0} =0.282785±0.000011 (Bouvier et al. 2008), and a 176 Lu decay constant of
300	λ^{176} Lu=1.867±0.008×10 ⁻¹¹ a ⁻¹ (Söderlund et al. 2004) has been used to calculate initial
301	176 Hf/ 177 Hf ratios (i.e. 176 Hf/ 177 Hf at the time <i>t</i> of zircon crystallization; 176 Hf/ 177 Hf _t). A
302	chondritic Lu/Hf value of 176 Lu/ 177 Hf _{CHUR-0} =0.0336±0.0001 (Bouvier et al. 2008) has been
303	applied in all ϵ Hf _t calculations. Two-stage crustal residence ages (τ^c_{DM} – Hf) have been
304	calculated using the initial 176 Hf/ 177 Hf values of each zircon (176 Hf/ 177 Hf _t), an assumed
305	average crustal ¹⁷⁶ Lu/ ¹⁷⁷ Hf of 0.015 (Griffin et al. 2004; Condie et al. 2005), and a depleted
306	mantle model with 176 Hf/ 177 Hf _{DM} =0.283224 (Vervoort et al. 2000) and 176 Lu/ 177 Hf _{DM} =0.03836
307	(calculated for EHf=0 at 4500 Ma; Weber et al. 2012). Such two-stage model ages provide a
308	qualitative estimate of the time of separation of the zircon's host rock from a hypothetical
309	depleted mantle reservoir and have successfully been used in some previous zircon
310	provenance studies (e.g. Bodet and Schärer 2000; Griffin et al. 2004; Augustsson et al. 2006;
311	Bahlburg et al. 2009, 2010).

312

313 **Results**

The analyzed loess samples contain various heavy minerals. Zircon grains are present in all 314 three samples, but those found in sample A16 at Wels are generally smaller in size (mostly 315 316 around and below 100 µm), while larger crystals (130–200 µm) appear frequently in the other two (K23 and S1, Krems and Stratzing; referred to as samples at Krems hereafter). 317 Zircons were colorless and many different forms could be distinguished from less frequent 318 319 euhedral to more frequent sub-rounded (sometimes rounded) crystals and prismatic and anhedral fragments. Elongated prismatic forms appear exclusively in loess samples at Krems, 320 Bohemian Massif (K23 and S1). Unlike zircon, sphene (titanite) was only found in loess 321 samples at Krems (K23 and S1). These grains, which were subsequently checked by SEM-322

EDX for their chemical compositions, are mostly colorless, sometimes slightly honey yellow 323 and rounded/ sub-rounded. While apatite is present in all three samples (usually colorless, 324 stubby forms, sometimes reddish-brown), another phosphate heavy mineral monazite appears 325 326 in samples at Krems (K23 and S1). These are pale yellow and almost colorless with some yellowish-brown stain, and have rounded, egg-shaped forms. Likewise apatite, chlorite and 327 garnet are constituents of all three loess samples, but an extraordinary number of garnets were 328 329 found in loess samples around Krems (Bohemian Massif). The vast majority of these garnets are euhedral crystals with pink color. Both staurolite and sillimanite, and also remarkable 330 amounts of brown to reddish-brown biotite are present in these loess samples (K23 and S1). 331 332 The metamorphic index minerals (e.g. staurolite and sillimanite) with garnet are indicative of a metamorphic hinterland with medium to high-grade metamorphic rocks for loess samples at 333 Krems (BM). As for the sample at Wels (A16), the heavy mineral assemblage (e.g. chlorite, 334 335 garnet) implies contributions from low- to medium-grade rocks to loess at this site. Neither kyanite nor Cr-spinel have been found in the samples which would refer to high-P 336 337 metamorphic rocks or oceanic crust in the hinterland, but it must be emphasized that the heavy mineral analyses cannot be regarded as detailed, in-depth studies. 338 Altogether 86, 51 and 45 zircon grains have been CL-imaged and subsequently U- Pb dated 339 340 from loess samples S1, K23 and A16 (note that not all of these U– Pb ages have been used for creating the U-Pb age spectra due to data filtering specified in the 'Methods' section). Most 341 of them (46 to 64%) are magmatic in origin (40 in S1, 33 in K23 and 27 in A16) and 14 to 342 343 23.5% of these crystals are interpreted as having been eroded from metamorphic rocks (12 in S1, 12 in K23 and 7 in A16). Some representative magmatic and metamorphic crystals, also 344 with recrystallization rims and grains with inherited cores are displayed in Figs. 2 and 3. The 345 rest of the zircon grains could not unambiguously be classified into any of these two groups. 346

347	Before analyzing U– Pb age spectra it is crucial to evaluate how representative these dates are
348	and what is the likelihood of missing age populations crucial for provenance interpretation.
349	Table 1 provides information on this and is based on the binomial probability formulation by
350	Andersen (2005), which we prefer over that of Vermeesch (2004). While the number of grains
351	analyzed in S1 (and K23 depending on concordance criteria) seems appropriate, this issue
352	becomes critical in sample A16 where the failure rate to detect an age population with an
353	abundance $X_i=10\%$ reaches 22.9 to 53.1 percent (Table 1). At the same time, if an age
354	population was detected in A16 (within the 90-110% concordance criteria) and this
355	population was not found in the other two samples (S1 and K23) then this can be regarded as
356	a basic diagnostic feature. We will see below that this is exactly the case.
357	U- Pb age spectra of samples at Krems (S1 and K23) show a similar distribution of ages (Fig.
358	4, Tables S3-4 as Supplementary material) with major age peaks at 493-494 and 335-344 Ma.
359	The majority of these grains are magmatic in origin. A striking feature of S1 is the absence of
360	ages between 1700-800 Ma, while this age window is narrower (1200-750 Ma) for K23.
361	Considering the relatively low detection limits for S1 (Table 1), this age gap seems to be a
362	real one. In contrast to samples at Krems (S1 and K23), the prominent age maximum of the
363	age distribution lies at 287 Ma for the sample at Wels (A16), and also some ages are observed
364	at 450 and 600 Ma, up to 1500 Ma.
365	Lu- Hf isotopic compositions of 30, 14 and 10 grains have been analyzed from samples S1,
366	K23 and A16, but only 18, 6 and 4 grains provided both useful U- Pb ages and Lu- Hf
367	isotopic compositions (Table 2). With the exception of three grains, all have ${}^{176}Lu/{}^{177}Hf$ ratios
368	below 0.0019 and numerous zircons have lower than 0.001. Present-day ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios
369	range between 0.281941 and 0.282191, corresponding to present day ϵ Hf values of – 29.8 to
370	– 21. Initial 176 Hf/ 177 Hf ratios and ϵ Hf values vary between 0.281933 and 0.282185, and –

371 24.7 to 9.4, with most of the grains yielding ϵ Hf_t values between – 22.2 and – 10.9. Two-

stage crustal residence ages (τ^{c}_{DM} - Hf) range from ~2000 to 2700 Ma for all three loess samples. Only one zircon yields a comparatively younger model age of 1712 Ma from the sample at Wels (A16; Table 2).

375

376 Discussion

- 377 Interpretation of the zircon U– Pb age and Hf isotopic record
- 378 The oldest detrital zircon 207 Pb/ 206 Pb age from the sample at Wels (A16) is 1657±102 Ma.
- 379 This grain has an initial ε Hf value of 9.4 demonstrating its derivation from juvenile, mantle-
- derived sources (Table 2 and Fig. 5). In contrast to the sample at Wels (A16), loess sediments
- at Krems (S1 and K23) yield more zircons with Paleoproterozoic ages ranging mostly

between 2200 and 1800 Ma (Fig. 4 and Supplementary Tables S3– 5), which are typical of the

383 western part of the West African craton (Linnemann et al. 2008). Most of these grains are

- magmatic and can possibly link with plutonic events of the Eburnean orogeny (Egal et al.
- 2002). A striking feature of the age distribution of loess zircons at Krems (sample S1) is the
- lack of ages between 1750 and 750 Ma. This Late Paleoproterozoic Mesoproterozoic age
- 387 gap (1800–1000 Ma) is characteristic for rocks of the Moldanubian unit (Friedl et al. 2004;
- Košler et al. 2014) and also demonstrates NW African/North Gondwanan derivation of
- Armorican type terranes (Tait et al. 1997; Samson et al. 2005; Gerdes and Zeh 2006;
- Meinhold et al. 2011, 2013). At the same time, some zircon ages for sample K23 (Krems) are
- found between 1650 and 1200–1100 Ma and this holds true for sample A16. All three
- samples provide Late Neoproterozoic zircon ages at around 630 to 600 Ma that are
- 393 attributable to 'Pan– African' orogenic processes (Linnemann et al. 2008), and samples at
- 394 Krems (S1 and K23) are rich in Cadomian grains (590-550 Ma), represented by age clusters at
- ³⁹⁵ ~580-590 Ma (Fig. 4a and b). These Cadomian ages again carry evidence of peri-Gondwanan
- origin of the basement blocks the zircons originated from (Stampfli et al. 2002). A peculiar

feature of zircon age distributions of samples at Krems (S1 and K23) is the dominant age 397 populations at ~490 Ma. Both metamorphic and magmatic grains of Cambrian-Ordovician 398 age are found in these two samples. Evidence for intensive magmatic activity of this age has 399 400 been presented by Friedl et al. (2004) from the Gföhl gneiss zircons (Table 3), a unit that is closely located to the sampling sites and drained by the River Danube. Initial ε Hf values 401 between – 10 and – 20 of these 630 to 470 Ma old grains imply zircon crystallization from 402 403 magmas derived by recycling of older continental crust for all three samples. Hf isotopic compositions of Cadomian magmatic zircons (590-560 Ma) from samples at Krems (S1 and 404 K23) point to a possible derivation of these grains from a Cadomian magmatic arc 405 406 (Linnemann et al. 2008). The negative initial ε Hf values (-19 to -10) of the 490 Ma age group reveal that the (re)crystallization of these grains can possibly related to a somewhat 407 nebulous intra-Rheic subduction zone with a not too evolved volcanic arc and the 408 409 involvement of continental crust.

U- Pb age distributions of detrital zircons in samples at Krems (S1 and K23) display 410 411 prominent age peaks at 335 and 344 Ma (Variscan events), while the sample at Wels (A16) 412 shows a younger one at 287 Ma. Characteristic for S1 and K23 (Krems) are the relatively low number of metamorphic zircons, most of them with ages of 380 to 340 Ma. These zircons are 413 414 records of different stages of the Variscan metamorphic overprints of Moldanubian rocks in the BM lasted from ~380- 370 to 340- 335 Ma (Petrakakis 1997; Friedl et al. 2011; Table 3). 415 However, the majority of Late Devonian/Carboniferous zircons in samples at Krems (S1 and 416 K23) are magmatic in origin with ages ranging from~370 to 320 Ma (Fig. 3). Most of these 417 zircons form an age group of 350– 330 Ma, and only few ages fall between 330 and 320 Ma. 418 Granite emplacements during the Variscan plutonism in the South Bohemian batholith were 419 dated to 350 to 320 Ma (e.g. Klötzli and Parrish 1996; Klötzli et al. 2001; Gerdes et al. 2003; 420 Finger et al. 2007; and Table 3) and our detrital zircon age data suggest a strong contribution 421

from these sources. Former observations by Gerdes et al. (1996) and Klötzli et al. (2001) that 422 the granitoids of the South Bohemian pluton show no pronounced mantle signatures and the 423 melts were essentially produced through anatectic recycling of older, presumably Cadomian, 424 continental crust is further corroborated by the Hf isotope signatures (ϵ Hf_t from – 22.2 to – 425 13.7) of the detrital zircons of 350– 320 Ma age (Figs. 3 and 5). Also these low initial ε Hf 426 values and calculated two-stage crustal residence ages (τ^{c}_{DM} – Hf) of 2650 to 2100 Ma 427 preclude a derivation of loess detrital zircons at Krems (S1 and K23) from Bavarian Forest 428 granites and intermediate granitoids having similar ages (334 to 315 Ma), but more radiogenic 429 Hf isotopic compositions and much younger model ages (ϵ Hf_t from – 5.6 to – 0.4, τ^{c}_{DM} – Hf: 430 431 1480 to 1200 Ma; Siebel and Chen 2010; Table 3). As mentioned above, the sample at Wels (A16) differs from those at Krems (S1 and K23) as 432 two magmatic zircons with ages of 296±6 and 282±17 Ma are present in sample A16, while 433 434 these Late Carboniferous/Permian grains are completely missing in the other two samples at

435 Krems (S1 and K23). Considering that this youngest age population is represented by two

436 zircons (296±6 and 282±17 Ma) out of the 6 highly concordant ages of sample A16 and

437

supposing that sample A16 is representative of its source, this population may be safely

assumed to be an important constituent of the sediment and the probability of finding it equals to 2/6=1/3. From this we calculate that the probability of overlooking this age population is $p_{n_i=0} = 1 - \frac{1}{3} = 2/3$. Rearranging the equation of $p_{n_i=0} = (1 - X_i)^n$ that gives the binomial probability of overlooking an age population with an abundance X_i in the sediment (see Andersen 2005, Eq. 2a), we get that X_i , the relative abundance of the *i*th population, is $X_i = 1 - \sqrt[n]{p_{n_i=0}} = 1 - (p_{n_i=0})^{1/n}$, where *n* is the number of zircons having concordant, i.e.

useful ages. Applying this to the youngest population in sample A16 at Wels represented by
ages of 296±6 and 282±17 Ma, we get the crude estimation of 6.5% for the relative

446 abundance of this population. Knowing that pL=0.5 marks an upper abundance limit for

populations that are more probably overlooked than observed in *n* analyses (Andersen 2005) 447 and that these values range between 1.4 to 4.0% for samples at Krems (S1 and K23; Table 1), 448 it is clear that this youngest population should have been found in samples at Krems (S1 and 449 450 K23) if they were present in their hinterland. Based partly on the above considerations and figures we argue for an Eastern Alpine affinity and derivation of zircons in sample A16 at 451 Wels. At the same time, there is little doubt that zircons in the other two samples at Krems 452 (S1 and K23) were eroded from exposed granitic and various metamorphic rocks of the south 453 BM in the vicinity of the sampling sites (e.g. South Bohemian pluton, Gföhl unit). 454

455

456 Implications for paleo- transport modes and routes

Heavy minerals like zircon constitute only minor parts of loess material, so they are likely not 457 fully representative of the whole rock. Physical laws define that these minerals of mostly 50 458 459 to $150-200 \,\mu\text{m}$ in size in loess are transported in saltation by wind and the transport is short- term (Tsoar and Pye 1987; Újvári et al. 2013). This holds true even if large (>75 µm) 460 quartz grains are transported for long distances (several thousands of kilometers) in some rare 461 cases (Betzer et al. 1998). Whole rock geochemical and Sr- Nd isotopic data and zircon age 462 patterns demonstrate the basic role of fluvial entrainment of minerals in loess formation 463 (Gallet et al 1998; Buggle et al. 2008; Újvári et al. 2008; Újvári et al. 2012; Stevens et al. 464 2013) as hypothesized by Smalley et al. (2009). Here we argue for a two-stage model, an 465 initial fluvial and subsequent aeolian transport of heavy minerals in Austrian loess, as 466 proposed for rutiles by Újvári et al. (2013). While the possibility of direct aeolian deflation of 467 the in-situ weathering products of rocks from sparsely vegetated surfaces cannot be dismissed, 468 this scenario seems less likely based on the physical mechanisms of wind erosion and 469 emission of mineral particles (Shao 2009). Also fluvial activity is needed to periodically 470

471 destroy surface crusts of alluvial material, which may hinder or at least very strongly subdue472 wind deflation (Pye 1995; Shao 2009).

Our zircon U– Pb age and Hf isotopic data point to significant contributions of heavy 473 474 minerals from eroded local rocks to loess in Austria. This is consistent with inferences made by Újvári et al. (2013) who found that local metamorphic sources may have released the 475 majority of detrital rutiles recovered from loess samples in Austria. Recent studies of modern 476 477 river systems demonstrate that detrital zircon age populations are heavily influenced by local bedrock and the influx of feeder tributaries, and the continued input of detritus along rivers 478 causes progressive masking of upstream sources (Cawood et al 2003; Hietpas et al 2011). 479 480 This may be an explanation why the detrital zircon signal of Bavarian Forest granitoids are not seen in our samples as unraveled by the Hf isotopic compositions and crustal model ages 481 of 330-320 Ma old zircons in samples at Krems (S1 and K23). Both the new zircon U- Pb and 482 483 Hf isotope data (this study) and the published rutile chemistry and U-Pb age data (Újvári et al. 2013) confirm the derivation of detritus from the Eastern Alps for the sample at Wels 484 485 (A16), and again, highlight the importance of fluvial entrainment. Here, in lack of any zircon or rutile data, we cannot exclude the Rhenohercynian flysch as a sediment donor region, but it 486 is more than clear that any N–S material transport from the western BM to the region of Wels 487 488 (A16) can be excluded. This is supported by paleo-circulation models for the region, too (Florineth and Schlüchter 2000; Renssen et al. 2007). Similarly, recycling of loess zircons at 489 Krems (S1 and K23) from the coarse-grained clastic fluvial to deltaic sediments of the Upper 490 Miocene Hollabrunn-Mistelbach Formation (NE of the sampling sites, Fig. 1) seems also a 491 viable alternative. These fluvial sediments were eroded by the proto-Danube from rocks of the 492 SE part of the BM (Nehyba and Roetzel, 2004). Thus zircon age patterns resembling those of 493 loess samples (S1 and K23) are expected from these fluvial sediments and also all of their 494 heavy mineral spectra are garnet dominated (Brunnacker et al. 1979), similarly to S1 and K23 495

loess samples at Krems. Together with this, neither the appearance of euhedral zircons in the
studied loess samples (S1 and K23) nor the modeled paleo-wind directions favor this
recycling scenario.

499 Here, we have to underline that any inferences on paleo- wind directions from loess heavy mineral signals remain hypothetic and weakly supported in the light of the physics of 500 transport and deposition. Rather what is seen in loess zircon ages are more profoundly 501 502 influenced by fluvial transport, its directions, the interplay of sediment donor regions through the mixing of detritus and zircon fertility of rocks in the drainage basin (Moecher and Samson 503 2006; Dickinson 2008). In a broader context, these observations have important implications 504 505 for heavy mineral sources in loess of the Chinese Loess Plateau where debates on Tibetan Plateau versus desert provenance of loess (and heavy minerals in it) are still unsettled (Pullen 506 et al. 2011; Xiao et al. 2012; Stevens et al. 2013). In any case, our findings regarding the 507 508 crucial role of fluvial processes in defining heavy mineral compositions in Austrian loess and the two-stage model correspond with the ideas of Stevens et al. (2013) who suggested a 509 510 genetic linkage between the Yellow river sediments, originating in the Tibetan Plateau, and 511 loess on the Chinese Loess Plateau.

512

513 Summary and conclusions

514 U– Pb geochronology and Hf isotope geochemistry of CL-mapped detrital zircon crystals 515 from late glacial loess deposits in Austria reveal proximal BM sources (South Bohemian 516 pluton, Gföhl unit) of these minerals from samples at Krems and Stratzing (K23, S1) and 517 exclude a derivation of 330-320 Ma old zircons from Bavarian Forest granitoids. This latter 518 finding corroborates the significance and strong influence of immediate source areas (with 519 transport distances less than 10 km) on heavy mineral compositions of loess at Krems and 520 Stratzing. This can be explained by a primary fluvial entrainment of heavy minerals in the

course of which the local input of zircons result in progressive downstream dilution and masking of upstream zircon signatures. Aeolian reworking of this fluvial material in proximal depocenters is thought to be responsible for the final transport and deposition of particles making up loess sediments around Krems. This event-sequence likely holds true even if the clastic sediments of the nearby Hollabrunn-Mistelbach Formation had eventually acted as an immediate source, since the ultimate source of heavy minerals in these fluvial sediments are also igneous and metamorphic rocks of the southeast BM.

A similar erosion-deposition history of zircons in loess at Wels (A16) is proposed but with 528 sediment donor regions in the Eastern Alps (with transport distances more than 50 km). This 529 530 inference is largely based on zircon age spectra with different peaks at 295 and 465 Ma in contrast to 350-335 and 490-500 Ma for loess at around Krems. These findings also allow 531 some inferences to be made over depositional wind regimes operating in this region during 532 533 the last glacial maximum. A significant proportion of storms appear to have tracked from the west, as with the regime for the LGM modeled in larger-scale simulations, and a north to 534 535 south transport seems very unlikely based on zircon age signatures of sample A16 from Wels. 536 It must be emphasized, however, that the compositions and ages of loess heavy minerals, including zircon and rutile is profoundly determined by mixing of detritus from various 537 538 sediment donor regions during fluvial transport and the fertility of rocks on these terrains, thus any inferences on major aeolian transport pathways can be considered only hypothetical. 539

540

541 Acknowledgements

This research was supported through a postdoc fellowship to GÚ provided by the
Stipendiumstiftung der Republik Österreich (ICM-2010-00919, ICM-2010-03401) and the
Bolyai János Research Scholarship of the Hungarian Academy of Sciences (GÚ). The authors
are especially grateful to Christine Neugebauer-Maresch and her research group at the

546	Academy of Science of Austria, as well as Markus Fiebig and Franz Ottner for providing
547	samples and help with the field work. Insightful and constructive comments made by the two
548	reviewers (G Meinhold and T Stevens) improved this paper substantially. Editorial handling
549	by W-C Dullo is greatfully acknowledged.
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	

571 Appendix 572 Uncertainty propagation for ¹⁷⁶Hf/¹⁷⁷Hf_{t, zircon} (or initial ¹⁷⁶Hf/¹⁷⁷Hf_{zircon}) 573 The 176 Hf/ 177 Hf composition of zircon at the time of crystallization (i.e. initial 176 Hf/ 177 Hf_{zircon} 574 or ${}^{176}\text{Hf}/{}^{177}\text{Hf}_{t,zircon})$ is calculated as 575 576 $D_t = D_m - P_m(e^{\lambda t} - 1)$ (A.1) 577 578 , where $D_t = {}^{176}\text{Hf}/{}^{177}\text{Hf}_{t,zircon}$, $D_m = {}^{176}\text{Hf}/{}^{177}\text{Hf}_{zircon-measured}$, $P_m = {}^{176}\text{Lu}/{}^{177}\text{Hf}_{zircon-measured}$, 579 $\lambda = \lambda_{176Lu} = 1.867 \pm 0.008 \times 10^{-11} a^{-1}$ (Söderlund et al. 2004) and t is the crystallization age of 580 zircon. 581 Using the law of propagation of uncertainty, the combined standard uncertainty for D_t is given 582 583 by 584 $\sigma_{D_t}^2 = \left(\frac{\partial D_t}{\partial D_m}\sigma_{D_m}\right)^2 + \left(\frac{\partial D_t}{\partial P_m}\sigma_{P_m}\right)^2 + \left(\frac{\partial D_t}{\partial \lambda}\sigma_{\lambda}\right)^2 + \left(\frac{\partial D_t}{\partial t}\sigma_t\right)^2$ 585 (A.2) 586 Since 587 $\frac{\partial D_t}{\partial D_m} = 1$ 588 (A.3) $\frac{\partial D_t}{\partial P_m} = e^{\lambda t} - 1$ 589 (A.4) $\frac{\partial D_t}{\partial \lambda} = (e^{\lambda t} - 1)P_m t$ 590 (A.5) $\frac{\partial D_t}{\partial t} = (e^{\lambda t} - 1)P_m\lambda$ (A.6) 591 the combined uncertainty of $D_t = {}^{176} \text{Hf} / {}^{177} \text{Hf}_{t,\text{zircon}}$ is 592 593

594
$$\sigma_{D_t} = \sqrt{\sigma_{D_m}^2 + ((e^{\lambda t} - 1)\sigma_{P_m})^2 + ((e^{\lambda t} - 1)P_m t\sigma_{\lambda})^2 + ((e^{\lambda t} - 1)P_m \lambda\sigma_t)^2}$$
(A.7)

596	References
597	Aleinikoff JN, Muhs DR, Sauer RR, Fanning CM (1999) Late Quaternary loess in
598	northeastern Colorado, II: Pb isotopic evidence for the variability of loess sources.
599	Geological Society of America Bulletin 111:1876-1883.
600	Aleinikoff JN, Muhs DR, Bettis III EA, Johnson WC, Fanning CM, Benton R (2008) Isotopic
601	evidence for the diversity of late Quaternary loess in Nebraska: glaciogenic and
602	nonglaciogenic sources. Geological Society of America Bulletin 120:1362–1377.
603	Amelin YV, Lee DC, Halliday AN (2000) Early-middle Archaean crustal evolution deduced
604	from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochimica et
605	Cosmochimica Acta 64:4205–4225.
606	Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions
607	from statistics and numerical simulation. Chemical Geology 216:249–270.
608	Augustsson C, Münker M, Bahlburg H, Fanning CM (2006) Provenance of Late Palaeozoic
609	metasediments of the SW South American Gondwana margin from combined U-Pb
610	ages and Hf isotope compositions of single detrital zircons. Journal of the Geological
611	Society, London 163:983–995.
612	Bahlburg H, Vervoort JD, Du Frane SA, Bock B, Augustsson C, Reimann C (2009) Timing of
613	crust formation and recycling in accretionary orogens: Insights learned from the western
614	margin of South America. Earth-Science Reviews 97:215-241.
615	Bahlburg H, Vervoort JD, Du Frane SA (2010) Plate tectonic significance of Middle
616	Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane
617	Assemblage, Germany — U–Pb and Hf isotope evidence from detrital zircons.

618 Gondwana Research 17:223–235.

Beck- Mannagetta P (1964) Geologische Übersichtskarte der Republik Österreich. 619 620 Geologische Bundesanstalt, Wien.

Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M, Costello DK, Young 621

- 622 RW, Feely RA, Breland JA, Bernstein RE, Greco AM (1988) Long-range transport of giant mineral aerosol particles. Nature 336:568-571. 623
- Bodet F, Schärer U (2000) Evolution of the SE-Asian continent from U-Pb and Hf isotopes in 624 625 single grains of zircon and baddeleyite from large rivers. Geochimica et Cosmochimica Acta 64:2067-2091. 626
- Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of 627
- 628 CHUR: constraints from unequilibrated chondrites and implications for the bulk
- composition of terrestrial planets. Earth and Planetary Science Letters 273:48-57. 629
- Brunnacker K, Fink J, Razirad M, Tillmanns W (1979) Der Hollabrunner Schotter östlich von 630 631 Krems, Niederösterreich. Zeitschrift der Deutschen Geologischen Gesellschaft 130:303-322.
- 632
- Buggle B, Glaser B, Zöller L, Hambach U, Markovic S, Glaser I, Gerasimenko N (2008) 633
- Geochemical characterization and origin of Southeastern and Eastern European loesses 634 (Serbia, Romania, Ukraine). Quaternary Science Reviews 27:1058-1075. 635
- Cawood P, Nemchin A, Freeman M, Sircombe K (2003) Linking source and sedimentary 636
- basin: Detrital zircon record of sediment flux along a modern river system and 637
- implications for provenance studies. Earth and Planetary Science Letters 210:259–268. 638
- 639 Cesare B, Rubatto D, Hermann J, Barzi L (2002) Evidence for Late Carboniferous subduction
- type magmatism in mafic-ultramafic cumulates of the SW Tauern window (Eastern 640
- Alps). Contributions to Mineralogy and Petrology 142:449-464 641
- Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon 642
- G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled 643

- plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of
 Analytical Atomic Spectrometry 17:1567–1574.
- 646 Cilek V (2001) The loess deposits of the Bohemian Massif: silt provenance,
 647 palaeometeorology and loessification processes. Quaternary International 76/77:123–
 648 128.
- 649 Condie KC, Beyer E, Belousova EA, Griffin WL, O'Reilly SY (2005) U–Pb isotopic ages and
- 650 Hf isotopic composition of single zircons: the search for juvenile Precambrian
- 651 continental crust. Precambrian Research 139:42–100.
- 652 Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM,
- Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry 53, pp 469–500.
- Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal
 activity in the southeastern Bohemian Massiv, Austria (Moldanubian and Moravo–
 Silesian zones): ⁴⁰Ar/³⁹Ar mineral age controls. Tectonophysics 210:135–153.
- Dickinson W (2008) Impact of differential zircon fertility of granitoid basement rocks in
 North America on age populations of detrital zircons and implications for granite
 petrogenesis. Earth and Planetary Science Letters 275:80–92.
- 660 Egal E, Thiéblemont D, Lahondère D, Guerrot C, Costea CA, Iliescu D, Delor C, Goujou J-C,
- Lafon JM, Tegyey M, Diaby S, Kolié P (2002) Late Eburnean granitization and
 tectonics along the western and northwestern margin of the Archean Kénéma–Man
 domain (Guinea, West African Craton). Precambrian Research 117:57–84.
- 664 Eichhorn R, Höll R, Loth G, Kennedy A (1999) Implications of U-Pb SHRIMP zircon data
- on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria).
- 666 International Journal of Earth Sciences 88:496–512.

667	Eichhorn R, Loth G, Höll R, Finger F, Schermaier A, Kennedy A (2000) Multistage Variscan
668	magmatism in the Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data.
669	Contributions to Mineralogy and Petrology 139:418–435.
670	Eichhorn R, Loth G, Kennedy A (2001) Unravelling the pre-Variscan evolution of the Habach
671	terrane (Tauern Window, Austria) by U-Pb SHRIMP zircon data. Contributions to
672	Mineralogy and Petrology 142:147–162.
673	Einwögerer T, Händel M, Neugebauer-Maresch C, Simon U, Steier P, Teschler-Nicola M,
674	Wild EM (2009). ¹⁴ C dating of the Upper Paleolithic site at Krems-Wachtberg, Austria.
675	Radiocarbon 51:847–855.
676	Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary
677	record. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and
678	Geochemistry 53, pp 277– 303.
679	Fisher CM, Hanchar JM, Samson SD, Dhuime B, Blichert-Toft J, Vervoort JD, Lam R (2011)
680	Synthetic zircon doped with hafnium and rare earth elements: A reference material for
681	in situ hafnium isotope analysis. Chemical Geology 286:32-47.
682	Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, Hansteen TH,
683	Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for
684	improved isotope ratio precision using LA-MC-ICP-MS applied to stable and
685	radiogenic strontium isotopes in carbonates. Journal of Analytical Atomic Spectrometry
686	23:955–961.
687	Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution
688	of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and
689	the Moravo-Moldanubian tectonometamorphic phases. Journal of Geosciences 52:9–28.
690	Fink J (1961) Die Gliederung des Jungpleistozäns in Österreich. Mitteilungen der
691	Geologischen Gesellschaft 54:1–25.

Fink J, Kukla GJ (1977) Pleistocene climates in Central Europe: At least 17 interglacials after
the Olduvai Event. Quaternary Research 7:363–371.

- Florineth D, Schlüchter Ch (2000) Alpine evidence for atmospheric circulation patterns in
 Europe during the Last Glacial Maximum. Quaternary Research 54:295–308.
- Frank Ch, Nagel D, Rabeder G (1997) Chronologie des österreichischen Plio-Pleistozäns. In:
 Döppes D, Rabeder G (eds) Pliozäne und pleistozäne Faunen Österreichs, pp 359–374.
- Friedl G, Finger F, Paquette J-L, von Quadt A, McNaughton NJ, Fletcher IR (2004) PreVariscan geological events in the Austrian part of the Bohemian Massif deduced from
 U- Pb zircon ages. International Journal of Earth Sciences 93:802–823.
- 701 Friedl G, Cooke RA, Finger F, McNaughton NJ, Fletcher IR (2011) Timing of Variscan HP-
- TO2 HT metamorphism in the Moldanubian Zone of the Bohemian Massif: U– Pb SHRIMP
- dating on multiply zoned zircons from a granulite from the Dunkelsteiner Wald Massif,
 Lower Austria. Mineralogy and Petrology 102:63–75.
- Gallet S, Jahn B, Van Vliet Lanoë B, Dia A, Rossello E (1998) Loess geochemistry and its
- implications for particle origin and composition of the upper continental crust. Earthand Planetary Science Letters 156:157–172.
- Gebauer D, Friedl G (1993) A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian
 zone of the southern Bohemian massif, NE-Austria): evidence from ion-microprobe
 (SHRIMP)-dating of zircon. European Journal of Mineralogy 5:115.
- Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of
 detrital zircons; comparison with SHRIMP and new constraints for the provenance and
 age of an Armorican metasediment in central Germany. Earth and Planetary Science
 Letters 249:47–61.
- Gerdes A, Wörner G, Finger F (1996) Mantle sources in Hercynian granitoids? A trace
 element and isotope study. Journal of Conference Abstracts 1:201.

- Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan
 granite emplacement the South Bohemian Batholith. Journal of the Czech Geological
 Society 48: 53–54.
- Griffin WL, Belousova EA, Shee SR, Pearson NJ, O'Reilly SY (2004) Archean crustal
 evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital
 zircons. Precambrian Research 131:231–282.
- Griffin WL, Pearson NJ, Belousova EA, Saeed A (2006) Comment: Hf-isotope heterogeneity
 in zircon 91500. Chemical Geology 233:358–363.
- Haase D, Fink J, Haase G, Ruske R, Pecsi M, Richter H, Altermann M, Jäger KD (2007)
- 726 Loess in Europe its spatial distribution based on a European Loess Map, scale
- 727 1:2,500,000. Quaternary Science Reviews 26:1301–1312.
- Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence
 and backscattered electron images: Implications for interpretation of complex crustal
 histories. Chemical Geology 110:1–13.
- 731 Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in
- granitic melts of variable water content. Contributions to Mineralogy and Petrology
 84:66-72.
- Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel
 the record of crustal evolution. Chemical Geology 226:144–162.
- Hietpas J, Samson S, Moecher D, Chakraborty S (2011) Enhancing tectonic and provenance
- 737 information from detrital zircon studies: assessing terrane-scale sampling and grain-
- scale characterization. Journal of the Geological Society of London 168:309–318.
- 739 Hoinkes G, Koller F, Demény A, Schuster R, Miller C, Thöni M, Kurz W, Krenn K, Walter F
- 740 (2010) Metamorphism in the Eastern Alps. Acta Mineralogica-Petrographica, Field
- 741 Guide Series 1:1–47.

742	Howard KE, Hand M, Barovich KM, Reid A, Wade BP, Belousova EA (2009) Detrital zircon
743	ages: Improving interpretation via Nd and Hf isotopic data. Chemical Geology
744	262:277-292.
745	Johnsson MJ (1993) The system controlling the composition of clastic sediments. In:
746	Johnsson MJ, Basu A (eds) Processes Controlling the Composition of Clastic
747	Sediments, Geological Society of America Special Paper 284, Boulder, pp 1-20.
748	Kebede T, Klötzli U, Kosler J, Skiöld T (2005) Understanding pre-Variscan and Variscan
749	basement components of the central Tauern Window, Eastern Alps (Austria):
750	constraints from new single zircon U-Pb geochronology. International Journal of Earth
751	Sciences 94:336–353.
752	Kemp AIS, Foster GL, Scherstén A, Whitehouse MJ, Darling J, Storey C (2009) Concurrent
753	Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICPMS, with
754	implications for the crustal evolution of Greenland and the Himalayas. Chemical
755	Geology 261:244–260.
756	Kinny PD, Maas R (2003) Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar JM,
757	Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry 53, pp 327-341.
758	Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg
759	graniodiorite, South Bohemian Massif, Austria. Mineralogy and Petrology 58:197-214.
760	Klötzli US, Frank W, Scharbert S, Thöni M (1999) The evolution of the SE Bohemian Massif
761	based on geochronological data: a review. Jahrbuch der Geologischen Bundesanstalt
762	141:377–394.
763	Klötzli US, Koller F, Scharbert S, Höck V (2001) Cadomian lower-crustal contributions to
764	Variscan granite petrogenesis (South Bohemian Pluton, Austria): constraints from
765	zircon typology and geochronology, whole-rock, and feldspar Pb-Sr isotope
766	systematics. Journal of Petrology 42:1621–1642.

767	Klötzli U, Klötzli E, Günes Z, Košler J (2009) External accuracy of laser ablation U-Pb
768	zircon dating: results from a test using five different reference zircons. Geostandards
769	and Geoanalytical Research 33:5–15.

- 770 Klötzli-Chowanetz E, Klötzli U, Koller F (1997) Lower Ordovician migmatisation in the
- 771 Ötztal crystalline basement (Eastern Alps, Austria): linking U–Pb and Pb–Pb dating
- with zircon morphology. Schweizerische Mineralogische und Petrographische

773 Mitteilungen 77:315–324.

- Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vankova V, Vanek J (1988) U-
- Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments,
 Bohemian Massif, Czechoslovakia. Contributions to Mineralogy and Petrology
 99:257-266.
- Košler J, Konopásek J, Sláma J, Vrána S (2014) U– Pb zircon provenance of Moldanubian
 metasediments in the Bohemian Massif. Journal of the Geological Society, London
 171:83–95.

781 Krogh TE (1982) Improved accuracy of U– Pb zircon dating by selection of more concordant
 782 fractions using a high gradient magnetic separation technique. Geochimica et

783 Cosmochimica Acta 46:631–635.

Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and
the opening of the Rheic Ocean: The diachrony of geotectonic processes constrained by

LA- ICP- MS U- Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian
 and Bohemian Massifs). Tectonophysics 461:21-43.

Lisá L (2004) Exoscopy of Moravian eolian sediments. Bulletin of Geosciences 79:177–182.

Lisá L, Uher P (2006) Provenance of Würmian loess and loess-like sediments of Moravia and
Silesia (Czech Republic): a study of zircon typology and cathodoluminescence.
Geologica Carpathica 57:397–403.

- Lisá L, Buriánek D, Uher P (2009) New approach to garnet redistribution during aeolian
 transport. Geological Quarterly 53:333–340.
- Lomax J, Fuchs M, Preusser F, Fiebig M (2014) Luminescence based loess
- chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria.
- 796 Quaternary International 351:88–97.
- 797 Ludwig KR (2008) User's manual for Isoplot 3.70: a geochronological toolkit for Microsoft®

Excel. Berkeley Geochronology Center Special Publication No 4, USA, p 76.

799 Malusa MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon

geochronology and thermochronometry. Chemical Geology 359:90–107.

- 801 Meinhold, G., Morton, A.C., Fanning, C.M., Frei, D., Howard, J.P., Phillips, R.J., Strogen, D.,
- 802 Whitham, A.G., 2011. Evidence from detrital zircons for recycling of Mesoproterozoic
- and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern
- Libya. Earth and Planetary Science Letters 312:164–175.
- Meinhold, G., Morton, A.C., Avigad, D., 2013. New insights into peri-Gondwana
- paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages.
- 807 Gondwana Research, 23:661–665
- 808 Miller C, Konzett J, Tiepolo M, Armstrong RA, Thöni M (2007) Jadeite-gneiss from the
- Eclogite Zone, Tauern Window, Eastern Alps, Austria: Metamorphic, geochemical and
 zircon record of a sedimentary protolith. Lithos 93:68–88.
- 811 Moecher DP, Samson SD (2006) Differential zircon fertility of source terranes and natural
- bias in the detrital zircon record: Implications for sedimentary provenance analysis.
- Earth and Planetary Science Letters 247:252–266.
- 814 Nehyba S, Roetzel R (2004) The Hollabrunn-Mistelbach formation (Upper Miocene,
- 815 Pannonian) in the Alpine-Carpathian Foredeep and the Vienna basin in lower Austria –

816	An example of a Coarse-grained Fluvial System. Jahrbuch des Geologischen
817	Bundesanstalt 144:191–221.

818	Neubauer F, Klötzli U, Poscheschnik P (2001) Two stages of Cadomian magmatism in the
819	Alps recorded in Late Ordovician sandstones of the Carnic Alps: results from zircon
820	Pb/Pb evaporation dating. 21st IAS Meeting of Sedimentology, pp 126–127.
821	Neubauer F, Frisch W, Hansen BT (2002) Early Palaeozoic tectonothermal events in
822	basement complexes of the eastern Graywacke Zone (Eastern Alps): evidence from U-
823	Pb zircon data. International Journal of Earth Sciences 91:775–786.
824	Nemchin AA, Cawood PA (2005) Discordance of the U-Pb system in detrital zircons:
825	implication for provenance studies of sedimentary rocks. Sedimentary Geology
826	182:143–162.
827	Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and
828	mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and
829	Petrology 78:279–297.
830	Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis.
831	Journal of Metamorphic Geology 15:203–222.
832	Preusser F, Fiebig M (2009) European Middle Pleistocene loess chronostratigraphy: some
833	considerations based on evidence from the Wels site, Austria. Quaternary International
834	198:37-45.
835	Pullen A, Kapp P, McCallister AT, Chang H, Gehrels GE, Garzione CN, Heermance RV,
836	Ding L (2011) Qaidam Basin and northern Tibetan Plateau as dust sources for the
837	Chinese Loess Plateau and paleoclimatic implications. Geology 39:1031–1034.
838	Pupin JP (1980) Zircon and granite petrology. Contributions to Mineralogy and Petrology
839	73:207–220.

- Pye K (1995) The nature, origin and accumulation of loess. Quaternary Science Reviews
 14:653-667.
- Reitner JM (2007) Glacial dynamics at the beginning of Termination I in the Eastern Alps and
 their stratigraphic implications. Ouaternary International 164–165:64–84.
- Renssen H, Kasse C, Vandenberghe J, Lorenz SJ (2007) Weichselian Late Pleniglacial
- 845 surface winds over northwest and central Europe: a model- data comparison. Journal of
 846 Quaternary Science 22:281–293.
- 847 Richter S, Goldberg SA, Mason PB, Traina AJ, Schwieters JB (2001) Linearity tests for
- secondary electron multipliers used in isotope ratio mass spectrometry. International
 Journal of Mass Spectrometry 206:105–127.
- 850 Samson SD, D'Lemos RS, Miller BV, Hamilton MA (2005) Neoproterozoic palaeogeography
- of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. Journal
 of the Geological Society, London 162:65–71.
- 853 Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. In:

Harley SL, Kelly NM (eds) Zircon: Tiny but Timely, Elements 3, pp 19–24.

- Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall
 architecture of the Alpine orogen. Eclogae Geologicae Helvetiae 97:93–117.
- 857 Shao Y (2009) Physics and Modelling of Wind Erosion. In: Atmospheric and Oceanographic
- Sciences Library, vol. 37. Springer, Netherlands, ISBN 978-1-4020-8894-0.
- 859 <u>http://dx.doi.org/10.1007/978-1-4020-8895-7</u>.
- 860 Siebel W, Chen F (2010) Zircon Hf isotope perspective on the origin of granitic rocks from
- 861 eastern Bavaria, SW Bohemian Massif. International Journal of Earth Sciences 99:993–
 862 1005.

- Siebel W, Thiel M, Chen F (2006) Zircon geochronology and compositional record of late- to
 post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest).
 Mineralogy and Petrology 86:45–62.
- 866 Siebel W, Shang CK, Reitter E, Rohrmüller J, Breiter K (2008) Two distinctive granite suites
- 867 in the south-western Bohemian Massif and their record of emplacement: constraints
- 868 from zircon ²⁰⁷Pb/²⁰⁶Pb chronology and geochemistry. Journal of Petrology 49:1853–
 869 1872.
- 870 Siebel W, Shang CK, Thern E, Danišík M, Rohrmüller J (2012) Zircon response to high-grade
- 871 metamorphism as revealed by U–Pb and cathodoluminescence studies. International
 872 Journal of Earth Sciences 101:2105–2123.
- 873 Siegesmund S, Heinrichs T, Romer RL, Doman D (2007) Age constraints on the evolution of
- the Austroalpine basement to the south of the Tauern Window. International Journal of
 Earth Sciences 96:415–432.
- Sláma J, Košler J (2012) Effects of sampling and mineral separation on accuracy of detrital
 zircon studies. Geochemistry, Geophysics, Geosystems 13:Q05007, doi:
- 878 10.1029/2012GC004106.
- 879 Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris
- GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ
- (2008) Plešovice zircon A new natural reference material for U Pb and Hf isotopic
 microanalysis. Chemical Geology 249:1–35.
- 883 Smalley I, O'Hara-Dhand K, Wint J, Machalett B, Jary Z, Jefferson I (2009) Rivers and loess:
- the significance of long river transportation in the complex event-sequence approach to
 loess deposit formation. Quaternary International 198:7–18.

886	Söderlund U, Patchett JP, Vervoort JD, Isachsen C (2004) The ¹⁷⁶ Lu decay constant
887	determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions.
888	Earth and Planetary Science Letters 219:311–324.
889	Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes:
890	From Gondwana to the Variscan collision. In: Martínez Catalán JR, Hatcher RD Jr,
891	Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: The building of the late
892	Paleozoic basement, Geological Society of America Special Paper 364, pp 263-280.
893	Stevens T, Palk C, Carter A, Lu H, Clift PD (2010) Assessing the provenance of loess and
894	desert sediments in northern China using U-Pb dating and morphology of detrital
895	zircons. Geological Society of America Bulletin 122:1331-1344.
896	Stevens T, Carter A, Watson TP, Vermeesch P, Andó S, Bird AF, Lu H, Garzanti E, Cottam
897	MA, Sevastjanova I (2013) Genetic linkage between the Yellow River, the Mu Us
898	desert and the Chinese Loess Plateau. Quaternary Science Reviews 78:355-368.
899	Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation
900	inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic silicate
901	glass standard. Chemical Geology 141:49-65.
902	Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European
903	Variscan fold belt: palaeomagnetic and geological constraints. Geologische Rundschau
904	86:585-598.
905	Teipel U, Eichhorn R, Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U-Pb SHRIMP and
906	Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany):
907	Implications for Upper Vendian and Lower Ordovician magmatism. International
908	Journal of Earth Sciences 93:782-801.

909	Terhorst B, Ottner F, Wriessnig K (2012) Weathering intensity and pedostratigraphy of the
910	Middle to Upper Pleistocene loess/palaeosol sequence of Wels-Aschet (Upper Austria).
911	Quaternary International 265:142–154.
912	Thiel C, Buylaert J-P, Murray A, Terhorst B, Hofer I, Tsukamoto S, Frechen M (2010)
913	Luminescence dating of the Stratzing loess profile (Austria) - testing the potential of an
914	elevated temperature post-IR IRSL protocol. Quaternary International 234:23-31.
915	Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation.
916	Sedimentology 34:139–153.
917	Újvári G, Varga A, Balogh-Brunstad Z (2008) Origin, weathering, and geochemical
918	composition of loess in southwestern Hungary. Quaternary Research 69:421-437.
919	Újvári G, Varga A, Ramos FC, Kovács J, Németh T, Stevens T (2012) Evaluating the use of
920	clay mineralogy, Sr- Nd isotopes and zircon U- Pb ages in tracking dust provenance:
921	an example from loess of the Carpathian Basin. Chemical Geology 304-305:83-96.
922	Újvári G, Klötzli U, Kiraly F, Ntaflos T (2013) Towards identifying the origin of
923	metamorphic components in Austrian loess: insights from detrital rutile chemistry,
924	thermometry and U- Pb geochronology. Quaternary Science Reviews 75, 132-142.
925	van Husen D (1981) Geologisch-sedimentologische Aspekte im Quartär von Österreich.
926	Mitteilungen der Geologischen Gesellschaft 74/75:197–230.
927	van Husen D (2000) Geological processes during the Quaternary. Mitteilungen der
928	Geologischen Gesellschaft 92:135–156.
929	Veselá P, Söllner F, Finger F, Gerdes A (2011) Magmato-sedimentary Carboniferous to
930	Jurassic evolution of the western Tauern window, Eastern Alps (constraints from U-Pb
931	zircon dating and geochemistry). International Journal of Earth Sciences 100:993–1027.
932	Vermeesch P (2004) How many grains are needed for a provenance study? Earth and
933	Planetary Science Letters 224:441–451.

934 Vermeesch P (2012) On the visualisation of detrital age distributions. Chemical Geology
935 312-313:190-194.

- Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R, Downes H (2000) Hf-Nd 936 937 isotopic evolution of the lower crust. Earth and Planetary Science Letters 181:115–129. Vervoort JD, Patchett PJ, Söderlund U, Baker M (2004) Isotopic composition of Yb and the 938 determination of Lu concentrations and Lu/Hf by isotope dilution using MC-ICPMS. 939 Geochemistry, Geophysics, Geosystems 5, Q11002, doi:10.1029/2004GC000721. 940 von Quadt A (1992) U-Pb zircon and Sm-Nd isotope geochronology of mafic and ultramafic 941 rocks from the central part of the Tauern Window (eastern Alps). Contributions to 942 943 Mineralogy and Petrology 110:57–67. Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: Kinetic 944 principles, geological models and implications for isotopic inheritance. Transactions of 945 946 the Royal Society of Edinburgh: Earth Sciences 87:43–56. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition 947 948 effects in a variety of crustal magma types. Earth and Planetary Science Letters 64:295-304. 949 Weber B, Scherer EE, Martens UK, Mezger K (2012) Where did the lower Paleozoic rocks of 950
- 951 Yucatan come from? A U–Pb, Lu–Hf, and Sm–Nd isotope study. Chemical Geology
 952 312–313:1–17.
- Wendt JI, Kröner A, Fiala J, Todt W (1994) U–Pb zircon and Sm–Nd dating of Moldanubian
 HP/HT granulites from South Bohemia, Czech Republic. Journal of the Geological
 Society 151:83–90.
- Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U–Th–Pb zircon data
 from early Archaean rocks of west Greenland—a reassessment based on combined ionmicroprobe and imaging studies. Chemical Geology 160:201–224.

959	Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference
960	materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research
961	29:183–195.

Xiao G, Zong K,, Li G, Hu Z, Dupont-Nivet G, Peng S, Zhang K (2012) Spatial and glacialinterglacial variations in provenance of the Chinese Loess Plateau. Geophysical
Research Letters 39:L20715, doi:10.1029/2012GL053304.

965 966

967 Figure captions

968 Fig. 1 Simplified geological map of the northeastern part of Austria (modified after Beck-

Mannagetta 1964; Haase et al. 2007) with the sampling sites. The numbers mark the sampling

970 localities: 1. Krems (sample K23), 2. Stratzing (sample S1), 3. Wels (sample A16). Letters

971 denote geological units, formations, etc. mentioned in chapter 'Geological setting': A. Gföhl

972 unit, B. Varied series, C. Monotonous series, D. South Bohemian Pluton, E. Hollabrunn-

973 Mistelbach Formation, F. Rhenodanubian flysch zone, G. Austroalpine unit, H. Tauern

974 window (Penninic)

975 Fig. 2 Secondary electron and cathodoluminescence images of detrital zircons from samples

976 K23 (a, b) and A16 (c, d), with U– Pb ages. Panels a), c) and d) show typical igneous zircons

977 with magmatic growth zoning. Resorption and reprecipitation/recrystallization features are

visible in zircon shown in panel a), while panel b) displays a metamorphic zircon with

979 recrystallization rims. The abbreviation 'conc.' means concordance. Ages younger than 1.0

980 Ga are 206 Pb/ 238 U ages, while those older than 1.0 Ga are 207 Pb/ 206 Pb ages. White lines denote

- 981 the axis of laser ablation trenches. Their diameters are given after the @ in microns
- 982 Fig. 3 Secondary electron and cathodoluminescence images of detrital zircons from sample
- 983 S1 with U– Pb ages and Hf isotopic compositions. Magmatic zircons with oscillatory zoning

984	(panels a, c, e, f), metamorphic zircon (panel b), and a zircon with inherited/xenocrystic core
985	(panel d). The abbreviation 'conc.' means concordance. Ages younger than 1.0 Ga are
986	206 Pb/ 238 U ages, while those older than 1.0 Ga are 207 Pb/ 206 Pb ages. White lines denote the
987	axis of laser ablation trenches. Their diameters are given after the @ in microns
988	Fig. 4 Kernel density estimates of zircon U– Pb ages of the three studied loess samples. Black
989	lines are distributions estimated from U– Pb ages with age uncertainties <20% and cutoff at
990	20% (e_20, c_20), while gray/turquoise shaded distributions are calculated from U- Pb ages
991	having <10% uncertainties and cutoff at 10% (e_10, c_10). Number of ages (n) used in these
992	calculations are also specified. All the KDEs have been calculated using a bandwidth of 25
993	Ma. Bold numbers are age components calculated by mixture modeling in DensityPlotter.
994	Panels (right up corner) are blow ups of the distributions for a period of 200 to 800 Ma.
995	White/red dots mark purely magmatic ages (based on CL images), while gray filled dots
996	denote metamorphic ages. Abbreviations: Var. = Variscan (320-360 Ma), Cal. = Caledonian
997	(420-480 Ma) and Cad./P.A. = Cadomian/Pan-African (500-800 Ma)
998	Fig. 5 Age versus a) 176 Hf/ 177 Hf _t and b) ϵ Hf _t diagrams for detrital zircon grains from loess
999	samples S1, K23 and A16. Zircons listed in Table 2 are plotted exclusively. Dashed lines
1000	illustrate typical evolution paths of crust separated from a depleted mantle at different times in
1001	Ma (crustal residence ages) with 176 Lu/ 177 Hf of 0.015 (Condie et al. 2005)
1002	

Figure1_col Click here to download high resolution image

Figure1_bw Click here to download high resolution image

50 µm.

Digital Microscopy Imaging Ga

Figure3_bw Click here to download high resolution image

Age (Ma)

Age (Ma)

Figure5_col Click here to download high resolution image

Figure5_bw Click here to download high resolution image

Sample	Number of zircons	Concordance criteria	at p _L =0.5 ^a	at p _L =0.95 ^b	Failure rate (%) at X _i =10% ^c	Failure rate (%) at X _i =20%	Failure rate (%) at X _i =40%
S1	49	<20%	1.4	5.9	0.6	0.0	0.0
	31	<10%	2.2	9.2	3.8	0.1	0.0
K23	32	<20%	2.1	8.9	3.4	0.1	0.0
	17	<10%	4.0	16.2	16.7	2.3	0.0
A16	14	<20%	4.8	19.3	22.9	4.4	0.1
	6	<10%	10.9	39.3	53.1	26.2	4.7

Table 1. Likelihoods of missing age populations for the analyzed loess samples based on binomial probability (after Andersen 2005)

^aDetection limit is the percent abundance of the largest population of zircons likely to remain undetected in *n* analyses, for a probability level (p_L) of 0.5. It is calculated as $X_L = 1 - 1 - p_L \frac{1}{n} \times 100$ (Andersen 2005). Detection limit at $p_L=0.5$ marks an upper abundance

limit for populations that are more probably overlooked than observed in *n* analyses ^bDetection limit is the percent abundance of the largest population of zircons likely to remain undetected in *n* analyses, for a probability level (p_L) of 0.95

^cFailure rate (in percent) is the probability of overlooking an age population with an abundance X_i in the sediment, and calculated as $p_{n_i=0} = ((1 - X_i)^n) \times 100$ (Andersen 2005)

Table 2. 0-10 ages and Lu		compos	100115 01			ss samples S1	, 1845, aliu F	110						
Sample code	²⁰⁶ Pb/ ²³⁸ U age (Ma)	±2σ (Ma)	Conc.	¹⁷⁶ Hf/ ¹⁷⁷ Hf	+2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	+2SE	εHf₀ ^b	±2σ ^c	¹⁷⁶ Hf/ ¹⁷⁷ Hf. ^d	±2σ ^e	εHf. ^f	τ ^c _{DM} -Hf (Ma) ^g	Origin
sample S1								- 0		t		L		- 8
120316 0155 S1 003a.d	349	12	86.8	0.281965	0.000456	0.000145	0.000007	-29.0	0.2	0.281964	0.000456	-21.3	2600	not specified
120316 0155 S1 022a,d	495	29	109.1	0.282125	0.000389	0.002378	0.000022	-23.4	0.1	0.282102	0.000389	-13.1	2206	not specified
120316 0155 S1 023a.d	503	38	105.0	0.282065	0.000459	0.001141	0.000023	-25.5	0.2	0.282054	0.000459	-14.7	2308	metamorphic
120316_0155_S1_025a,d	337	28	99.9	0.282105	0.000566	0.001005	0.000023	-24.1	0.2	0.282098	0.000566	-16.8	2313	magmatic
120317_0155_S1_032a,d	485	11	100.6	0.281965	0.000444	0.002479	0.000042	-29.0	0.2	0.281943	0.000444	-19.0	2563	magmatic
120317_0155_S1_040a,d	328	11	114.9	0.282145	0.000656	0.000846	0.000057	-22.6	0.2	0.282140	0.000656	-15.5	2228	magmatic
120317_0155_S1_047a,d	631	33	103.9	0.281963	0.000455	0.000194	0.000006	-29.1	0.2	0.281960	0.000455	-15.1	2433	metamorphic
120317_0155_S1_054a,d	325	35	88.0	0.282186	0.000526	0.001101	0.000022	-21.2	0.2	0.282179	0.000526	-14.2	2143	metamorphic
120317_0155_S1_059a,d	346	36	91.3	0.281946	0.000560	0.000969	0.000010	-29.7	0.2	0.281940	0.000560	-22.2	2655	magmatic
120317_0155_S1_064a,d	523	17	99.0	0.281989	0.000715	0.001828	0.000036	-28.2	0.3	0.281971	0.000715	-17.1	2478	magmatic
120317_0155_S1_065a,d	503	27	98.5	0.282005	0.000606	0.002595	0.000073	-27.6	0.2	0.281981	0.000606	-17.2	2468	magmatic
120317_0155_S1_078a,d	333	29	110.8	0.281965	0.000733	0.001088	0.000035	-29.0	0.3	0.281958	0.000733	-21.9	2623	magmatic
120317_0155_S1_089a,d	332	8	101.9	0.282087	0.000541	0.000946	0.000016	-24.7	0.2	0.282082	0.000541	-17.5	2353	magmatic
120317_0155_S1_094a,d	566	18	98.4	0.282050	0.000478	0.000684	0.000025	-26.0	0.2	0.282043	0.000478	-13.6	2292	not specified
120317_0155_S1_096a,d	489	55	107.2	0.282181	0.000718	0.001366	0.000038	-21.4	0.3	0.282169	0.000718	-10.9	2064	metamorphic
120319_0155_S1_097a,d	494	19	85.4	0.281990	0.000562	0.001023	0.000007	-28.1	0.2	0.281981	0.000562	-17.4	2473	not specified
120319_0155_S1_099b,d	339	15	83.4	0.282191	0.000568	0.000850	0.000040	-21.0	0.2	0.282185	0.000568	-13.7	2121	magmatic
120319_0155_S1_103a,d	346	27	114.4	0.282031	0.000497	0.001159	0.000012	-26.7	0.2	0.282023	0.000497	-19.2	2472	magmatic
sample K23														
120320_0194_K23_022a,d	579	16	101.3	0.282056	0.000769	0.000807	0.000026	-25.8	0.3	0.282047	0.000769	-13.2	2276	not specified
120320_0194_K23_035a,d	522	14	88.6	0.281956	0.000754	0.001530	0.000044	-29.3	0.3	0.281941	0.000754	-17	2544	magmatic
120320_0194_K23_036a,d	522	12	109.1	0.282087	0.000764	0.001333	0.000024	-24.7	0.3	0.282074	0.000764	-12.3	2253	magmatic
120320_0194_K23_053a,d	332	55	107.1	0.281951	0.000669	0.000830	0.000019	-29.5	0.2	0.281945	0.000669	-16.8	2651	magmatic
120320_0194_K23_054a,d	589	56	108.9	0.282084	0.000783	0.001260	0.000038	-24.8	0.3	0.282070	0.000783	-12.4	2219	magmatic
120320_0194_K23_058a,d	581	35	118.2	0.281949	0.001002	0.000560	0.000039	-29.6	0.4	0.281943	0.001002	-16.9	2504	magmatic
sample A16														

Table 2. U- Pb ages and Lu- Hf isotopic compositions of detrital zircons from loess samples S1, K23, and A16

120316_0176_A16_006a,d	319	23	82.4	0.282134	0.000967	0.000771	0.000018	-23.0	0.3	0.282130	0.000967	-16.1	2255	magmatic
120320_0177_A16_046a,d	1657*	102	87.7	0.282017	0.001518	0.000727	0.000019	-27.2	0.5	0.281994	0.001518	9.4	1712	not specified
120320_0177_A16_048a,d	473	24	106.4	0.282008	0.001020	0.001781	0.000018	-27.5	0.4	0.281992	0.001020	-17.5	2461	magmatic
120320_0177_A16_061a,d	469	38	118.3	0.281944	0.001819	0.001237	0.000028	-29.8	0.6	0.281933	0.001819	-19.7	2594	magmatic

Sample code: a/b denotes the U-Pb ages (see also the Supplementary Tables), d marks Lu-Hf analyses spots

^a'Conc.' means concordance (206Pb/238U/207Pb/206Pb*100)

^b ϵ Hf₀=(¹⁷⁶Hf/¹⁷⁷Hf_{zircon-meas}/¹⁷⁶Hf/¹⁷⁷Hf_{CHUR-0}-1)*10000, where ¹⁷⁶Hf/¹⁷⁷Hf_{CHUR-0}=0.282785±0.000011 (Bouvier et al. 2008)

^cUncertainties have been propagated as the root of the sum of the squared errors

 d^{176} Hf/ 177 Hf_t= 176 Hf/ 177 Hf_{zirc}, $-{}^{176}$ Lu/ 177 Hf_{zirc}, $(e^{\lambda t} - 1)$, where $\lambda = \lambda_{176Lu} = 1.867 \pm 0.008 \times 10^{-11}$ a⁻¹ (Söderlund et al. 2004), and *t* is the crystallization ages of zircons ^eUncertainties (σ) of 176 Hf/ 177 Hf_t have been propagated as

 $\sigma_{176Hf/177Hf_t} = \sqrt{\sigma_{176Hf/177Hf_{zirc.}}^2 + ((e^{\lambda t} - 1)\sigma_{176Lu/177Hf_{zirc.}})^2 + ((e^{\lambda t} - 1)176Lu/177Hf_{zirc.}t\sigma_{\lambda})^2 + ((e^{\lambda t} - 1)176Lu/177Hf_{zirc.}\lambda\sigma_t)^2}.$ For the details of mathematical derivation of

this expression see the Appendix

 $\int_{\epsilon}^{176} \text{Hf}_{t} = \left[\left(\frac{176}{16} \text{Hf} \right)^{177} \text{Hf}_{zirc} - \frac{176}{12} \text{Lu} \right)^{177} \text{Hf}_{zirc} (e^{\lambda t} - 1) \right]^{176} \text{Hf} / \frac{177}{176} \text{Hf}_{CHUR-0} - \frac{176}{12} \text{Lu} / \frac{177}{176} \text{Hf}_{CHUR-0} = 0.0336 \pm 0.0001 \text{ (Bouvier et al. 2008)}$ ^gTwo-stage crustal residence model ages were calculated as $\tau_{DM} - Hf = (1/\lambda) \ln(1+m)$, where $m = [176Hf/177Hf_{DM} - (176Hf/177Hf_{t,zirc} + 176Lu/177Hf_{ava.crust}(e^{\lambda t} - 10^{10})]$ 1))]/ $[176Lu/177Hf_{DM} - 176Lu/177Hf_{avg.crust}]$. We assumed ¹⁷⁶Lu/¹⁷⁷Hf_{avg.crust}=0.015 (Griffin et al. 2004; Condie et al. 2005) and the present day depleted mantle (DM) model is based on 176 Hf/ 177 Hf_{DM}=0.283224 (Vervoort et al. 2000), 176 Lu/ 177 Hf_{DM}=0.03836 (calculated for ϵ Hf=0 at 4500 Ma, Weber et al. 2012) *It is a 207 Pb/ 206 Pb age

Potential sources	Rock type	Ages (Ma)	Ages of inherited zircon cores (Ma)	Interpretation	176 Hf/ 177 Hf _t		$\mathbf{\epsilon} \mathbf{H} \mathbf{f}_{t}$	References
					Max.	Min.	Max. Min.	-
Bohemian Massif, Moldanubian Zone								
Southwest part								
Sarleinsbach, S Bohemian Pluton, Austria	Weinsberg type granites	355±9 and 345±5	523±5	high-T metamorphism and Carboniferous partial melting				Klötzli et al. (2001)
Bavarian forest	metarhyolite, metabasite, metagranitoids	555±12 to 549±6, 486±7 to 480±6, 431±7, 319±5 to 316±10	2700 to 2000	Late Vendian and Early Ordovician magmatism and anatexis, Post-Cadomian and Variscan metamorphism				Teipel et al. (2004)
Pfahl zone, Bavarian forest	granite, granodiorite	329-321		Visean-Bashkirian magma emplacement				Siebel et al. (2006)
Bavarian and Ostrong terrane (Bavarian forest)	granite	328-321		granite formation during a short period of crustal melting				Siebel et al. (2008)
Palatinate and Bavarian Forests, W Bohemian Massif	Variscan granites, redwitzites, intermediate granitoids	334-312		late to post-orogenic granitoid formation during Late Visean metamorphism and anatexis	0.282603	0.282423	0.75 – 5.6	Siebel and Chen (2010)
Bavarain Forest, W Bohemian Massif	migmatite	342-330, 333-320	426-420	granulite-facies metamorphism, late-Variscan anatectic overprint				Siebel et al. (2012)
South/central part S Bohemian Batholith	Weinsberg type granites	331-323		magma emplacement				Gerdes et al. (2003)
Southeast part								
Varied group Varied and Monotonous Groups	Dobra gneiss metasediments	1377±10 672±57 to 2281±22		protolith emplacement of the Dobra gneiss early Proterozoic crust formation event (from 2.0 to 2.2 Ga)				Gebauer and Friedl (1994) Kröner et al. (1988)
Rastenberg batholith	granodiorite	353±9, 338±2	623±22, >1206	first magma formation during Variscan plutonism, granodioritic magma intrusion into the middle grant				Klötzli and Parrish (1996)
S Bohemian Massif (S Bohemian Batholith, Gföhl nappe, Drosendorf nappe)	pre-Variscan granitoids (orthogneiss, granulite, granite)	585-565, 488±6, 445±10		Cadomian and Ordovician magmatism				Friedl et al. (2004)
Dunkelsteiner Wald, S Bohemian Massif	granulite	342±3 and 337±2.7	460-390	Variscan regional metamorphism, exhumation into mid-crustal levels				Friedl et al. (2011)
Montonous Unit	gneiss	550, 470	2650, 2350, 2100- 1700, 850					Kosler et al. (2014)

Table 3. U-Pb ages of zircons from potential sources

Varied Unit	gneiss	550-470, 340-320	2500-2400, 2100- 1650, 1300-1050		Kosler et al. (2014)
Gföhl Unit	gneiss	580, 470, 340			Kosler et al. (2014)
Eastern Alps					
Tauern Window	amphibolite, hornblendite, metagabbro	657±15, 539±10, 496- 350, 314-301		Variscan metamorphism, Cambro-Ordovician magmatism, calc-alkaline magmatism (Pan- African event)	von Quadt (1992)
Ötztal	Winnebach migmatite	490±9		migmatization	Klötzli-Chowanetz et al. (1997)
middle Tauern Window	dacitic dike, gneiss, amphibolite	547±27, 529±18, 519±14, 340±5	~640, 581±28	orthogneiss precursor (I-type granite) emplacement, Variscan dike intrusion	Eichhorn et al. (1999)
central Tauern Window	leucocratic orthogneisses	374±10, 343±6 to 340±4, 300±5 to 296±4, 279±9 to 271 ± 4		Visean, Gzhelian and Early Permian pulses of magmatism	Eichhorn et al. (2000)
Habach terrane, Tauern Window	amphibolite, hornblende plagioclase gneiss	551±9,482±5		protolith formation	Eichhorn et al. (2001)
SW Tauern Window	mafic-ultramafic cumulates, metagraniodiorite	309±5, 295±3		Late Carboniferous calc-alkaline plutonic activity, emplacement of granodiritic to tonalitic intrusions	Cesare et al. (2002)
central Tauern Window	metagabbro, amphibolite, biotite schist, gneiss	368±17, 362±6, 351- 343, 334±16		Variscan basic magmatism, maximum sedimentation ages	Kebede et al. (2005)
Eclogite Zone, Tauern Window	jadeite-gneiss	466±2, 437±2, 288±9	691-503	Ordovician magmatism, Late Carboniferous to early Parmian magmatic event	Miller et al. (2007)
W Tauern Window	granite gneiss, rhyolite, granodiorite	335±1.5, 310±1.5, 304±3, 292±2, 280±5		Visean and Westfalian–Stefanian magmatism, Lower Permian magma emplacement	Veselá et al. (2011)
Austroalpine basement (south of the Tauern Window)	metagranite, eclogitic amphibolite, metarhvolite	477±4 to 470±3		Early Ordovician magmatism	Siegesmund et al. (2007)
Carnic Alps	sandstone	650±12, 530±53 to 518±38	2085±11, 1964±23, 1439±37, 876±70	acidic magmatism (Late Cadomian tectonic events)	Neubauer et al. (2001)
eastern Greywacke Zone	orthogneiss boulde, paragneiss, aplite	514, 502-498, ~391	~2545	Late Cambrian/Early Ordovician thermal overprint and magmatism, Devonian metamorphism	Neubauer et al. (2002)

Table S1 Click here to download Electronic Supplementary Material: renamed_a1969.pdf Table S2 Click here to download Electronic Supplementary Material: renamed_7b923.pdf
 Table S3
 Click here to download Electronic Supplementary Material: renamed_5d6f1.xls

Table S4 Click here to download Electronic Supplementary Material: renamed_9f98c.xls
 Table S5
 Click here to download Electronic Supplementary Material: renamed_81911.xls