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Abstract 12 

Loess sediments in Austria deposited ca. 30‒ 20 ka ago yield different zircon age signatures 13 

for samples collected around Krems (SE Bohemian Massif; samples K23 and S1) and Wels 14 

(half-way between the Bohemian Massif and the Eastern Alps; sample A16). CL imaging 15 

reveals both old, multi-stage zircons with complex growth histories and inherited cores, and 16 

young, first cycle magmatic zircons. Paleoproterozoic ages between 2200 and 1800 Ma (K23 17 

and S1), an age gap of 1800-1000 Ma for S1 and abundant Cadomian grains indicate NW 18 

African/North Gondwanan derivation of these zircons. Also A16 yields ages between 630-600 19 

Ma that can be attributed to ‘Pan-African’ orogenic processes. Significant differences are seen 20 

for the <500 Ma part of the age spectra with major age peaks at 493-494 Ma and 344-335 Ma 21 

(K23 and S1), and 477 and 287 Ma (A16). All three samples show negative initial ɛ Hf 22 

signatures (‒ 25 to ‒ 10, except one grain with +9.4) implying zircon crystallization from 23 

magmas derived by recycling of older continental crust. Hf isotopic compositions of 330-320 24 

Ma old zircons from S1 and K23 preclude a derivation from Bavarian Forest granites and 25 
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intermediate granitoids. Rather all the data suggest strong contributions of eroded local rocks 26 

(South Bohemian pluton, Gföhl unit) to loess material at the SE edge of the Bohemian Massif 27 

(K23 and S1), and sourcing of zircons from sediment donor regions in the Eastern Alps for 28 

loess at Wels (A16). We tentatively infer primary fluvial transport and secondary aeolian 29 

reworking and re-deposition of detritus from western/southwestern directions. Finally, our 30 

data highlight that loess zircon ages are fundamentally influenced by fluvial transport, its 31 

directions, the interplay of sediment donor regions through the mixing of detritus and zircon 32 

fertility of rocks, rather than paleo-wind directions. 33 

 34 

Keywords: loess; zircon; U‒ Pb geochronology; Hf isotope geochemistry; provenance 35 

 36 

Introduction 37 

Siliciclastic sediments such as wind-blown loess deposits reflect the history of the source 38 

terrain from which they were derived and provide insight into sedimentary dispersal systems. 39 

Mechanical disaggregation and abrasion, sorting and chemical weathering during erosion, 40 

transport and deposition of detritus obscure the rendering of sediment provenance (Johnsson 41 

1993). To minimize these effects refractory minerals such as zircon are widely used in 42 

provenance studies (Fedo et al. 2003). What makes zircon a unique provenance proxy is its 43 

durability and remarkable chemical stability over a wide range of lithospheric pressures, 44 

temperatures, and fluid/melt compositions (Harrison and Watson 1983; Watson and Harrison 45 

1983; Watson 1996; Moecher and Samson 2006), and that, via the U‒ Pb and Lu‒ Hf isotopic 46 

systems, it provides information on both the timing of thermotectonic history of source 47 

terrains and the geochemical environment in which the zircon crystallized (e.g. Patchett et al. 48 

1981; Amelin et al. 2000; Kinny and Maas 2003; Hawkesworth and Kemp, 2006; Scherer et 49 

al. 2007; Howard et al. 2009; Weber et al 2012). 50 
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Recent loess provenance studies have recognized and demonstrated that single-grain zircon 51 

geochronology is more diagnostic in identifying source areas of loess deposits than the bulk 52 

mineralogical, elemental, and isotopic approaches (Aleinikoff et al. 1999, 2008; Stevens et al. 53 

2010; Pullen et al. 2011; Újvári et al. 2012; Xiao et al. 2012; Stevens et al. 2013). All of these 54 

works, however, have applied the in-situ, single-grain technique without proper 55 

characterization of internal structures of zircon grains by high-magnification 56 

cathodoluminescence (CL) or backscattered electron (BSE) imaging. It has long been 57 

recognized that zircons are variable in external morphology (Pupin 1980), and that internal 58 

zonation patterns are of petrogenetic significance (e.g. Hanchar and Miller 1993; Corfu et al. 59 

2003). CL images reveal complex, delicate zonation patterns often reflecting multiple stages 60 

of zircon growth and are useful guides of U‒ Pb measurements. Without detailed CL images, 61 

the laser or ion beam could straddle multiple growth zones that may result in mixed ages that 62 

are often complicated to interpret (Whitehouse et al. 1999; Hietpas et al. 2011). 63 

In this study, we enhance the quality of in-situ U‒ Pb age information from single zircons in 64 

Austrian loess by mapping their internal structures thereby tapping the full potential of zircon 65 

geochronology. Attempts have been made to do this on a quantitative or semi-quantitative 66 

basis, i.e. by analyzing a sufficient number of grains (Vermeesch 2004; Andersen 2005), 67 

despite the fact that sample preparation and handling have demonstrably larger effects on the 68 

reproducibility of zircon age spectra than the number of grains analyzed per sample (Sláma 69 

and Košler 2012). To further improve provenance interpretations we aimed at coupling U‒ Pb 70 

ages to Hf isotope geochemistry, again, aided by CL images. The Lu‒ Hf system in zircon is 71 

very resistant to disturbance and it effectively preserves the initial 
176

Hf/
177

Hf ratio thereby 72 

providing a record of Hf isotopic composition of its source environment at the time of 73 

crystallization (Kinny and Maas 2003; Scherer et al. 2007). Thus, the Hf isotopic composition 74 

of zircon can be utilized as a geochemical tracer of the origin of its host rock and enables to 75 
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determination of whether crustal samples were formed by melting of the depleted mantle 76 

(DM), old crust, or combinations of both (Scherer et al. 2007). In many cases U‒ Pb age 77 

spectra of detrital zircons from different crustal domains are similar and this often obscures 78 

provenance interpretations. In such situations combined U‒ Pb and Hf isotope studies of 79 

zircons may allow distinguishing between grains having the same crystallization ages but 80 

formed in crustal domains separated from the mantle at different times (Amelin et al. 2000; 81 

Scherer et al. 2007). 82 

This analytical approach is here applied to wind-blown loess sediments from the northeastern 83 

Alpine foreland in Austria. The sampling strategy focused on collecting coeval loess 84 

deposited at around the last glacial maximum (LGM: 19‒ 26 ka, MIS 2). Two loess sections 85 

located east of the southern edge of the Bohemian Massif (BM) (Krems, Stratzing) have been 86 

studied together with a third one (Wels) situated on top of a terrace of the Traun-Enns-Plain, 87 

half way between the BM and the Eastern Alps (EA). Although previous studies on Moravian 88 

loess deposits adjacent to the BM presented evidence for a local source and short distance 89 

(50‒ 100 km) aeolian entrainment for quartz, garnet and zircon grains (Cilek 2001; Lisá 2004; 90 

Lisá and Uher 2006; Lisá et al. 2009), we attempted to further constrain the origin of detrital 91 

zircons in loess nearby the BM in Austria, track paleo-transport pathways and sediment 92 

dispersal patterns. 93 

Here we show that zircons in loess at Krems and Stratzing were likely eroded from local 94 

rocks (<10km transport) of the South Bohemian Pluton and Gföhl units, delivered by the 95 

Paleo-Danube and subsequently reworked and re-deposited by winds at the sampling sites. 96 

Detrital zircons in loess at Wels certainly experienced the same event-sequence, but were 97 

derived from Eastern Alpine sources (>50km transport). 98 

 99 

 100 
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Geological setting 101 

Quaternary loess deposits are widespread in the northeastern Alpine foreland along the 102 

Danube and its tributaries in Lower and Upper Austria (Fink 1961; van Husen 1981). Loess 103 

sedimentation is believed to have commenced in this region from ca. 2.6 Ma, at the turn of the 104 

Gauss and Matuyama chrons (Frank et al. 1997) and numerous (at least 17) glacial-105 

interglacial cycles were recorded in the Krems loess-paleosoil sequence after the Olduvai 106 

event (from ca. 1.7 Ma) as reported by Fink and Kukla (1977). The last ca. 0.8 million years 107 

were characterized by pronounced glacier advances in the EA, as demonstrated by terminal 108 

moraines and outwash terraces (Deckenschotter), the remnants of glacial activity (van Husen 109 

2000; Reitner 2007). Glacial grinding has likely been the main mechanism to produce debris 110 

in the EA for subsequent loess accumulation in the foreland, while silt production in the BM 111 

may be attributable to physical erosion (frost shattering, Cilek 2001) and chemical 112 

weathering. The evolution and geological settings of these two possible hinterlands (BM and 113 

EA) for loess deposits in Austria are distinct. 114 

Three major tectonic units form the southeast part of the Variscan orogen in Central Europe, 115 

of which only the Moldanubian Zone is relevant to our discussion. This comprises the largest 116 

part of the southern Bohemian Massif in Austria (Fig. 1). Within this zone a number of 117 

different basement series and late- to post-tectonic plutonic rocks can be distinguished mainly 118 

based on lithological criteria (Wendt et al. 1994; Petrakakis 1997; Klötzli et al. 1999; Finger 119 

et al. 2007). All of the tectono-stratigraphic units are separated from each other by more or 120 

less discrete, sub-horizontal shear zones. These are from bottom to top: 121 

The so-called Monotonous Series (Monotone Serie, Ostrong unit) forms the lowermost 122 

basement sequence. Major lithologies are masses of monotonous stromatitic to nebulitic 123 

gneisses. Subordinate are lenses of orthogneisses, calc-silicate-gneisses and eclogite-124 



6 
 

amphibolites. Low pressure/high temperature (LP/HT) amphibolite facies metamorphism with 125 

cordierite bearing assemblages is typical for this unit. 126 

The granitic to granodioritic 1.38 Ga old Dobra gneiss forms the base of the next higher unit 127 

in the east (Gebauer and Friedl 1993), the Varied Series (Bunte Serie, Variegated series, 128 

Drosendorf unit). This rather inhomogeneous rock suite is built up by partly migmatitic 129 

garnet-sillimanite-biotite-plagioclase gneisses, quartzites, more or less graphite-bearing 130 

marbles and calc-silicate rocks, and granitic orthogneisses. Abundant amphibolites closely 131 

associated with ultrabasic rocks, marbles, and granitic gneisses (Rehberg and Buschandlwand 132 

units) are also present (Petrakakis 1997; Finger et al. 2007). 133 

The next higher units form characteristic klippen on top of the Moldanubian nappe sequence. 134 

The so called Gföhl gneiss, a widespread and monotonous alkalifeldspar-rich orthogneiss of 135 

granitic composition builds up the lower part of these klippen. Locally transitions to acid 136 

granulites can be found (Klötzli et al. 1999; Finger et al. 2007; Friedl et al. 2011). 137 

The highest unit of the Moldanubian Zone is formed by granulites. More massive, less 138 

deformed light coloured varieties prevail in the Dunkelstein Wald area, south of the Danube, 139 

whereas strongly deformed platy and banded varieties are typical for the St. Leonhard and 140 

Blumau occurrences in the north. In the Dunkelsteiner Wald small inclusions of basic 141 

granulites and garnet-pyroxenites are also found (Petrakakis 1997; Klötzli et al. 1999; Friedl 142 

et al. 2011). 143 

To the west of the Moldanubian basement series large parts of the Moldanubian Zone are 144 

occupied by the so-called South Bohemian pluton which was intruded late‒ syn- to post-145 

tectonically into the gneisses of the Monotonous Series during the Carboniferous. Intrusion 146 

ages range from ca. 345 Ma for the oldest plutonites to 300 Ma for the youngest ones (Klötzli 147 

et al. 1999; Finger et al. 2007). Ar-Ar cooling ages for hornblende and muscovite suggest 148 



7 
 

high cooling rates and that temperature reached 300 °C before ca. 325 Ma (Dallmeyer et al. 149 

1992). 150 

From top to bottom the Eastern Alps in Austria are made up of 3 major tectonic units (Schmid 151 

et al. 2004; Hoinkes et al. 2010): 152 

1. Austroalpine and Southalpine units derived from the Adriatic/Apulian microcontinent 153 

2. Penninic units derived from the Mesozoic Alpine Tethys domain 154 

3. Helvetic and Sub-Penninic units derived from the Variscan European continent and its 155 

Permian-Mesozoic cover. 156 

 157 

Austoalpine units 158 

The Austroalpine unit forms a complex nappe stack of crustal material which can be 159 

subdivided into Lower and Upper Austroalpine units. The Lower Austroalpine unit formed 160 

the continental margin towards the Alpine Tethys ocean and was affected by tectonism during 161 

the opening and closing of this oceanic realm (Alpine event). It overlies the Penninic Nappes 162 

of the Eastern Alps. The Upper Austroalpine unit represents an eo-Alpine nappe pile. Its 163 

lowermost unit is the Silvretta-Seckau Nappe system consisting of a basement with a 164 

dominating Variscan metamorphic imprint and remnants of Permian-Triassic cover. During 165 

the eo-Alpine event it was overprinted by sub-greenschist to greenschist-facies conditions. To 166 

the north, the Silvretta-Seckau Nappe system is overlain by the nappes of the Greywacke 167 

zone, which consists of greenschist-facies metamorphic Paleozoic sequences, and the nappe 168 

system of the Northern Calcareous Alps, comprising unmetamorphosed to lowermost 169 

greenschist-facies metamorphic Permian-Mesozoic sediments deposited on the shelf facing 170 

originally towards the Meliata ocean. To the south, the Silvretta-Seckau Nappe system is 171 

overlain by the Koralpe-Wölz Nappe system which represents an eo-Alpine metamorphic 172 

extrusion wedge. The Ötztal-Bundschuh Nappe system shows a similar lithological 173 
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composition to the Silvretta-Seckau Nappe system, but is positioned on top of the Koralpe-174 

Wölz Nappe system. The overlying Drauzug-Gurktal Nappe system is made up of a Variscan 175 

metamorphic basement, anchizonal to greenschist-facies Paleozoic metasedimentary 176 

sequences and by unmetamorphosed Permian-Triassic sediments. Within the Ötztal-177 

Bundschuh and Drauzug- Gurktal Nappe systems the eo-Alpine metamorphic grade decreases 178 

upwards from amphibolite facies at the base to diagenetic conditions at the top of the nappe 179 

pile. The Upper Cretaceous to Paleogene sediments of the Gosau Group represent syn- to 180 

postorogenic sediments with respect to the eo-Alpine orogenic event. 181 

 182 

Penninic units 183 

The Lower Penninic Nappes consist predominantly of material from the Mesozoic Valais 184 

oceanic province and from the northern parts of the joint oceanic basin in the east and make 185 

up the central part of the Lower Engadine Window in western Austria. The lower nappes of 186 

the mainly Cretaceous Rhenodanubian flysch zone, which are present along the northern 187 

margin of the Eastern Alps represent a continuation of the Central Alpine Valais basin 188 

sediments into the Eastern Alps. The Glockner Nappe system of the Tauern Window, as well 189 

as the nappes of the Rechnitz Window Group, consisting of calcareous flyschoid 190 

metasediments and metaophiolites, is thought to be a southern continuation of the lower 191 

nappes of the Rhenodanubian flysch zone. 192 

 193 

Helvetic and Sub-Penninic units 194 

The European continent consists of a Variscan continental crust, rich in mostly Carboniferous 195 

plutonic rocks covered by Carboniferous to Miocene sedimentary sequences. The so-called 196 

Sub-Penninic Nappes represent the distal European margin, forming ductilely deformed 197 
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Variscan basement and cover nappes. They form the Venediger Nappe system in the Tauern 198 

Window. 199 

 200 

Eocene to Miocene magmatism 201 

The Periadriatic intrusions comprise calc-alkaline tonalites, granodiorites and granites, and 202 

minor alkaline basaltic dykes. They are Eocene to Oligocene in age and related to the break-203 

off of the subducted Alpine Tethys oceanic lithosphere from the distal European margin. 204 

 205 

Methods 206 

Sampling, heavy mineral separation and imaging 207 

Loess samples were collected from two loess outcrop located in proximity to the Bohemian 208 

Massif at Krems‒ Wachtberg (sample K23) and Stratzing (sample S1), and from a third 209 

section at Wels, (sample A16), situated closer to the Eastern Alps (Fig. 1) (further details in 210 

Újvári et al., 2013). All three profiles have previously been dated by 
14

C or OSL/IRSL 211 

(Einwögerer et al. 2009; Preusser and Fiebig 2009; Thiel et al. 2010; Terhorst et al. 2012; 212 

Lomax et al. 2014), thereby allowing the sampling of last glacial loess material from all three 213 

profiles accumulated around the coldest period of marine isotope stage 2 (MIS 2). 214 

For heavy mineral separation, samples were wet-sieved at 25 and 250 microns under running 215 

water, washed in weak acetic acid (5%), then water and acetone and subsequently dried in 216 

oven at 50 ºC. Zircon grains were extracted from the bulk sediment using heavy liquid 217 

separation and Frantz magnetic separator (Krogh 1982). The grains were then handpicked 218 

under the binocular and mounted in epoxy resin. To minimize bias in the age spectra, the 219 

morphology and size of the grains were ignored when selecting grains for analysis. It must be 220 

admitted, however, that even with a conscious effort to pick representative grains this still 221 

introduces a bias towards larger grains, as shown by Sláma and Košler (2012). After 222 
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polishing, all zircon crystals were cathodoluminescence (CL)-imaged using a FEI Inspect S50 223 

SEM at the Scanning Electron Microscopy and Focused Ion Beam Laboratory, Department of 224 

Lithospheric Research, University of Vienna or using a VEGA TESCAN SEM at the Austrian 225 

Geological Survey GBA. CL images were subsequently used to classify each zircon crystal 226 

into groups with magmatic or metamorphic origin, and also to find the best positions of laser 227 

ablation trenches for in situ isotopic analyses. 228 

 229 

Mass spectrometry 230 

In situ U‒ Pb isotopic analyses of detrital zircons were done using a Nu Plasma II multi-231 

collector ICP-MS coupled to a New Wave Research UP-193 solid state laser system at the 232 

BigNano Laboratory, Department of Environmental Geosciences, University of Vienna. 233 

During the analyses, masses of 238 and 232 were measured in Faraday cups, while masses 234 

208, 207, 206, 204, and 202 were detected in discrete ion counters by using the time resolved 235 

protocol of the software package of Nu Instruments. Isotopic measurements were done using 236 

a He carrier gas flow of 650 mL min
‒ 1

 and laser settings specified in Table S1 237 

(Supplementary material). Total ablation time varied between 100 and 250 s, including a 30 s 238 

gas blank (background) measurement for which the laser shutter remained closed. Repeated 239 

measurements of the Plešovice zircon standard (Sláma et al. 2008) were systematically done 240 

to correct for laser-induced, depth- and time-dependent elemental fractionation and 241 

instrumental mass bias. During the ablation procedure firing of trenches was preferred instead 242 

of drilling spots thereby minimizing laser-induced fractionation. Data processing and 243 

reduction has been done off-line, using version 3 of LamTool U‒ Th‒ Pb (U. Klötzli, 244 

unpublished). Raw signal intensities were corrected for IC non-linearity using the method of 245 

Richter et al. (2001), and for gas blank based on selection of ‘blank’ and ‘sample’ signal ratio 246 

intervals for each measurement. The Pb/U elemental fractionation were corrected for using 247 
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the ‘intercept method’ of Sylvester and Ghaderi (1997). This correction utilized regression of 248 

standard measurements by a quadratic function. 
204

Hg corrections on mass 204 were made 249 

using 
204

Hg/
202

Hg=0.2299. No common Pb correction was applied to the data. Zircon U‒ Pb 250 

ages were calculated with Isoplot 3.71 (Ludwig 2008) and plotted as kernel density estimates 251 

using DensityPlotter (Vermeesch, 2012), with the 
206

U/
238

Pb ages used for zircons dated as 252 

<1.0 Ga, and the 
207

Pb/
206

Pb series used for grains >1.0 Ga (Nemchin and Cawood 2005). To 253 

filter results, zircon ages showing >10% discordance and age uncertainty >10% were rejected. 254 

As excessive cutoff severity for discordant ages may compromise the representativeness of 255 

the dataset due to selective removal of specific age populations (Nemchin and Cawood 2005; 256 

Malusa et al. 2013), a second U‒ Pb age dataset was established from each loess sample with 257 

zircons showing <20% discordance and age uncertainty <20% and both of these datasets are 258 

displayed for comparison. This is further justified by the fact that 
207

Pb/
206

Pb ages are often 259 

unreliable for young grains (e.g. low-U zircons with ages <0.5‒ 0.6 Ga) and therefore useless 260 

for calculating discordancy (Nemchin and Cawood 2005; Aleinikoff et al. 2008). 261 

In situ Lu‒ Hf isotopic analyses of detrital zircons were undertaken using the same Nu Plasma 262 

II MC-ICP-MS instrument as for U‒ Pb geochronology at the University of Vienna and 263 

closely followed the procedures described by Klötzli et al. (2009) and Fisher et al. (2011). 264 

Laser settings and cup configurations for Lu‒ Hf are shown in Tables S1 and S2. Each LA-265 

MC-ICP-MS analysis consisted of 30 s of gas background data followed by 100 to 200 s of 266 

ablation. Raw ratios from MS intensity data were calculated using the method described by 267 

Fietzke et al. (2008). Mass bias effects on Hf were corrected using an exponential law and a 268 

179
Hf/

177
Hf value of 0.7325 for normalization (Kemp et al. 2009). βYb was determined using 269 

the measured 
173

Yb/
171

Yb and 
173

Yb/
171

Yb=1.13269 for normalization (Chu et al., 2002; 270 

Fisher et al. 2011). The 
176

Yb isobaric interference on 
176

Hf was corrected using the 271 

interference-free 
173

Yb and 
176

Yb/
173

Yb was calculated using the measured βYb and the ‘true’ 272 
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176
Yb/

173
Yb of 0.7962 (Chu et al., 2002; Fisher et al. 2011). The 

176
Lu isobaric interference on 273 

176
Hf was determined using the measured, interference-free mass 

175
Lu, setting βLu=βYb and 274 

using the ‘true’ 
176

Lu/
175

Lu of 0.026549 (Vervoort et al. 2004; Kemp et al. 2009; Fisher et al. 275 

2011). The calculated 
176

Lu and 
176

Yb intensities on the total 176 signal were subtracted, the 276 

remaining mass 176 signal is taken as solely being 
176

Hf and the interference-corrected 277 

176
Hf/

177
Hf was calculated thereof. The 

176
Lu/

177
Hf and 

176
Yb/

177
Hf were corrected for mass 278 

bias using βHf. 279 

Outlier rejection of the 
176

Hf/
177

Hf for each analysis was done using a two-standard deviation 280 

criterion, while no outlier rejections were performed for 
176

Lu/
177

Hf and 
176

Yb/
177

Hf as these 281 

ratios often vary considerably in both synthetic and natural zircon crystals (Fisher et al. 2011). 282 

Additionally, the very small signal intensities on Lu and Hf resulted in comparably large 283 

errors. 284 

Reported errors are two standard errors of the mean (2SE). As analytical errors on single 285 

measurements are significantly larger than the overall reproducibility of the Mud Tank MM‒286 

1 reference zircon the overall uncertainty of this latter was not propagated into the final errors. 287 

The Mud Tank MM‒ 1 zircon was used as external standard to determine overall uncertainties 288 

and accuracy. During the course of this study 39 measurements were made on Mud Tank 289 

MM‒ 1 (dimensions: 20 µm diameter and 200 µm length) and 37 out of 39 measurements 290 

give the following mean values: 
176

Hf/
177

Hf=0.28250±0.00002 (0.006%), 291 

176
Lu/

177
Hf=0.00005±0.00004 (76%), and 

176
Yb/

177
Hf=0.00177±0.00209 (118%). The 292 

remaining two measurements yielded too low 
176

Hf/
177

Hf and were not taken into account. 293 

The mean 
176

Hf/
177

Hf ratio given above is within error identical to the recommended values 294 

reported by Woodhead and Hergt (2005), Griffin et al. (2006), and Kemp et al. (2009) for 295 

laser ablation analysis. This demonstrates that the experimental setup allows for valid 
176

Lu 296 

and 
176

Yb corrections and results in reliable zircon 
176

Hf/
177

Hf ratios. 297 
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Present-day ɛ Hf values (ɛ Hf0) have been calculated using the new chondritic Hf data of 298 

176
Hf/

177
HfCHUR-0=0.282785±0.000011 (Bouvier et al. 2008), and a 

176
Lu decay constant of 299 

λ
176

Lu=1.867±0.008×10
‒ 11

 a
‒ 1

 (Söderlund et al. 2004) has been used to calculate initial 300 

176
Hf/

177
Hf ratios (i.e. 

176
Hf/

177
Hf at the time t of zircon crystallization; 

176
Hf/

177
Hft). A 301 

chondritic Lu/Hf value of 
176

Lu/
177

HfCHUR-0=0.0336±0.0001 (Bouvier et al. 2008) has been 302 

applied in all ɛ Hft calculations. Two-stage crustal residence ages (τ
c
DM‒ Hf) have been 303 

calculated using the initial 
176

Hf/
177

Hf values of each zircon (
176

Hf/
177

Hft), an assumed 304 

average crustal 
176

Lu/
177

Hf of 0.015 (Griffin et al. 2004; Condie et al. 2005), and a depleted 305 

mantle model with 
176

Hf/
177

HfDM=0.283224 (Vervoort et al. 2000) and 
176

Lu/
177

HfDM=0.03836 306 

(calculated for εHf=0 at 4500 Ma; Weber et al. 2012). Such two-stage model ages provide a 307 

qualitative estimate of the time of separation of the zircon’s host rock from a hypothetical 308 

depleted mantle reservoir and have successfully been used in some previous zircon 309 

provenance studies (e.g. Bodet and Schärer 2000; Griffin et al. 2004; Augustsson et al. 2006; 310 

Bahlburg et al. 2009, 2010). 311 

 312 

Results 313 

The analyzed loess samples contain various heavy minerals. Zircon grains are present in all 314 

three samples, but those found in sample A16 at Wels are generally smaller in size (mostly 315 

around and below 100 µm), while larger crystals (130‒ 200 µm) appear frequently in the 316 

other two (K23 and S1, Krems and Stratzing; referred to as samples at Krems hereafter). 317 

Zircons were colorless and many different forms could be distinguished from less frequent 318 

euhedral to more frequent sub-rounded (sometimes rounded) crystals and prismatic and 319 

anhedral fragments. Elongated prismatic forms appear exclusively in loess samples at Krems, 320 

Bohemian Massif (K23 and S1). Unlike zircon, sphene (titanite) was only found in loess 321 

samples at Krems (K23 and S1). These grains, which were subsequently checked by SEM-322 
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EDX for their chemical compositions, are mostly colorless, sometimes slightly honey yellow 323 

and rounded/ sub-rounded. While apatite is present in all three samples (usually colorless, 324 

stubby forms, sometimes reddish-brown), another phosphate heavy mineral monazite appears 325 

in samples at Krems (K23 and S1). These are pale yellow and almost colorless with some 326 

yellowish-brown stain, and have rounded, egg-shaped forms. Likewise apatite, chlorite and 327 

garnet are constituents of all three loess samples, but an extraordinary number of garnets were 328 

found in loess samples around Krems (Bohemian Massif). The vast majority of these garnets 329 

are euhedral crystals with pink color. Both staurolite and sillimanite, and also remarkable 330 

amounts of brown to reddish-brown biotite are present in these loess samples (K23 and S1). 331 

The metamorphic index minerals (e.g. staurolite and sillimanite) with garnet are indicative of 332 

a metamorphic hinterland with medium to high-grade metamorphic rocks for loess samples at 333 

Krems (BM). As for the sample at Wels (A16), the heavy mineral assemblage (e.g. chlorite, 334 

garnet) implies contributions from low- to medium-grade rocks to loess at this site. Neither 335 

kyanite nor Cr-spinel have been found in the samples which would refer to high-P 336 

metamorphic rocks or oceanic crust in the hinterland, but it must be emphasized that the 337 

heavy mineral analyses cannot be regarded as detailed, in-depth studies. 338 

Altogether 86, 51 and 45 zircon grains have been CL-imaged and subsequently U‒ Pb dated 339 

from loess samples S1, K23 and A16 (note that not all of these U‒ Pb ages have been used for 340 

creating the U‒ Pb age spectra due to data filtering specified in the ‘Methods’ section). Most 341 

of them (46 to 64%) are magmatic in origin (40 in S1, 33 in K23 and 27 in A16) and 14 to 342 

23.5% of these crystals are interpreted as having been eroded from metamorphic rocks (12 in 343 

S1, 12 in K23 and 7 in A16). Some representative magmatic and metamorphic crystals, also 344 

with recrystallization rims and grains with inherited cores are displayed in Figs. 2 and 3. The 345 

rest of the zircon grains could not unambiguously be classified into any of these two groups. 346 
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Before analyzing U‒ Pb age spectra it is crucial to evaluate how representative these dates are 347 

and what is the likelihood of missing age populations crucial for provenance interpretation. 348 

Table 1 provides information on this and is based on the binomial probability formulation by 349 

Andersen (2005), which we prefer over that of Vermeesch (2004). While the number of grains 350 

analyzed in S1 (and K23 depending on concordance criteria) seems appropriate, this issue 351 

becomes critical in sample A16 where the failure rate to detect an age population with an 352 

abundance Xi=10% reaches 22.9 to 53.1 percent (Table 1). At the same time, if an age 353 

population was detected in A16 (within the 90-110% concordance criteria) and this 354 

population was not found in the other two samples (S1 and K23) then this can be regarded as 355 

a basic diagnostic feature. We will see below that this is exactly the case. 356 

U‒ Pb age spectra of samples at Krems (S1 and K23) show a similar distribution of ages (Fig. 357 

4, Tables S3-4 as Supplementary material) with major age peaks at 493-494 and 335-344 Ma. 358 

The majority of these grains are magmatic in origin. A striking feature of S1 is the absence of 359 

ages between 1700-800 Ma, while this age window is narrower (1200-750 Ma) for K23. 360 

Considering the relatively low detection limits for S1 (Table 1), this age gap seems to be a 361 

real one. In contrast to samples at Krems (S1 and K23), the prominent age maximum of the 362 

age distribution lies at 287 Ma for the sample at Wels (A16), and also some ages are observed 363 

at 450 and 600 Ma, up to 1500 Ma. 364 

Lu‒ Hf isotopic compositions of 30, 14 and 10 grains have been analyzed from samples S1, 365 

K23 and A16, but only 18, 6 and 4 grains provided both useful U‒ Pb ages and Lu‒ Hf 366 

isotopic compositions (Table 2). With the exception of three grains, all have 
176

Lu/
177

Hf ratios 367 

below 0.0019 and numerous zircons have lower than 0.001. Present-day 
176

Hf/
177

Hf ratios 368 

range between 0.281941 and 0.282191, corresponding to present day ɛ Hf values of ‒ 29.8 to 369 

‒ 21. Initial 
176

Hf/
177

Hf ratios and ɛ Hf values vary between 0.281933 and 0.282185, and ‒370 

24.7 to 9.4, with most of the grains yielding ɛ Hft values between ‒ 22.2 and ‒ 10.9. Two-371 
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stage crustal residence ages (τ
c
DM‒ Hf) range from ~2000 to 2700 Ma for all three loess 372 

samples. Only one zircon yields a comparatively younger model age of 1712 Ma from the 373 

sample at Wels (A16; Table 2). 374 

 375 

Discussion 376 

Interpretation of the zircon U‒ Pb age and Hf isotopic record 377 

The oldest detrital zircon 
207

Pb/
206

Pb age from the sample at Wels (A16) is 1657±102 Ma. 378 

This grain has an initial ɛ Hf value of 9.4 demonstrating its derivation from juvenile, mantle-379 

derived sources (Table 2 and Fig. 5). In contrast to the sample at Wels (A16), loess sediments 380 

at Krems (S1 and K23) yield more zircons with Paleoproterozoic ages ranging mostly 381 

between 2200 and 1800 Ma (Fig. 4 and Supplementary Tables S3‒ 5), which are typical of the 382 

western part of the West African craton (Linnemann et al. 2008). Most of these grains are 383 

magmatic and can possibly link with plutonic events of the Eburnean orogeny (Egal et al. 384 

2002). A striking feature of the age distribution of loess zircons at Krems (sample S1) is the 385 

lack of ages between 1750 and 750 Ma. This Late Paleoproterozoic‒ Mesoproterozoic age 386 

gap (1800‒ 1000 Ma) is characteristic for rocks of the Moldanubian unit (Friedl et al. 2004; 387 

Košler et al. 2014) and also demonstrates NW African/North Gondwanan derivation of 388 

Armorican type terranes (Tait et al. 1997; Samson et al. 2005; Gerdes and Zeh 2006; 389 

Meinhold et al. 2011, 2013). At the same time, some zircon ages for sample K23 (Krems) are 390 

found between 1650 and 1200‒ 1100 Ma and this holds true for sample A16. All three 391 

samples provide Late Neoproterozoic zircon ages at around 630 to 600 Ma that are 392 

attributable to ‘Pan‒ African’ orogenic processes (Linnemann et al. 2008), and samples at 393 

Krems (S1 and K23) are rich in Cadomian grains (590-550 Ma), represented by age clusters at 394 

~580-590 Ma (Fig. 4a and b). These Cadomian ages again carry evidence of peri-Gondwanan 395 

origin of the basement blocks the zircons originated from (Stampfli et al. 2002). A peculiar 396 
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feature of zircon age distributions of samples at Krems (S1 and K23) is the dominant age 397 

populations at ~490 Ma. Both metamorphic and magmatic grains of Cambrian-Ordovician 398 

age are found in these two samples. Evidence for intensive magmatic activity of this age has 399 

been presented by Friedl et al. (2004) from the Gföhl gneiss zircons (Table 3), a unit that is 400 

closely located to the sampling sites and drained by the River Danube. Initial ɛ Hf values 401 

between ‒ 10 and ‒ 20 of these 630 to 470 Ma old grains imply zircon crystallization from 402 

magmas derived by recycling of older continental crust for all three samples. Hf isotopic 403 

compositions of Cadomian magmatic zircons (590-560 Ma) from samples at Krems (S1 and 404 

K23) point to a possible derivation of these grains from a Cadomian magmatic arc 405 

(Linnemann et al. 2008). The negative initial ɛ Hf values (‒ 19 to ‒ 10) of the 490 Ma age 406 

group reveal that the (re)crystallization of these grains can possibly related to a somewhat 407 

nebulous intra-Rheic subduction zone with a not too evolved volcanic arc and the 408 

involvement of continental crust. 409 

U‒ Pb age distributions of detrital zircons in samples at Krems (S1 and K23) display 410 

prominent age peaks at 335 and 344 Ma (Variscan events), while the sample at Wels (A16) 411 

shows a younger one at 287 Ma. Characteristic for S1 and K23 (Krems) are the relatively low 412 

number of metamorphic zircons, most of them with ages of 380 to 340 Ma. These zircons are 413 

records of different stages of the Variscan metamorphic overprints of Moldanubian rocks in 414 

the BM lasted from ~380‒ 370 to 340‒ 335 Ma (Petrakakis 1997; Friedl et al. 2011; Table 3). 415 

However, the majority of Late Devonian/Carboniferous zircons in samples at Krems (S1 and 416 

K23) are magmatic in origin with ages ranging from~370 to 320 Ma (Fig. 3). Most of these 417 

zircons form an age group of 350‒ 330 Ma, and only few ages fall between 330 and 320 Ma. 418 

Granite emplacements during the Variscan plutonism in the South Bohemian batholith were 419 

dated to 350 to 320 Ma (e.g. Klötzli and Parrish 1996; Klötzli et al. 2001; Gerdes et al. 2003; 420 

Finger et al. 2007; and Table 3) and our detrital zircon age data suggest a strong contribution 421 
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from these sources. Former observations by Gerdes et al. (1996) and Klötzli et al. (2001) that 422 

the granitoids of the South Bohemian pluton show no pronounced mantle signatures and the 423 

melts were essentially produced through anatectic recycling of older, presumably Cadomian, 424 

continental crust is further corroborated by the Hf isotope signatures (ɛ Hft from ‒ 22.2 to ‒425 

13.7) of the detrital zircons of 350‒ 320 Ma age (Figs. 3 and 5). Also these low initial ɛ Hf 426 

values and calculated two-stage crustal residence ages (τ
c
DM‒ Hf) of 2650 to 2100 Ma 427 

preclude a derivation of loess detrital zircons at Krems (S1 and K23) from Bavarian Forest 428 

granites and intermediate granitoids having similar ages (334 to 315 Ma), but more radiogenic 429 

Hf isotopic compositions and much younger model ages (ɛ Hft from ‒ 5.6 to ‒ 0.4, τ
c
DM‒ Hf: 430 

1480 to 1200 Ma; Siebel and Chen 2010; Table 3). 431 

As mentioned above, the sample at Wels (A16) differs from those at Krems (S1 and K23) as 432 

two magmatic zircons with ages of 296±6 and 282±17 Ma are present in sample A16, while 433 

these Late Carboniferous/Permian grains are completely missing in the other two samples at 434 

Krems (S1 and K23). Considering that this youngest age population is represented by two 435 

zircons (296±6 and 282±17 Ma) out of the 6 highly concordant ages of sample A16 and 436 

supposing that sample A16 is representative of its source, this population may be safely 437 

assumed to be an important constituent of the sediment and the probability of finding it equals 438 

to 2/6=1/3. From this we calculate that the probability of overlooking this age population is 439 

        
 

 
    . Rearranging the equation of             

  that gives the binomial 440 

probability of overlooking an age population with an abundance Xi in the sediment (see 441 

Andersen 2005, Eq. 2a), we get that Xi, the relative abundance of the ith population, is 442 

     √     
           

   , where n is the number of zircons having concordant, i.e. 443 

useful ages. Applying this to the youngest population in sample A16 at Wels represented by 444 

ages of 296±6 and 282±17 Ma, we get the crude estimation of 6.5% for the relative 445 

abundance of this population. Knowing that pL=0.5 marks an upper abundance limit for 446 
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populations that are more probably overlooked than observed in n analyses (Andersen 2005) 447 

and that these values range between 1.4 to 4.0% for samples at Krems (S1 and K23; Table 1), 448 

it is clear that this youngest population should have been found in samples at Krems (S1 and 449 

K23) if they were present in their hinterland. Based partly on the above considerations and 450 

figures we argue for an Eastern Alpine affinity and derivation of zircons in sample A16 at 451 

Wels. At the same time, there is little doubt that zircons in the other two samples at Krems 452 

(S1 and K23) were eroded from exposed granitic and various metamorphic rocks of the south 453 

BM in the vicinity of the sampling sites (e.g. South Bohemian pluton, Gföhl unit). 454 

 455 

Implications for paleo‒ transport modes and routes 456 

Heavy minerals like zircon constitute only minor parts of loess material, so they are likely not 457 

fully representative of the whole rock. Physical laws define that these minerals of mostly 50 458 

to 150‒ 200 µm in size in loess are transported in saltation by wind and the transport is 459 

short‒ term (Tsoar and Pye 1987; Újvári et al. 2013). This holds true even if large (>75 µm) 460 

quartz grains are transported for long distances (several thousands of kilometers) in some rare 461 

cases (Betzer et al. 1998). Whole rock geochemical and Sr‒ Nd isotopic data and zircon age 462 

patterns demonstrate the basic role of fluvial entrainment of minerals in loess formation 463 

(Gallet et al 1998; Buggle et al. 2008; Újvári et al. 2008; Újvári et al. 2012; Stevens et al. 464 

2013) as hypothesized by Smalley et al. (2009). Here we argue for a two-stage model, an 465 

initial fluvial and subsequent aeolian transport of heavy minerals in Austrian loess, as 466 

proposed for rutiles by Újvári et al. (2013). While the possibility of direct aeolian deflation of 467 

the in-situ weathering products of rocks from sparsely vegetated surfaces cannot be dismissed, 468 

this scenario seems less likely based on the physical mechanisms of wind erosion and 469 

emission of mineral particles (Shao 2009). Also fluvial activity is needed to periodically 470 
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destroy surface crusts of alluvial material, which may hinder or at least very strongly subdue 471 

wind deflation (Pye 1995; Shao 2009). 472 

Our zircon U‒ Pb age and Hf isotopic data point to significant contributions of heavy 473 

minerals from eroded local rocks to loess in Austria. This is consistent with inferences made 474 

by Újvári et al. (2013) who found that local metamorphic sources may have released the 475 

majority of detrital rutiles recovered from loess samples in Austria. Recent studies of modern 476 

river systems demonstrate that detrital zircon age populations are heavily influenced by local 477 

bedrock and the influx of feeder tributaries, and the continued input of detritus along rivers 478 

causes progressive masking of upstream sources (Cawood et al 2003; Hietpas et al 2011). 479 

This may be an explanation why the detrital zircon signal of Bavarian Forest granitoids are 480 

not seen in our samples as unraveled by the Hf isotopic compositions and crustal model ages 481 

of 330-320 Ma old zircons in samples at Krems (S1 and K23). Both the new zircon U‒ Pb and 482 

Hf isotope data (this study) and the published rutile chemistry and U‒ Pb age data (Újvári et 483 

al. 2013) confirm the derivation of detritus from the Eastern Alps for the sample at Wels 484 

(A16), and again, highlight the importance of fluvial entrainment. Here, in lack of any zircon 485 

or rutile data, we cannot exclude the Rhenohercynian flysch as a sediment donor region, but it 486 

is more than clear that any N‒ S material transport from the western BM to the region of Wels 487 

(A16) can be excluded. This is supported by paleo-circulation models for the region, too 488 

(Florineth and Schlüchter 2000; Renssen et al. 2007). Similarly, recycling of loess zircons at 489 

Krems (S1 and K23) from the coarse-grained clastic fluvial to deltaic sediments of the Upper 490 

Miocene Hollabrunn-Mistelbach Formation (NE of the sampling sites, Fig. 1) seems also a 491 

viable alternative. These fluvial sediments were eroded by the proto-Danube from rocks of the 492 

SE part of the BM (Nehyba and Roetzel, 2004). Thus zircon age patterns resembling those of 493 

loess samples (S1 and K23) are expected from these fluvial sediments and also all of their 494 

heavy mineral spectra are garnet dominated (Brunnacker et al. 1979), similarly to S1 and K23 495 



21 
 

loess samples at Krems. Together with this, neither the appearance of euhedral zircons in the 496 

studied loess samples (S1 and K23) nor the modeled paleo-wind directions favor this 497 

recycling scenario. 498 

Here, we have to underline that any inferences on paleo‒ wind directions from loess heavy 499 

mineral signals remain hypothetic and weakly supported in the light of the physics of 500 

transport and deposition. Rather what is seen in loess zircon ages are more profoundly 501 

influenced by fluvial transport, its directions, the interplay of sediment donor regions through 502 

the mixing of detritus and zircon fertility of rocks in the drainage basin (Moecher and Samson 503 

2006; Dickinson 2008). In a broader context, these observations have important implications 504 

for heavy mineral sources in loess of the Chinese Loess Plateau where debates on Tibetan 505 

Plateau versus desert provenance of loess (and heavy minerals in it) are still unsettled (Pullen 506 

et al. 2011; Xiao et al. 2012; Stevens et al. 2013). In any case, our findings regarding the 507 

crucial role of fluvial processes in defining heavy mineral compositions in Austrian loess and 508 

the two-stage model correspond with the ideas of Stevens et al. (2013) who suggested a 509 

genetic linkage between the Yellow river sediments, originating in the Tibetan Plateau, and 510 

loess on the Chinese Loess Plateau. 511 

 512 

Summary and conclusions 513 

U‒ Pb geochronology and Hf isotope geochemistry of CL-mapped detrital zircon crystals 514 

from late glacial loess deposits in Austria reveal proximal BM sources (South Bohemian 515 

pluton, Gföhl unit) of these minerals from samples at Krems and Stratzing (K23, S1) and 516 

exclude a derivation of 330-320 Ma old zircons from Bavarian Forest granitoids. This latter 517 

finding corroborates the significance and strong influence of immediate source areas (with 518 

transport distances less than 10 km) on heavy mineral compositions of loess at Krems and 519 

Stratzing. This can be explained by a primary fluvial entrainment of heavy minerals in the 520 
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course of which the local input of zircons result in progressive downstream dilution and 521 

masking of upstream zircon signatures. Aeolian reworking of this fluvial material in proximal 522 

depocenters is thought to be responsible for the final transport and deposition of particles 523 

making up loess sediments around Krems. This event-sequence likely holds true even if the 524 

clastic sediments of the nearby Hollabrunn-Mistelbach Formation had eventually acted as an 525 

immediate source, since the ultimate source of heavy minerals in these fluvial sediments are 526 

also igneous and metamorphic rocks of the southeast BM. 527 

A similar erosion-deposition history of zircons in loess at Wels (A16) is proposed but with 528 

sediment donor regions in the Eastern Alps (with transport distances more than 50 km). This 529 

inference is largely based on zircon age spectra with different peaks at 295 and 465 Ma in 530 

contrast to 350-335 and 490-500 Ma for loess at around Krems. These findings also allow 531 

some inferences to be made over depositional wind regimes operating in this region during 532 

the last glacial maximum. A significant proportion of storms appear to have tracked from the 533 

west, as with the regime for the LGM modeled in larger-scale simulations, and a north to 534 

south transport seems very unlikely based on zircon age signatures of sample A16 from Wels. 535 

It must be emphasized, however, that the compositions and ages of loess heavy minerals, 536 

including zircon and rutile is profoundly determined by mixing of detritus from various 537 

sediment donor regions during fluvial transport and the fertility of rocks on these terrains, thus 538 

any inferences on major aeolian transport pathways can be considered only hypothetical. 539 
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 571 

Appendix 572 

Uncertainty propagation for 
176

Hf/
177

Hft, zircon (or initial 
176

Hf/
177

Hfzircon) 573 

The 
176

Hf/
177

Hf composition of zircon at the time of crystallization (i.e. initial 
176

Hf/
177

Hfzircon 574 

or 
176

Hf/
177

Hft,zircon) is calculated as 575 

 576 

                (A.1) 577 

 578 

, where Dt=
176

Hf/
177

Hft,zircon, Dm=
176

Hf/
177

Hfzircon-measured, Pm=
176

Lu/
177

Hfzircon-measured, 579 

λ=λ176Lu=1.867±0.008×10
‒ 11

 a
‒ 1

 (Söderlund et al. 2004) and t is the crystallization age of 580 

zircon. 581 

Using the law of propagation of uncertainty, the combined standard uncertainty for Dt is given 582 

by 583 
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the combined uncertainty of Dt=
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Hft,zircon is 592 
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Figure captions 967 

Fig. 1 Simplified geological map of the northeastern part of Austria (modified after Beck‒968 

Mannagetta 1964; Haase et al. 2007) with the sampling sites. The numbers mark the sampling 969 

localities: 1. Krems (sample K23), 2. Stratzing (sample S1), 3. Wels (sample A16). Letters 970 

denote geological units, formations, etc. mentioned in chapter ‘Geological setting’: A. Gföhl 971 

unit, B. Varied series, C. Monotonous series, D. South Bohemian Pluton, E. Hollabrunn-972 

Mistelbach Formation, F. Rhenodanubian flysch zone, G. Austroalpine unit, H. Tauern 973 

window (Penninic) 974 

Fig. 2 Secondary electron and cathodoluminescence images of detrital zircons from samples 975 

K23 (a, b) and A16 (c, d), with U‒ Pb ages. Panels a), c) and d) show typical igneous zircons 976 

with magmatic growth zoning. Resorption and reprecipitation/recrystallization features are 977 

visible in zircon shown in panel a), while panel b) displays a metamorphic zircon with 978 

recrystallization rims. The abbreviation ‘conc.’ means concordance. Ages younger than 1.0 979 

Ga are 
206

Pb/
238

U ages, while those older than 1.0 Ga are 
207

Pb/
206

Pb ages. White lines denote 980 

the axis of laser ablation trenches. Their diameters are given after the @ in microns 981 

Fig. 3 Secondary electron and cathodoluminescence images of detrital zircons from sample 982 

S1 with U‒ Pb ages and Hf isotopic compositions. Magmatic zircons with oscillatory zoning 983 
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(panels a, c, e, f), metamorphic zircon (panel b), and a zircon with inherited/xenocrystic core 984 

(panel d). The abbreviation ‘conc.’ means concordance. Ages younger than 1.0 Ga are 985 

206
Pb/

238
U ages, while those older than 1.0 Ga are 

207
Pb/

206
Pb ages. White lines denote the 986 

axis of laser ablation trenches. Their diameters are given after the @ in microns 987 

Fig. 4 Kernel density estimates of zircon U‒ Pb ages of the three studied loess samples. Black 988 

lines are distributions estimated from U‒ Pb ages with age uncertainties <20% and cutoff at 989 

20% (e_20, c_20), while gray/turquoise shaded distributions are calculated from U‒ Pb ages 990 

having <10% uncertainties and cutoff at 10% (e_10, c_10). Number of ages (n) used in these 991 

calculations are also specified. All the KDEs have been calculated using a bandwidth of 25 992 

Ma. Bold numbers are age components calculated by mixture modeling in DensityPlotter. 993 

Panels (right up corner) are blow ups of the distributions for a period of 200 to 800 Ma. 994 

White/red dots mark purely magmatic ages (based on CL images), while gray filled dots 995 

denote metamorphic ages. Abbreviations: Var. = Variscan (320-360 Ma), Cal. = Caledonian 996 

(420-480 Ma) and Cad./P.A. = Cadomian/Pan-African (500-800 Ma) 997 

Fig. 5 Age versus a) 
176

Hf/
177

Hft and b) ɛ Hft diagrams for detrital zircon grains from loess 998 

samples S1, K23 and A16. Zircons listed in Table 2 are plotted exclusively. Dashed lines 999 

illustrate typical evolution paths of crust separated from a depleted mantle at different times in 1000 

Ma (crustal residence ages) with 
176

Lu/
177

Hf of 0.015 (Condie et al. 2005) 1001 

 1002 

 1003 
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Table 1. Likelihoods of missing age populations for the analyzed loess samples based on binomial probability (after Andersen 2005) 

Sample Number of 

zircons 

Concordance 

criteria 

Detection limit 

at pL=0.5a 

Detection limit 

at pL=0.95b 

Failure rate (%) 

at Xi=10%c 

Failure rate (%) 

at Xi=20% 

Failure rate (%) 

at Xi=40% 

S1 49 <20% 1.4 5.9 0.6 0.0 0.0 

 

31 <10% 2.2 9.2 3.8 0.1 0.0 

K23 32 <20% 2.1 8.9 3.4 0.1 0.0 

 

17 <10% 4.0 16.2 16.7 2.3 0.0 

A16 14 <20% 4.8 19.3 22.9 4.4 0.1 

  6 <10% 10.9 39.3 53.1 26.2 4.7 
aDetection limit is the percent abundance of the largest population of zircons likely to remain undetected in n analyses, for a probability 

level (pL) of 0.5. It is calculated as  (Andersen 2005). Detection limit at pL=0.5 marks an upper abundance 

limit for populations that are more probably overlooked than observed in n analyses 
bDetection limit is the percent abundance of the largest population of zircons likely to remain undetected in n analyses, for a probability 

level (pL) of 0.95 
cFailure rate (in percent) is the probability of overlooking an age population with an abundance Xi in the sediment, and calculated as 

 (Andersen 2005) 
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Table 2. U‒ Pb ages and Lu‒ Hf isotopic compositions of detrital zircons from loess samples S1, K23, and A16 

Sample code 

206Pb/238U 

age (Ma) 

±2σ 

(Ma) 

Conc. 

(%)a 176Hf/177Hf ±2SE 176Lu/177Hf ±2SE εHf0
b ±2σc 176Hf/177Hft

d ±2σe εHft
f 

τc
DM-Hf 

(Ma)g Origin 

sample S1 

              120316_0155_S1_003a,d 349 12 86.8 0.281965 0.000456 0.000145 0.000007 -29.0 0.2 0.281964 0.000456 -21.3 2600 not specified 

120316_0155_S1_022a,d 495 29 109.1 0.282125 0.000389 0.002378 0.000022 -23.4 0.1 0.282102 0.000389 -13.1 2206 not specified 

120316_0155_S1_023a,d 503 38 105.0 0.282065 0.000459 0.001141 0.000023 -25.5 0.2 0.282054 0.000459 -14.7 2308 metamorphic 

120316_0155_S1_025a,d 337 28 99.9 0.282105 0.000566 0.001005 0.000023 -24.1 0.2 0.282098 0.000566 -16.8 2313 magmatic 

120317_0155_S1_032a,d 485 11 100.6 0.281965 0.000444 0.002479 0.000042 -29.0 0.2 0.281943 0.000444 -19.0 2563 magmatic 

120317_0155_S1_040a,d 328 11 114.9 0.282145 0.000656 0.000846 0.000057 -22.6 0.2 0.282140 0.000656 -15.5 2228 magmatic 

120317_0155_S1_047a,d 631 33 103.9 0.281963 0.000455 0.000194 0.000006 -29.1 0.2 0.281960 0.000455 -15.1 2433 metamorphic 

120317_0155_S1_054a,d 325 35 88.0 0.282186 0.000526 0.001101 0.000022 -21.2 0.2 0.282179 0.000526 -14.2 2143 metamorphic 

120317_0155_S1_059a,d 346 36 91.3 0.281946 0.000560 0.000969 0.000010 -29.7 0.2 0.281940 0.000560 -22.2 2655 magmatic 

120317_0155_S1_064a,d 523 17 99.0 0.281989 0.000715 0.001828 0.000036 -28.2 0.3 0.281971 0.000715 -17.1 2478 magmatic 

120317_0155_S1_065a,d 503 27 98.5 0.282005 0.000606 0.002595 0.000073 -27.6 0.2 0.281981 0.000606 -17.2 2468 magmatic 

120317_0155_S1_078a,d 333 29 110.8 0.281965 0.000733 0.001088 0.000035 -29.0 0.3 0.281958 0.000733 -21.9 2623 magmatic 

120317_0155_S1_089a,d 332 8 101.9 0.282087 0.000541 0.000946 0.000016 -24.7 0.2 0.282082 0.000541 -17.5 2353 magmatic 

120317_0155_S1_094a,d 566 18 98.4 0.282050 0.000478 0.000684 0.000025 -26.0 0.2 0.282043 0.000478 -13.6 2292 not specified 

120317_0155_S1_096a,d 489 55 107.2 0.282181 0.000718 0.001366 0.000038 -21.4 0.3 0.282169 0.000718 -10.9 2064 metamorphic 

120319_0155_S1_097a,d 494 19 85.4 0.281990 0.000562 0.001023 0.000007 -28.1 0.2 0.281981 0.000562 -17.4 2473 not specified 

120319_0155_S1_099b,d 339 15 83.4 0.282191 0.000568 0.000850 0.000040 -21.0 0.2 0.282185 0.000568 -13.7 2121 magmatic 

120319_0155_S1_103a,d 346 27 114.4 0.282031 0.000497 0.001159 0.000012 -26.7 0.2 0.282023 0.000497 -19.2 2472 magmatic 

sample K23 

              120320_0194_K23_022a,d 579 16 101.3 0.282056 0.000769 0.000807 0.000026 -25.8 0.3 0.282047 0.000769 -13.2 2276 not specified 

120320_0194_K23_035a,d 522 14 88.6 0.281956 0.000754 0.001530 0.000044 -29.3 0.3 0.281941 0.000754 -17 2544 magmatic 

120320_0194_K23_036a,d 522 12 109.1 0.282087 0.000764 0.001333 0.000024 -24.7 0.3 0.282074 0.000764 -12.3 2253 magmatic 

120320_0194_K23_053a,d 332 55 107.1 0.281951 0.000669 0.000830 0.000019 -29.5 0.2 0.281945 0.000669 -16.8 2651 magmatic 

120320_0194_K23_054a,d 589 56 108.9 0.282084 0.000783 0.001260 0.000038 -24.8 0.3 0.282070 0.000783 -12.4 2219 magmatic 

120320_0194_K23_058a,d 581 35 118.2 0.281949 0.001002 0.000560 0.000039 -29.6 0.4 0.281943 0.001002 -16.9 2504 magmatic 

sample A16 
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120316_0176_A16_006a,d 319 23 82.4 0.282134 0.000967 0.000771 0.000018 -23.0 0.3 0.282130 0.000967 -16.1 2255 magmatic 

120320_0177_A16_046a,d 1657* 102 87.7 0.282017 0.001518 0.000727 0.000019 -27.2 0.5 0.281994 0.001518 9.4 1712 not specified 

120320_0177_A16_048a,d 473 24 106.4 0.282008 0.001020 0.001781 0.000018 -27.5 0.4 0.281992 0.001020 -17.5 2461 magmatic 

120320_0177_A16_061a,d 469 38 118.3 0.281944 0.001819 0.001237 0.000028 -29.8 0.6 0.281933 0.001819 -19.7 2594 magmatic 

Sample code: a/b denotes the U‒ Pb ages (see also the Supplementary Tables), d marks Lu‒ Hf analyses spots 
a’Conc.’ means concordance (206Pb/238U/207Pb/206Pb*100) 
bɛ Hf0=(176Hf/177Hfzircon-meas./

176Hf/177HfCHUR-0‒ 1)*10000, where 176Hf/177HfCHUR-0=0.282785±0.000011 (Bouvier et al. 2008) 
cUncertainties have been propagated as the root of the sum of the squared errors 
d176Hf/177Hft=

176Hf/177Hfzirc.‒
176Lu/177Hfzirc.(e

λt‒ 1), where λ=λ176Lu=1.867±0.008×10‒ 11 a‒ 1 (Söderlund et al. 2004), and t is the crystallization ages of zircons 
eUncertainties (σ) of 176Hf/177Hft have been propagated as 

              √                 

                           
                               

                              
 . For the details of mathematical derivation of 

this expression see the Appendix 
fɛ Hft=[(176Hf/177Hfzirc.‒

176Lu/177Hfzirc.(e
λt‒ 1)/ 176Hf/177HfCHUR-0‒

176Lu/177HfCHUR-0(e
λt‒ 1)) ‒ 1]*10000, where 176Lu/177HfCHUR-0=0.0336±0.0001 (Bouvier et al. 2008) 

gTwo-stage crustal residence model ages were calculated as                                                              ⁄                        
   

                                         . We assumed 176Lu/177Hfavg.crust=0.015 (Griffin et al. 2004; Condie et al. 2005) and the present day depleted mantle (DM) model is based on 
176Hf/177HfDM=0.283224 (Vervoort et al. 2000), 176Lu/177HfDM=0.03836 (calculated for εHf=0 at 4500 Ma, Weber et al. 2012) 

*It is a 207Pb/206Pb age 



Table 3. U-Pb ages of zircons from potential sources 

        Potential sources Rock type Ages (Ma) Ages of inherited 

zircon cores (Ma) 

Interpretation 
176

Hf/
177

Hft   ɛ Hft References 

          Max. Min.   Max. Min.   

Bohemian Massif, 

Moldanubian Zone 

          

           
Southwest part           
Sarleinsbach, S Bohemian 

Pluton, Austria 

Weinsberg type granites  355±9 and 345±5 523±5 high-T metamorphism and Carboniferous partial 

melting 

     Klötzli et al. (2001) 

Bavarian forest metarhyolite, 

metabasite, 

metagranitoids 

555±12 to 549±6, 

486±7 to 480±6, 

431±7, 319±5 to 

316±10 

2700 to 2000 Late Vendian and Early Ordovician magmatism 

and anatexis, Post-Cadomian and Variscan 

metamorphism 

     Teipel et al. (2004) 

Pfahl zone, Bavarian forest granite, granodiorite 329-321  Visean-Bashkirian magma emplacement      Siebel et al. (2006) 

Bavarian and Ostrong terrane 

(Bavarian forest) 

granite 328-321  granite formation during a short period of crustal 

melting 

     Siebel et al. (2008) 

Palatinate and Bavarian 

Forests, W Bohemian Massif 

Variscan granites, 

redwitzites, 

intermediate granitoids 

334-312  late to post-orogenic granitoid formation during 

Late Visean metamorphism and anatexis 

0.282603 0.282423  0.75 ‒ 5.6 Siebel and Chen (2010) 

Bavarain Forest, W 

Bohemian Massif 

migmatite 342-330, 333-320 426-420 granulite-facies metamorphism, late-Variscan 

anatectic overprint 

     Siebel et al. (2012) 

           

South/central part 

          S Bohemian Batholith Weinsberg type granites 331-323  magma emplacement      Gerdes et al. (2003) 

           
Southeast part           

Varied group Dobra gneiss 1377±10 

 

protolith emplacement of the Dobra gneiss 

     
Gebauer and Friedl (1994) 

Varied and Monotonous 

Groups 

metasediments 672±57 to 2281±22  early Proterozoic crust formation event (from 2.0 

to 2.2 Ga) 

     Kröner et al. (1988) 

Rastenberg batholith granodiorite 353±9, 338±2 623±22, >1206 first magma formation during Variscan 

plutonism, granodioritic magma intrusion into the 

middle crust 

     Klötzli and Parrish (1996) 

S Bohemian Massif (S 

Bohemian Batholith, Gföhl 

nappe, Drosendorf nappe) 

pre-Variscan granitoids 

(orthogneiss, granulite, 

granite) 

585-565, 488±6, 

445±10 

 Cadomian and Ordovician magmatism      Friedl et al. (2004) 

Dunkelsteiner Wald, S 

Bohemian Massif 

granulite 342±3 and 337±2.7 460-390 Variscan regional metamorphism, exhumation 

into mid-crustal levels 

     Friedl et al. (2011) 

Montonous Unit gneiss 550, 470 2650, 2350, 2100-

1700, 850 

      Kosler et al. (2014) 
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Varied Unit gneiss 550-470, 340-320 2500-2400, 2100-

1650, 1300-1050 

      Kosler et al. (2014) 

Gföhl Unit gneiss 580, 470, 340        Kosler et al. (2014) 

                      
Eastern Alps           

           Tauern Window amphibolite, 

hornblendite, 

metagabbro 

657±15, 539±10, 496-

350, 314-301  

 Variscan metamorphism, Cambro-Ordovician 

magmatism, calc-alkaline magmatism (Pan-

African event) 

     von Quadt (1992) 

Ötztal Winnebach migmatite 490±9  migmatization      Klötzli-Chowanetz et al. (1997) 

middle Tauern Window dacitic dike, gneiss, 

amphibolite 

547±27, 529±18, 

519±14, 340±5 

~640, 581±28 orthogneiss precursor (I-type granite) 

emplacement, Variscan dike intrusion 

     Eichhorn et al. (1999) 

central Tauern Window leucocratic 

orthogneisses 

374±10, 343±6 to 

340±4, 300±5 to 

296±4, 279±9 to 271±4 

 Visean, Gzhelian and Early Permian pulses of 

magmatism 

     Eichhorn et al. (2000) 

Habach terrane, Tauern 

Window 

amphibolite, 

hornblende plagioclase 

gneiss 

551±9, 482±5  protolith formation      Eichhorn et al. (2001) 

SW Tauern Window mafic-ultramafic 

cumulates, 

metagraniodiorite 

309±5, 295±3  Late Carboniferous calc-alkaline plutonic 

activity, emplacement of granodiritic to tonalitic 

intrusions 

     Cesare et al. (2002) 

central Tauern Window metagabbro, 

amphibolite, biotite 

schist, gneiss 

368±17, 362±6, 351-

343, 334±16 

 Variscan basic magmatism, maximum 

sedimentation ages 

     Kebede et al. (2005) 

Eclogite Zone, Tauern 

Window 

jadeite-gneiss 466±2, 437±2, 288±9 691-503 Ordovician magmatism, Late Carboniferous to 

early 

Permian magmatic event 

     Miller et al. (2007) 

W Tauern Window 
granite gneiss, rhyolite, 

granodiorite 

335±1.5, 310±1.5, 

304±3, 292±2, 280±5 

 Visean and Westfalian–Stefanian magmatism, 

Lower Permian magma emplacement 

     Veselá et al. (2011) 

 

 

         
Austroalpine basement 

(south of the Tauern 

Window) 

metagranite, eclogitic 

amphibolite, 

metarhyolite 

477±4 to 470±3  Early Ordovician magmatism      Siegesmund et al. (2007) 

Carnic Alps sandstone 650±12, 530±53 to 

518±38 

2085±11, 1964±23, 

1439±37, 876±70 

acidic magmatism (Late Cadomian tectonic 

events) 

     Neubauer et al. (2001) 

eastern Greywacke Zone orthogneiss boulde, 

paragneiss, aplite 

 514, 502-498, ~391 ~2545 Late Cambrian/Early Ordovician thermal 

overprint and magmatism, Devonian 

metamorphism 

          Neubauer et al. (2002) 
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