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Abstract. Gradient materials get more and more importance in both material science and numerical 

studies of technological processes. Their mathematical model is called the constitutive equation. 

The theoretical background of such model is presented on the basis of thermodynamics and 

continuum mechanics. The results show which is the quantity to measure to get constitutive 

equation for gradient dependent materials. 

Introduction 

The constitutive equations of mechanics connect the data of  material testing to each other. In a uni-

axial stress state these are stress  , strain  , strain rate  , stress rate  . Such quantities appear at 

tensile test, when stress-strain diagram is drawn and during creep and relaxation. The new results of 

material science lead to the use of new materials with definite internal structure effects. As 

examples 

 

 
Fig.1 A few types of gradient materials [3] 

 

from the literature Fig. 1. shows various types of composites: a) short-fiber, b) long fiber, c) 

layered, d) particle, e) functionally gradient material, f) polycrystalline with different fracture 

properties of grain boundary, g) polycrystalline with small interfaces, and h) polycrystalline with 

thick interfaces. 

On the other hand computational methods require constitutive equations with derivatives to 

x,y,z. In Fig.2 the results of the numerical analysis of a material instability problem [4] is presented. 

Here the necking zone has a finite length. With no gradient effects this length shows mesh 

dependence. It means that the length of the instability zone is determined by the mesh size, which 



 

has no physical meaning. This effect is avoided by “gradient regularization”, which can be 

considered as a formal inclusion of gradient terms   
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Materials with constitutive equations consisting of such terms are called gradient materials. 

 

 
Fig.2 Numerical results for necking instability [4] 

First and second gradient dependence 

The most popular gradient constitutive equation  
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has a second gradient dependent term, For numerical studies its discretized form is an anticipatory 

system [5]  
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To perform a numerical analysis two more equations should be added. These are the discretized  

versions of the Cauchy equation of motion and of the kinematic equation, 
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where volumetric forces are neglected and 
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From Eq. 1, Eq. 2 and Eq. 3 a discrete dynamical system should be defined 

i 1 i

i 1 i

i 1 i

1
1 0 t

x
v v

A , where A t 1 0
x

C t C 0
x







 
  

    
    

         
          
  

. 

Eigenvalues k  of operator A  determine the stability properties. When the constitutive equation is 

Eq. 1 the stability investigation results a non-generic way of loss of stability. It is presented in Fig.3, 

where the arrows show how the  

 
Fig.3 Non-generic way of instability 

 

locations of eigenvalues changes, when tangent stiffness D  is varied. One of them remains always 

mostly outside the unit disc, that is, there is no stability except the case 1  .  

 
Fig.4 Generic instability modes  

 



 

In contrary Fig. 4 shows the generic case with various types of bifurcations for discrete dynamical 

systems. Here the stable case is reached, when all the eigenvalues are inside the unit disc (grey). 

Loss of stability happens, when at least one of them leaves it. Instability happens as one of the 

generic bifurcations depending on the location of the exit. If Figs. 3 and 4 are compared, we see that 

Eq. 1 result a non-generic behavior. No real stable cases and no regular bifurcations can be 

detected. Such constitutive equation case serious difficulties and mistakes in numerical analysis.  

To summarize we find that some theoretic basis is needed to determine and measure a quantity to 

show x  dependence. In the following such possibility will be presented using the laws of 

thermodynamics, because mechanical deformations are always coupled with thermodynamic 

processes. 

Variational principles and virtual work 

In his pioneering work Mindlin [1] derived a constitutive equation for gradient materials from 

variational principles. He used the principle of virtual work and the principle of complementary 

virtual work 
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expressions :   and :  for an elastic body can be calculated in uniaxial case from 
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Assume that elastic potential is completed with the first law of thermodynamics in form  

1w 0 ,  

then 
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and  for stress  

 1L u w    (5) 

where L  denotes the Lagrange operator  
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The second term of Eq. 5 is expressed from the first law of thermodynamics 
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Now similarly as before (in case of Eq. 5)    can be expressed, but here complementary energy and 

work is used (the second formula of Eq. 4) 
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In this expression the form of the first law of thermodynamics uses Gibbs function G  and entropy  

S , 
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for the derivatives  
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where  a  denotes Green’s elastic potential.  

Having done the  necessary calculations stress and strain can be obtained, 
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By multiplying the equation Eq. 7  by 
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and adding  to Eq. 6 
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is obtained. 



 

Discussion 

In expression Eq. 8   must be different from zero. In standard tensile test speed  0v  at which the 

specimen is pulled is a prescribed small value. When the length of it is 0 , strain rate is nonzero, 

but small, thus strain rate is usually given as  
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, thus approximation Eq. 9 cannot be used in gradient materials. 

For small strain rate term 

 xh


  

is large, thus we have a gradient material and if heat flux can be measured as function of strain, h  

can be calculated and the constitutive equation of the gradient material is obtained. 

In material testing mechanical motion and thermodynamic processes are coupled, but in most 

cases thermodynamic effects may be neglected, when compared to mechanical phenomena. 

Summary 

For modeling gradient materials rate dependent terms are necessary in the constitutive equation. 

When thermodynamics is taken into consideration a general form of such equation was derived. For 

practical applications the data of this equation can be obtained by measuring heat flux as function of 

strain. If such measurement can be performed, a physically and mathematically correct 

mathematical model is found for gradient materials, which is available for further numerical studies. 
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Abstract.The estimation of thermal boundary conditions occurring during heat treatment processes 

is an essential requirement for characterization of heat transfer phenomena. In this work, the 

performance of five optimization techniques is studied. These models are the Conjugate Gradient 

Method, the Levenberg-Marquardt Method, the Simplex method, the NSGA II algorithm and a 

hybrid approach based on the NSGA II and Levenberg-Marquardt Method sequence. The models 

are used to estimate the heat transfer coefficient in 2D axis symmetrical case during transient heat 

transfer. The performance of the optimization methods is demonstrated using numerical 

experiments. 

 

Introduction 

Immersion quenching operation is widely applied in the industry to change materials properties 

under high temperatures and high rates of cooling, a condition in which the heat transfer can be 

dominated by the cooling characteristics of the cooling media. To attain the required heat transfer 

conditions, exactly known thermal loads must be supplied on the material surface, namely design 

surface, and thus both the temperature and the heat flux are prescribed. The problem consists of 

determining the specifications for the heat exchange to achieve the desired conditions on the design 

surface. Performing inverse heat conduction problem (IHCP) analysis [1-4] the required 

information for the heat transfer process can be achieved.  

 

The IHCP of immersion quenching has been usually tackled by either implicit or explicit 

formulation. In the implicit approach, the problem is formulated as a multivariable optimization 

problem, while the explicit formulation attempts to determine directly the unknown parameters with 

the use of regularization techniques to solve the resulting system of equations. There are two 

distinct groups of optimization techniques: the deterministic methods (Conjugate Gradient [3], 

Levenberg-Marquardt [4], Simplex [5], etc) and the stochastic approaches (genetic algorithms [6], 

particle swarm optimization [7,8] etc.). 

 

In general, deterministic methods are faster than stochastic methods, although they are more prone 

to converge to a local instead of the global minima or maxima. On the other hand, stochastic 

algorithms, despite being more likely to converge to the global minima or maxima, are in general 

expensive computationally. Various optimization techniques have been applied to estimate the heat 

transfer during quenching process as well. This study is focusing on a hybrid solution that combines 

two approaches: the stochastic method, by which the global minimum in the search space can be 

localized and the deterministic formulation, which is for the swift find the global optimum. 

 

 



 

The heat conduction model 
The mathematical formulation of the transient heat transfer for a homogeneous isotropic domain 

(Ω) is defined as follows: 
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wherer is the spatial vector, t is the time, k is the thermal conductivity, T is the temperature, Cp 

is the specific heat, ρ is the density and Q is the latent heat. The initial condition is 
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where T0 is the initial temperature of the domain. The boundary conditions are expressed by: 
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wherehi are the heat transfer coefficients corresponding to different portions of the boundary 

(12 …p =  and 12 … p = ) and Tam is the ambient temperature.  

 

 

Inverse heat conduction scheme 

Assuming that the temperature inside the work piece and/or on its surface is measured during the 

heat transfer process, it is possible to solve the inverse heat conduction problem by determining the 

time / or temperature variations of the thermal boundary conditions[1-3].Each one of domain 

boundary zones , is considered to have a time dependent heat transfer coefficient, hi(t). The time 

dependence of the heat transfer coefficient can be approximated by polynomial functions, each one 

defined by a set of parameters hi
(r)

 = (r=1…p; i=1…q), according to Fig. 1. The unknown design 

parameters can be expressed by the vector of m (m= p*q), components  = (1,…,m) = (h1
(1)

, …, 

hq
(1)

 , h1
(2)

, …, hq
(2)

, …, h1
(p)

, …, hq
(p)

). The temperature at different times is given by measurements 

at n points in the solid region, located at rk,(k=1…n). On calling Tk
m

, the measured temperatures, 

and Tk
c
, the calculated temperature at those points, one can pose the problem of obtaining the values 

of the heat transfer coefficients ithat minimize the cost function, S:  
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wheren is the total number of measured temperatures, i.e., the number of points multiplied the 

number of measurements at each point. 

 

 

Hybrid approach 

The solution of the Inverse Parameter Estimation Problems is based on the minimization of 

equation (4). The following optimization approaches have applied used to minimize the value of S:   

1. Simplex (Simplex) search method is based on the Nelder–Mead algorithm [5] 

2. Levenberg-Marquardt Method (LMM) [4] 

3. Conjugate Gradient Method (CGM) [3,4,9], 

4. The Non-dominated Sorting Genetic Algorithm (NSGA II) [10-12] 

5. Hybrid method using (NSGA II) and (LMM) is sequentially 



 

According to Fig.1., the iterative computational procedure for the estimation of HTC can be 

summarized as follows: 

 

 
 

Figure 1 The iterative procedure for the determination of thermal boundary conditions  

 

 

The following steps are obtained by using the optimization methods if they used by their own 

(Simplex, LMM, CGM and NSGAII):  

 

Step 1  During the initial iteration, the components of the vector are initialized to some values 

Step 2  The values of hi(t) functions are set 

Step 3  The cooling curves (Tk
c
) are calculated based on numerical simulation 

Step 4  The difference between the measured (Tk
m

) and the calculated (Tk
c
) time-temperature 

 signals are characterized by calculating S 

Step 5  If the value of S is greater than a desired tolerance value () then the hi(t) functions are 

modified by using the optimization algorithm and a new iteration is started at Step 2. If S is 

less than  then the iteration stops. 

 

The Hybrid approach is also based on the Steps 1-5 while the output results of Step 5 will be the 

input data for the temperature field computations. The Hybrid method requires the following 

additional steps: 

 

Step 6  The cooling curves (Tk
c
) are calculated based on numerical simulation 

Step 7 The difference between the measured (Tk
m

) and the calculated (Tk
c
) time-temperature 

 signals are characterized by calculating S 

Step 8 If the value of S is greater than a desired tolerance value () then the hi(t) functions are 

modified by using the LMM algorithm and a new iteration is started at Step 6. 

 If it is so than the final estimated hi(t) functions are estimated 

 

 

Numerical example and discussion 

In order to compare the performance of the optimization algorithms on the prediction of thermal 

boundary conditions, two numerical experiments for the quenching process have been performed. In 

the analysis, there was no physical set-up to directly measure the temperature Tk
m

. Instead, we 

assume theoretical heat transfer coefficient functions, hi(T) and substitute them directly into the 

equations (1)–(3) to calculate the temperatures at each location for the thermocouples (TC). The 



 

results are used in the computed temperature Tk
m

 curves. Due to this concept the Tk
m

 curves have 

been assumed to be error-free samples. The following concepts have been used for the 

computational investigations: 

 

 The theoretical hi(T) functions have been determined 

 The Tk
m

 temperature signals have been generated by obtaining simulations on the basis of 

hi(T) functions 

 Inverse computations have been carried out by applying each optimization method, in order 

to reconstruct the original hi(T) functions 

 The computational results were analysed 

 

The quenching process for a cylindrical work piece, mounted with 5 TC’s was investigated. A 2D 

axis-symmetric heat transfer model was applied to calculate the temperature distribution during the 

cooling process. The physical properties of Inconel 600 alloy were assigned to the workpiece. The 

thermocouples were assumed to be mounted at 1 mm below the side surface of the rod. The location 

of the TC’s (the distances from the bottom of the cylinder) and the parameters used for the 

calculations are summarized in Table 1. The effect of wetting front kinematics that occurs during 

immersion quenching, is taken into consideration, by defining the heat transfer coefficient [14,15] 

hi(T,z), which is assumed to be dependent on temperature and the vertical local coordinate, Eq.(5).  
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The theoretical hi(T,z) as predefined, is represented at Fig. 2., while the cooling curves obtained at 

the TC locations are shown at Fig. 3. The hi(T,z) is used for all the surfaces of the work piece 

including the top and the bottom faces as well. For the inverse calculations 100 components of the 

vector  have been applied, while the initial estimate of hi(T,z) was set to 100 Wm
-2

K
-1

. The 

population size was defined to 100, for the NSGA II method. 

 

Radius, R 25 mm TC 1 z = 0 mm 

Length, L 200 mm TC 2 z = 50 mm 

Initial temperature, T0 850 C TC 3 z = 100 mm 

Ambient temperature, Tam 50 C TC 4 z = 150 mm 

Locations of TC 1-5 below the surface r=R-1 TC 5 z = 200 mm 

Table 1. Parameters applied for the computational example 

  
Figure 2. The theoretical heat transfer 

coefficient function applied  

 

Figure 3. The predicted cooling curves 

obtained at the TC locations in direction of 

axis “z” 

 



 

In order to reconstruct the thermal boundary conditions 500 generations were investigated by the 

NSGA II model and 400 iterations were performed by the LMM, CGM and Simplex models (Fig. 

4.). The concept of using the Hybrid approach was to perform the generations until the cost function 

exceeds 2.0*10
4
, or 1.5*10

4
, 1.0*10

4
 and then the iteration was continued by means of LMM. Then 

the LMM calculations were carried out till the S was lower than 100 or the number of LMM 

iterations exceed 150. 

Figure 4. The evolution of cost function (S), as functions of iterations and generations 

 

The results obtained by Simplex, LMM and CGM showed a limited accuracy for the inverse 

estimation. The discrepancy of the predicted heat transfer coefficient were still unacceptable huge 

after the 400 iterations. Very good agreement between the original and recovered HTC functions 

was given by using the NSGAII algorithm. However, at least 300 generations had to be built to 

achieve the desired output. The fastest convergence with the highest recovery performance was 

given by using the hybrid optimization sequence when the NSGAII method was used until the value 

of S was lower than 1.0*10
4
. Similar results but slower convergence obtained in the case of LMM --

1.5*10
4
, while rather big S belongs to LMM -- 2.0*10

4
.  

 

The reason for the poor agreement between the measured (pre-calculated) and estimated 

temperature curves is due to the complexity of the heat transfer phenomena, where the boundary 

conditions of the third type varied with the surface temperature, as well as, the distance measured 

from the bottom of the work piece. These results point out that the inverse heat transfer calculations 

applied for sophisticated thermal problems needs robust numerical methods to achieve a desirable 

outcome. 

 

Summary 

In this work, the performance of five different optimization models for the estimation of heat 

transfer coefficients during an immersion quenching process have been compared. An automatic 

optimization procedure based on a process simulator, cost function and various numerical 



 

optimization techniques was used. The optimizations methods applied were the Simplex, Conjugate 

Gradient Method, Levenberg-Marquardt Method, NSGAII method and a hybrid approach based on 

a NSGAII-LMM sequence. The performance of the optimization algorithms is compared using on a 

numerical test, where the thermal boundary condition of the third type was functions of surface 

temperatures and local coordinates. The best prediction was given by the hybrid method as well as 

the NSGAII algorithm, however the later one required more computational efforts. It must be noted 

that the results performed by using LMM, CGM and Simplex techniques are strongly depend on the 

initial set of parameters [6,7]. The more smaller the difference between the initial guess functions 

and the HTC functions to be estimated the more faster convergence of the cost function and more 

accurate prediction of boundary conditions can be performed. However, our investigation is based 

on the concept that no any preliminary knowledge has been given about the HTC functions. These 

assumptions comprise the parameter intervals and isolation of the search space. With finer 

isolations, the applied methods would most likely perform differently. Testing the methods on 

different isolations remains a task for further investigation. 
 

Acknowledgement 

We acknowledge the financial support of this work by the Hungarian State and the European Union 

under the TÁMOP-4.2.1. B -11/2/KMR-2011-0001 and TÁMOP-4.2.2/A-11/1-KONV-2012-0029 

projects. 

 

References 

[1]  J.V. Beck, B. Blackwell, C.R. St Clair Jr., Inverse Heat Conduction, Wiley, New York, 1985. 

[2]  A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-posed Problems, Winston, Washington, DC, 

1977. 

[3]  O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin/Heidelberg, 1994. 

[4]  M.N. Özisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor 

& Francis, New York, 2000. 

[5]  J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308–

313. 

[6]  J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder–

Mead simplex method in low dimensions, SIAM J. Optimiz. 9 (1996) 112–147. 

[7] R. Das: A simplex search method for a conductive–convective fin with variable conductivity, 

International Journal of Heat and Mass Transfer 54 (2011) 5001–5009 

[8]  O. Nelles, Nonlinear system identification, Springer-Verlag, Berlin, 2001. 

[9]  Fletcher, R. and Reeves C. M., "Function Minimization by Conjugate Gradients," Computer J. 

7 (1964) 149-154 

[10]  K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic 

algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002) 182–197. 

[11]  K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, Wiley Chichester UK 

2001. 

[12]  D.A.V. Veldhuizen, G.B. Lamont, Multi-objective evolutionary algorithms: analyzing the 

state-of-the-art, Evolutionary Computation 8 (2000) 125–147 

[13]  J. Clark and R. Tye: “Thermophysical properties reference data for some key engineering 

alloys”. High temperatures – high pressures 35/362003/2004 1-14. 

[14]  A. Majorek, B. Scholtes, H. Müller, E. Macherauch: Influence of heat transfer on 

development of residual stresses in quenched steel cylinders Steel research 41994 146-151 

[15]  H. M. Tensi, A. Stick : Martens hardening of steel - Prediction of temperature distribution and 

surface hardness, Materials Science Forum 102-104 (1992) 741-75 
 

 



 

Practical Aspects of Micromechanics Based Simulation of Polymer 

Matrix Composites 

Zoltan Major1, Martin Reiter1 and Michael Jerabek2  
1
Institute of Polymer Product Engineering, Johannes Kepler University  

Altenberger Str. 69, 4040 Linz, Austria 

2
Borealis Polyolefine GmbH, Linz, Austria 

zoltan.major@jku.at (corresponding author) 

Keywords: micromechanics, mean field homogenization, representative volume element, particle 
filled and fiber reinforced polymer matrix composites 

Abstract. As particle filled and fiber reinforced polymer matrix composites are frequently used in 

many demanding industrial applications, the proper prediction of the deformation behavior of these 

materials is of high practical importance for a reliable product design. To predict the thermo-

mechanical behavior, micromechanics based simulations were performed using both the mean field 

homogenization methods (MFH) and full-scale finite element (FS-FE simulations on a material 

specific representative volume. The applicability and limitations of both methods are introduced 

based on five different practical examples. Both thermoplastic polymers and elastomers were used 

as matrix materials with combination of fillers made from different materials having different aspect 

ratio and revealing a wide variation of alignments and arrangements. While conventionally the 

behavior of composites revealing processing induced microstructure is predicted for practical 

engineering applications, novel artificial micro-structures revealing special functionalities might 

also be designed and their behavior predicted for supporting material development efforts.  

Introduction 

Particle filled and fiber reinforced polymer matrix composites play an essential role in many 

demanding engineering applications and provide an essential contribution towards sustainable and 

environment friendly product development. In addition to the experimental characterization, 

numerical simulations may support both product design and material development efforts. The 

various fillers generates a highly heterogeneous and in many cases also highly anisotropic 

microstructure. The optimization of this anisotropy is a key factor for improving the complex time 

and temperature dependent thermo-mechanical behavior of these materials. 

Furthermore, the experimental characterization of these materials along with results for various 

polymer matrices, fillers, and interface compatibilization methods are described and discussed in 

details in many publications [1-3]. The mechanical behavior of these materials was typically 

characterized in tensile tests using standardized specimen configurations. The main dependencies 

and functions are well-known for a number of technically relevant polymer compounds and 

composites. These specimens reveal, however, only a narrow range of microstructure configurations 

and these are not always relevant for practical components. The wide variety of possible 

microstructures in components cannot be exclusively characterized by conventional experimental 

methods. Moreover, computational homogenization methods were developed over the last decades 

and are increasingly used for practical purposes. The theoretical, material science and computational 

aspects of these methods are summarized in numerous publications and books [4-6]. The objective 

of this paper is to shortly review several practical aspects of the micromechanics based material 

modeling of particle filled and fiber reinforced polymer composites by the means of selected 

examples. 



 

Finally, it must be emphasized that in principle all simulations, but specifically the 

micromechanics simulations have to be verified by appropriate experiments. Several examples 

related to this paradigm of the authors provided also in this paper.  

Models 

Particulate fillers revealing various shapes/aspect ratio values and discontinuous as well as 

continuous fibers over a wide length scale are frequently used for stiffening polymer matrix 

materials. These compounds and composite materials are widely used in many demanding 

engineering applications (e.g. automotive, mechatronics, medical, oilfield). The real microstructure 

which was generated during the processing (i.e. injection molding or lamination) can be 

characterized by non-destructive image generating methods (e.g. scanning electron microscopy 2D 

and computed tomography 3D). Due to the significant development of these methods over the last 

decade, the microstructure details of heterogeneous materials can easily and successfully be 

characterized for engineering purposes up to a length scale of several hundred nanometers [7, 8]. 

Scanning electron microscopy images of Polypropylene composites filled with particles (glass beds, 

talc platelets and wollastonite fibers) revealing different aspect ratio values are shown in figure 1. 

       

Fig. 1: Scanning electron microscopy images of particles revealing different shape and aspect ratio 

(AR) values. All types of particles all widely used in polymer matrix composites. 

 

 

Due to the injection molding conditions a typical layer-like structure (skin-core-skin) is observed 

for discontinuous short/long fiber reinforced injection molded composites [9-11]. While stiffening 

of the compounds is always observed if the fillers reveal higher modulus than the embedding matrix 

material, lower stiffness is observed for softer filler materials (i.e. elastomer particles). Furthermore, 

with increasing volume fraction there is an increase of the stiffness [1, 2, 12, 13]. The shape/aspect 

ratio of the particles also significantly influences the stiffness, and the anisotropy of the compound. 

With increasing aspect ratio an increase of the stiffness was observed in the relevant direction (fiber 

orientation). Simultaneously the transversal and shear modulus became significantly lower. Based 

on the images of the actual microstructure a direct or an indirect reverse engineering process can be 

designed and performed.  

 

 Direct method 

The distribution of the particles and all components of the fiber orientation tensor (FOD) can 

be determined after a real processing using image analysis. This specific microstructure can 

be modeled either in a mean field homogenization based or in a full-scale finite element 

based simulation tool. In both cases, however, simplifications are used. The agreement 

between the simulation and the results essentially depends on the fact how close the model is 

to the real microstructure, the quality of the material model and the model parameters and 

the coincidence of the loading and boundary conditions in the experiment and simulations.  

 Indirect method 

In a CAD file an unlimited variety of spatial distribution and orientation of fillers/fibers can 

be realized. This artificial microstructure can be implemented into the micromechanics 

models. An optimum target function property or function combination (i.e. optimal stiffness 



 

and toughness or optimal stiffness with optimal heat conductivity) is scrabbled. This method 

can also be successfully applied in a sensitivity analysis manner, that is, the processing 

parameter-structure-property relationship might be analyzed. The remaining question is for 

“nice-to-have” structures for targeted specific applications the realization of these 

microstructures in real processes. 

 

The orientation and the location of the particles can be determined by applying a 1D fixed fiber 

orientation, a 2D or 3D fiber orientation tensor, a 2D or 3D random fiber distribution function. 

Schematic representation of the definition of fiber orientations and alignments is shown in figure 2. 

In addition to the real process induced microstructure configurations tailor made microstructures 

can also be designed. Various principles for this design may be applied: 

 

 Spherical particles (AR=1) can be placed in regular chains and the distance of these particle 

chains may also be varied 

 If platelet-like particles are used, this stacking process may generate column like structures 

in one direction and staggered structures in the other. 

 Fiber like particles can also be positioned in a staggered structure. Staggering is a building 

principle of the nature (nacre, bone) and staggered platelet containing systems are optimized 

for stiffness and toughness in the nature. 

 
Fig. 2: Schematic representation of various fiber alignments and arrangements in microcells.  

Methodology and Objective 

The schematic representation of the overall methodology is shown in figure 3. The objective of the 

micromechanics based simulation is the generation of a representative volume which reflects the 

global macroscopic behavior of the selected heterogeneous material. However, there are significant 

differences from both theoretical, simulation technique and practical point of view between the 

mean field homogenization (MFH) method and the full-scale finite element (FS-FE) method. While 

the MFH provides only the global deformation response of the selected representative element, the 

FS-FE microcell is able to determine both the local stress/strain distribution around the inclusions 

and the global response of the selected volume element. The efficient application of FS-FE is time 

consuming and requires a high performance computing.  



 

 
Fig. 3: Schematic representation of the micromechanics based simulation methodology.  

Based on our experiences, the reversible deformation response in the linear elastic regime can 

easily and accurately be predicted using both methods by applying proper material models for the 

polymer matrix and filler particles used. Significantly complicated is, however, the prediction of the 

irreversible deformation or failure behavior. To gain more insight into these topics we can suggest 

the following literatures [14-16]. The increasing complexity and several specific aspects of MFH 

and FS-FE simulations are introduced by 5 examples in the paper.  

Examples 

Simulation Example 1: Mean Field Homogenization with various particle shapes in the linear 

viscoelastic deformation range for polypropylene compounds, direct method 

A mean field homogenization (MFH) module of the software tool DigiMat-MF (eXstream 

enginnering, Foetz, LX) was applied for determining the linear elastic deformation behavior of 

various particle filled PP(H) composites over a wide test temperature (-30 up to 80 °C) and over a 

wide loading rate range (10
-4

 up to 1 mm/s) in the first example. The comparison of the tensile tests 

and the MFH simulations is shown in figure 4 in terms of tensile modulus values.  

 
Fig. 4: Comparison of experimental results and mean field (MF) homogenization based simulations 

of glass bead (spherical particles with AR=1) and talc particles (platelets with AR=0.05) filled 

Polypropylene (PP) compounds. The tensile test were performed for all materials over a wide test 

temperature (-30 up to 80 °C) and over a wide loading rate range (10
-4

 up to 1 mm/s). 



 

 

As it is clearly shown in this figure, based on carefully conducted experiments and appropriate 

simulations, the difference between predictions and experiments is less than 5 % over a very wide 

tensile modulus range (loading rate and temperature combination) for both compounds. For more 

details please refers to [14, 15]. In addition to other stiff thermoplastic matrix (i.e. PTFE, PA, 

PEEK) based compounds and composites, particle filled elastomeric materials were also modeled. 

As examples, two different methods are described and shortly discussed in the next section of this 

paper.  

 

Simulation Example 2: FS-FE; simulations of magnetoelastomers with distributed (isotropic) 

and with aligned (anisotropic) particles; direct method 

Magnetoelastomers were developed based on various elastomeric matrix materials and magnetic 

filler particles by various research groups [16-20]. To predict the influence of the filler on the 

stiffness of the elastomers both with and without magnetic field various micromechanics based 

simulations were performed by the research group of the authors. While several results of the 

simulations without magnetic field are reported previously [21-23] and here also shortly, the method 

and the first simulations within magnetic field using a fully coupled magneto-elasto-static approach 

in a finite strain framework is reported recently in [24]. Furthermore, it was reported in many papers 

if the filler particles are evenly distributed in the matrix, the macroscopic response of the 

magnetoelastomer is isotropic. In addition, the magnetic particles may be aligned in the magnetic 

field during the curing process. This results in a chain-like particle arrangement which generates a 

highly anisotropic mechanical behaviour. Moreover, it was found that external magnetic field 

influences the mechanical behaviour significantly higher for anisotropic magnetoelastomers than for 

isotropic ones [25]. The experimental comparison of storage modulus values for isotropic and for 

anisotropic particles with and without magnetic field is shown in the diagram in figure 5. The 

microcells represent these situations. These microcells were generated in the finite element module 

of the same software tool (DigiMat FE) and the cells were implemented into the finite element tool 

Abaqus 6.12 (Simulia). 

 
Fig. 5: Comparison of storage modulus of values for isotropic and anisotropic particle filled 

magnetoelastomers. Representation of the corresponding microcells with spherical and platelet-like 

particles. 

 



 

Simulation Example 3: FS-FE modeling; Prototyping of microcells with various particle 

orientations; indirect method 

A novel material structure prototyping method was developed and implemented by the authors and 

described in details in [26]. To contribute to the verification efforts of the micromechanics based 

simulations, a novel 2-component 3D prototyping technique may be applied for printing these 

microcells using a proper combination of hard and soft matrices and particles. A wide variety of 

material microstructures was realized by using this technique. The microcells were shaped into 

convenient test specimens and subsequently tested under various loading conditions. Furthermore, 

micromechanics simulations on various microcell configurations were performed and the virtual 

deformation behavior was characterized. The CAD design of an artificial microcell is shown in the 

upper part of figure 6. This microcell was realized as test specimen (right upper corner) and was 

tested. The same configuration was simulated in the FE tool. The comparison of the simulation and 

the experimental results in terms of local strain at the surface of the microcell is shown in the lower 

part of the figure.  

 
Fig. 6: Prototyping of a heterogeneous microstructure. Experimental measurement and finite 

element simulation of local strain distributions at the microcell surface.  

 

Simulation Example 4: FS-FE modeling; Staggered particles in an elastic matrix; indirect 

method 

Staggered particle arrangements are recognized in many biological objects. The mineral platelets in 

nacre or the mineralized collagen structures of a bone follow the periodicity of the staggering and 

are combined with thin layers of soft tissues. This combination results in an optimized stiffness and 

toughness for these structures. Several theoretical and experimental investigations are reported in 

the relevant literature along with theoretical considerations for toughening mechanisms [27, 28]. 

Based on above publications, microcells containing fiber like particles with low AR values in 

staggered arrangements were generated by using FS-FE models. In contrary to the biological 

objects, the matrix material behavior was assigned as PP and the particles as glass and a 

significantly lower particle volume fraction was defined (25 % in spite of 70-80 %). The staggered 

arrangement was realized both in one and in two planes using both rectangular and cylindrical 

particles. The deformation behavior of the staggered microcells was predicted and compared typical 

conventional particle arrangements. As expected the microcell with fixed perfect orientation 

revealed the highest stiffness in fiber orientation direction. The multiplication of the staggered 

planes increased the stiffness significantly. All microcells were investigated in fiber orientation 

direction, in transvers direction and in shear mode (1-2 and 2-3). Further results are described and 

discussed elsewhere [29]. 



 

 

Simulation Example 5: FS-FE modeling; application of a complex 3D particle shape in an 

elastomer matrix, application of a combined hyper- viscoelastic material model; indirect 

method. 

Typically, particles with natural shapes (mineral particles) or fibers are used as fillers in many 

practical applications. In addition, particles revealing special functional shapes might also be 

designed and used. Without realizable manufacturing techniques, however, the application of these 

particles is limited in computer simulations. One exceptional example is provided. 

 
Fig. 7: Filler volume fraction dependence of the elastic modulus for various filler aspect ratios and 

geometries. The SEM image and the microcells of the tetra-pod filler with 5 and 15 V% filler 

content. 

 

By ZnO2 single crystals (whiskers) which reveal a special shape termed as tetra-pod and these 

particles are produced on an industry scale [30] and incorporated into thermoplastic and elastomer 

matrices for several technical applications. The tetrapod shape might generate special behavior 

termed as balanced anisotropy. The filler volume fraction dependence of the elastic modulus is 

shown for various filler aspect ratios and geometries in figure 7. As it was expected and in good 

agreement with many experimental results [1] with increasing volume fraction a linear increase of 

the modulus was observed. The tetra-pod fillers are also shown in the corresponding images 

(microscopy and microcells with 5 and 15 V%) and the tetra-pod compounds revealed the highest 

stiffness.  As it was mentioned previously, the simulations in the reversible deformation regime can 

not only be performed by applying linear-elastic material models. The Three-Network model 

proposed by Bergström and implemented in PolyUMod 1.9.0 [31] was used to predict the combined 

hyper-viscoelastic deformation behavior of the elastomer matrix pana-tetra compounds. In our 

actual research work, pana-tetra fillers with surface compatibilization for polypropylene and for 

NBR and HNBR grade elastomers will be compounded and these compounds will be 

experimentally investigated in form of convenient test specimens under various loading conditions. 

These results will be used for verifying above results in the near future.  

Summary 

Mean field homogenization theory and full-scale finite element simulations are frequently used in 

novel micromechanics simulation for supporting material development efforts for designing novel 

polymer matric composites for demanding industrial applications. 



 

Representative volume elements (termed also as microcells) can either be constructed based on 

real material microstructures or designed artificially using various target functions. In the direct 

engineering method the process relevant microstructures are implemented in to the microcells and 

the deformation behavior of these heterogeneous compounds and composites are predicted and 

compared to relevant experiment. Based on comprehensive research work the accuracy of these 

predictions is in general above 95 % over a wide temperature, loading rate range and for a wide 

variety of matrix and filler materials in the linear elastic reversible deformation regime.  

The reverse engineering concept might also be applied for micromechanics simulation. Artificial 

microcells for various target functions (i.e. optimized stiffness and toughness, optimized stiffness 

and heat conductivity, optimized magnetic effect, optimized tribological behavior heat conductivity, 

friction and strength) can be designed and simulated. To fulfill these requirements in addition to 

proper material properties, spatial particle arrangements, specific particle shapes are needed. The 

objective of further research is to find such optimized microcells configurations which can be 

realized under real processing conditions.  
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Abstract. Microgeometrical characteristics of the surface of engineering components operating in 

wear condition are important features influencing the wear process of the tribological system. 

Beside the widely used common 2D roughness parameters – e.g. the Ra, arithmetical mean 

roughness, Rz, ten point mean roughness, or Rmr, material ratio, etc. – the 3D roughness features (Sa, 

Sz Smr) provide potentially new means for geometrical description of the operating surfaces. Our 

paper aims at contributing an overview on the available 2D and 3D features, giving their definition 

and their potential use in multi-scale characterization of components used especially in wear type 

loading conditions. An interesting question is the relationship between the 2D and 3D roughness 

parameters and their information content, relating to tribological problems. Besides giving a 

systematic overview of the most important parameters applicable in wear analyses we also present 

examples of 2D and 3D roughness data determined on surface of nitrocarburised steels, as well as 

silicon nitride ceramics. A special emphasis is placed on those parameters which can be most 

efficiently used during wear damage analyses of ceramic materials. 

Introduction 

The microgeometry of different parts can be characterized by a great number of roughness 

parameters. Unfortunately only a few parameters of them (e.g. arithmetical average roughness Ra, 

ten-point height Rz, etc.) are used in the machine industrial applications and these are describing the 

working properties of the actual surfaces not to the best [1, 2]. Nowadays the 3D topographical 

investigations are getting more and more common beside the 2D profilometrical applications at 

surface roughness examinations. These topographical examinations can provide data from the 

whole area of the surface and not only from one section of it, therefore represent significantly 

greater information.  

The microgeometry of the surface has influence on the wearing properties of functional surfaces. 

If the relation between the microgeometry and the wear behaviour are going to be investigated, 

those roughness parameters should be used which characterize the wear performance to the best. 

2D and 3D indexes of surface roughness 

Roughness indexes (parameters) which are used to characterize the microgeometry of the surface 

can be classified into the following greater groups: 

 amplitude parameters 

 spacing parameters 

 material ratio parameters 

 functional parameters and 

 hybrid parameters. 

 

All of these indexes can be found both in 2D and in 3D investigations, and moreover most of 

them can be interpreted in the regards of roughness (R parameters), waviness (W parameters) and 

total profile error (P parameters) too. 



 

Nowadays the application of amplitude parameters is general in profilometrical investigations: 

 Maximum peak to valley height of the profile (Rt):  

 Ten point height of the profile (Rz):  

 Arithmetical mean deviation of the profile (Ra):  

 Relative material ratio (Rmr(p)):  

 

Using of 3D parameters is getting popular in the present days. Among that the application of the 

following ones is the most frequent [3, 4]: 

 Material volume ratio (Smr) 

 Maximum height of the surface (Sz): 

 Arithmetical mean height of the surface (Sa): 

 

Maximum height of the surface (Sz): It is the height between the highest peak and the deepest valley 

(Fig. 1) within the sampling area. It is calculated from the Sp (highest peak of the surface from the 

mean plane) and from the Sv (lowest valley of the surface from the mean plane). This parameter is 

corresponding to Rt value at profiles.  

Sz = Sp + Sv (1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Calculation of the Sz and Sa parameter 

 

Arithmetical mean height of the surface (Sa): It expresses the average of the absolute values of 

z(x,y) in the measured area (Fig. 1).  

a

A

1
S z(x, y) dxdy

A
   (2) 

This Sa value is corresponding to Ra but is evaluated on surfaces. 

Problems of the common surface roughness indexes 

Several parameters of surface roughness are not suitable to describe the working tribological 

surfaces. Consider the theoretical surfaces a and b in Fig. 2. From point of view of tribological 

characteristics the two surfaces are very different, however the commonly used 2D and 3D surface 

roughness indexes of them are absolutely equal in respect of parameters Ra, Rz, Sa or Sz. This 

obvious contradiction can be resolved if we use other surface roughness indexes for the 

characterisation of these surfaces. Such parameters could be e.g. the material ratio parameters (Rmr, 

Smr) or the characteristic parameters of the Abbott-Firestone curve. 
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  a)      b) 

Figure 2: Theoretical surfaces with different topography 

Abbott-Firestone curves of the theoretically generated surfaces (a, b in Fig. 2) can be seen in  

Fig. 3, that shows clear differences between the two surfaces. This means, that the Abbott-Firestone 

parameters are more suitable to compare surfaces having different working characteristics.  

 

    a)      b) 

Figure 3: Abbott-Firestone curves of theoretically generated surfaces (a, b) 

From Fig 3. it is seen that – respecting the Abbott-Firestone parameters –surfaces a and b differ 

each other, thus these indexes are suitable for characterizing the working tribological surfaces. 

Indexes of Abbott-Firestone (material ratio) curve 

The material ratio curve (also called bearing ratio or Abbott-Firestone curve) gives the 

percentage value of the ratio of the material section to the whole section in a given depth from the 

highest peak. Red curves in Fig. 4. show material curves. In Fig. 4 the relative material ratio curve 

(blue columns) is indicated as well, this is some kind of density function from which the material 

ratio curve can be derived.  
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Figure 4: Typical Abbott-Firestone curves of working surfaces 
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Determination and meaning of parameters (Rpk, Rk and Rvk) of material ratio curves can be seen 

in Fig. 4. For tribological surfaces according to the literature 

 Rpk is proportional to the amount of material that tends to worn down quickly,  

 Rk related to the life time of the surface, 

 Rvk indicates the oil retention and debris capability of the surface. 

The corresponding three dimensional topography parameters are the Spk, Sk and Svk. These 

parameters give more reliable information about the working characteristics of the surfaces [5, 6]. 

Wear tests and investigation of surface roughness of nitrocarburised steels and Si3N4 nano-

composites reinforced by graphene 

Wear tests were carried out for the investigation of connection between the surface roughness 

and the wear characteristics of two nitrocarburised steel materials – 51CrV4 and 34CrMo4 – having 

ground and polished initial surfaces before the surface treatment.  

Parameters of the ferritic nitrocarburising process were as follows: 

 Gas composition: 250 l/h NH3 + 10 l/h CO2 + 50 l/h N2;  

 Temperature: T = 520°C and 570°C; 

 Holding time: t = 8 and 16 h. 

Si3N4 ceramic samples reinforced with different amount of graphene (0%, 1% and 3%) were 

sintered with different methods: Hot Isostatic Pressing (HIP) and Spark Plasma Sintering (SPS).  

 

Pin-on-disc wear tests were carried out on UNMT-1 and UNMT-2 material testing equipments 

using the following test parameters: 

    Nitrided steel   Si3N4 

 loading force:  20 N    40 N 

 ball diameter:  6,0 mm   5,93 mm 

 ball material:  sapphire   SiC 

 wear track radius: 3 mm    3 mm 

 sliding speed:  100 mm/min   200 mm/min 

 total wear length: 300 m    100 m 

Results of the investigations 

Surface topography of the probes was measured with AltiSurf 520 surface tester. 3D surface 

topography and the wear tracks can be seen in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: 3D topography and wear track of ground and polished nitrided 34CrMo4 steel probes  

 

Worn cross sections of the wear tracks were measured with AltiSurf 520 surface profilometer. 
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Fig. 6. shows the extent of the worn cross section areas of nitrocarburised 34CrMo4 steel probes, 

having different initial surface topography (polished and ground). From Fig. 6. it can be established, 

that probes having the same treatment condition but different initial surface roughness show 

different wear characteristic. Based on this figure it can be seen that wear of the ground specimen is 

higher comparing to the polished one.  
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Figure 6: Worn cross sections of polished and ground nitrided 34CrMo4steel 

Similar tendency can be recognised in Fig. 7. From this figure it can be seen that both 2D and 3D 

average surface roughness parameters and the Abbott-Firestone parameters show the same 

correlation as the worn cross sections.  
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Figure 7: Worn cross sections of polished and ground nitrocarburised 34CrMo4steel 

In case of Si3N4 samples containing graphene additive it can be recognised that wear of the 

specimens produced by HIP technology are higher in each case comparing to SPS specimens. In 

addition the worn cross section increases with increasing the graphene content (see Fig. 8).  
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Figure 8: Worn cross section and Rpk roughness parameter of the graphene added Si3N4 samples 



 

 

It can be seen from Fig. 8. that variation of the Rpk Abbott-Firestone parameter shows very good 

correlation with the change of the worn cross section in case of the different materials and 

production technologies. It means that in case of materials for which lower surface roughness can 

be reached applying the same production technology, the expected wear damage will be smaller as 

well. 

Conclusions 

Based on the executed experimental work and theoretical considerations the following conclusions 

can be drawn: 

 Microgeometry (surface roughness) of contacting surfaces is an important influencing factor 

of the wear process. 

 Selection of the proper surface roughness parameters should be done very carefully with 

special attention to the function of the operational surfaces. 

 For the investigated nitrocarburised steel a connection between the worn cross section and 

the initial microgeometry of the surfaces could be revealed. 

 During investigating the wear properties of the Si3N4 ceramics reinforced with graphene, a 

connection between the worn cross section and the resistance to the abrasive manufacturing 

process (roughness after the polishing or grinding) could have been recognised. 
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Abstract: The so-called phase diagram is one of the oldest but at the same time one of the most 

useful method for the material science. The role of algorithms and software calculating the phase 

diagram have an extraordinary importance in the industrial and research-development applications 

because remarkable advantages can be obtained by installing these software or the detailed and 

exact data base developed by them into either the simulation programs or into the everyday 

production (process-control, checking). In our present paper, the investigation of data-requirement 

of calculation method of ESTPHAD phase-diagram is described by processing binary- and ternary 

systems.   

Introduction  

Similar to the many different phase-diagram calculation methods (e.g. CALPHAD method 

[5][6][7]), the ESTPHAD phase-diagram calculation method having thermodynamic basis uses 

measurement data in the course of the calculations. The data-base consisting of concentration data 

pairs as for example the liquidus temperature necessary for performing the calculations is the most 

frequently developed by digitizing the curves and surface-isotherms of equilibrium phase diagrams 

existing in graphic form but the base of our calculations can also be the actual measurement data or 

the values obtained by other calculation methods of equilibrium phase diagram. However, it is 

really important to know the exact quantity of data necessary for performing the calculations and 

that how the change of quantity of data influence the exactness of calculation made by the 

ESTPHAD method. It can be very important to know the minimum size of data base when planning 

and compiling the alloy-series serving among others for measuring the liquidus temperature.  

The Thermodynamic Basis of ESTPHAD Equation 

In a binary alloy system, the free enthalpy of the regular liquid solutions as a function of 

concentration can be approximated as follows: 

)lnln( BBAABABBAA ccccRTcccGcGG    (1) 

Where: G - free enthalpy; Ω - interaction energy; cA;cB - concentrations of the phases; R - gas 

constant; T – temperature. 

The partial molar free enthalpies are as follows: 

ABAA cRTcG ln)( 2   (2) 

BABB cRTcG ln)( 2   (3) 



 Supposed that the binary system contains two phases (liquid and solid) which are in equilibrium, 

the equilibrium conditions can be written in the following way according to the Gibbs rule: 
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By taking into consideration the Gibbs rule, the equilibrium concentrations of phases ( s

B

l

B cc , ), the 

distribution coefficient and the slope of liquidus temperature can be calculated at a given 

temperature from Equations 2 and 3 in case if the constants of Eq. 2 and 3 are known.  

After a longer deduction and Taylor-series expansion [1], [2], the liquidus temperature can be 

calculated in the binary systems as follows:   
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    (6) 

Where: Tl(cB) - liquidus temperature; T0  - melting point of the pure element; cB - concentration of B 

element; FAB(cB) - function calculated from the binary diagram;  A;B - the two components. 

In case of a ternary system, the liquidus surface can be calculated similarly to the previous equation 

(Eq. 6), but it contains two binary polynomials (FAB(cB) ; FAC(cC)) and a ternary polynomial 

(FABC(cB;cC) ) which can be determined by a regression analysis (this type of equation can be 

called a hierarchical structure): 
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Where: C - the third component; FAB(cB) - function determined by regression analysis.  

Investigation of the magnitude of data-base in case of binary systems  

The following plan has been developed for determining the minimum quantity of data necessary 

for the ESTPHAD method.  

1) The liquidus curves of equilibrium phase diagrams existing in graphic form have been digitized 

such a way that a concentration-temperature data pair having an order of magnitude of one 

hundred can be obtained. Then the A(i) parameters of ESTPHAD equation describing the given 

liquidus curve were determined by using the data base containing all the data moreover the 

differences between the digitized and calculated temperature-values were analyzed.  

2) An „algorithm decreasing the data-base” was processed. „m” is the number of data digitized in 

point 1), „k” is the number of steps of decreasing and „n” is the quantity of data in the 

decreased data base which of course depends on „k”. (Naturally, in case of the whole data-base 

m = n and k=0). As a boundary condition, it was decided that the first and last values in the data 

base must not be deleted because in this case the validity area of determined ESTPHAD equation 

would decrease by losing these data as it would not cover entirely the composition-range of the 

original data base. It is necessary to decrease the data set between the first and last data points by 

uniform steps in order that the change of exactness of calculated data can be followed by 

decreasing the size of data base. The decrease by uniform steps was determined in the middle-

point of data set between the two endpoints such a way that every second data shall be deleted 

and the first data to be deleted is the value following the first point of data base. The magnitude 



of data base being present in the given step of „database in decreasing algorithm” can be 

calculated as follows:      
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3) The A(i)n/m parameters of ESTPHAD equation were determined from the –„n(k)” pieces of data-

pairs at each of the data base developed in the different steps. The liquidus temperature was 

calculated and the exactness of calculations was analyzed by means of the calculated parameters 

for the whole data base (it means that at each „m” piece of digitized composition). The 

differences were compared with the calculation data obtained on the basis of the entire data base 

in the first step.      

4) The data base was decreased until the difference between the digitized and calculated values 

remained within  ±1 % as compared to the digitized temperature in case of all of „m” pieces of 

data by using the  A(i)n/m parameters developed in the decreased data base. The quantity of data 

was not considered sufficient in case if the difference was greater than the aforementioned value 

at any point.  

In the course of our investigations, the liquidus curve of phase rich in MgO of MgO-Al2O3 binary 

equilibrium phase diagram [3] was processed. The number of initial data was 188 and the quantity 

was decreased to  95, 48, 25, 13 and 7 data in accordance with the aforementioned system. The 

composition of data used in the calculation can be seen in Fig. 1. The liquidus curve was digitized at 

identical temperature steps from the beginning to the end (4.5 K) so fewer data could be obtained 

from the curve in the range with a lower  Al2O3 concentration than in the further parts owing to the 

shape of liquidus curve (the slope of curve is less between 0-10% of Al2O3 content). It can be 

concluded from the aforementioned facts that in case of such liquidus curves having more 

complicated shapes, a database could be obtained which is not uniform as far as the data-

distribution is concerned owing to the data-decrease by decreasing every second data; less data are 

available about the certain parts of curve (in our case about its beginning). By analyzing the 

difference between the digitized and calculated values during the investigations of decreased data-

base it can be stated that the greatest differences of the whole calculation (having an acceptable 

range even in this case) appear in this Al2O3 range of 0-10%. It is due on the one hand to the fact 

that this part of curve-shape can be matched in a more complicated way and on the other hand that 

the data are missing.       

Essentially, the values of temperature data are 

uniformly decreased by deleting every second 

data. However, an investigation during which the 

data were decreased by a uniform distribution 

from the point of view of concentration was also 

performed, data by 5 mass% (Al2O3) then by 10 

mass% were used in the calculation (e12, e7 data-

series in Fig. 1). As we have already mentioned, 

the shape of liquidus curve changes essentially 

between 0-10% of Al2O3 content; it shows a 

tendency decreasing by a relatively uniform slope 

in the further part. It was also investigated if the 

higher difference experienced at the beginning of 

curve during starting our investigations could be 

decreased in case if more data are used in the 

course of our calculations from the range of 

varying slope i.e. if this curve section was 

weighted (s16, s13, s7 data-series in Fig. 1).     

Fig. 1: Steps of decreasing the data-base. Data-

base decreased by bisection, decreased in a 

weighted way as well as decreased uniformly 

from the point of view of concentration  
 



By means of the ESTPHAD function developed by using all of the different quantities of data, the 

liquidus temperature was calculated in all the 188 points; the difference between the digitized and 

calculated values can be seen in Fig. 2. In part (a) the calculations of data bases decreased by 

bisection, in part (b) the results of data bases decreased in a weighted way and decreased uniformly 

from the point of view of the composition can be seen.  

     
Fig. 2: The difference between the digitized and calculated data as a function of SiO2 concentration 

in case of data-bases decreased by bisection (a) and in case of data-bases decreased in a weighted 

way as well as by the steps of uniform composition (b). (Phase rich in MgO, Mgo-Al2O3 system).    

By knowing the differences (the difference is less than 0.5% as compared to the digitalized 

temperature) it can be stated that the liquidus curve of MgO phase can be described by a suitable 

exactness by using 6-7 measured (digitized) data by means of the ESTPHAD method. The 

difference is max. 0.21% of the digitized temperature even in case of using 7 data in case if the 

more complicated part of curve is used in the calculations in a weighted way or the data base has a 

uniform concentration distribution (e.g. one measured data is 10%/Al2O3) and so no one of the parts 

of curves is missing from the process of polynomial-matching.     

In (a) part of Fig. 3, the change of average differences can be seen as a function of the quantity of 

data used during the calculation of temperature. Initiating from 188 data, the median decrease can 

be seen moreover the results of decrease performed in a weighted was as well as of the decrease 

following the uniform concentration distribution can be seen in case if the number of data is less 

than 20 (the differences can be seen among the three different methods). In part (b), the liquidus 

curves calculated on the basis of data-bases decreased by bisection; it can be observed that even the 

7-data matching showing the greatest average difference does not differ significantly from the other 

curves.   

    
Fig. 3. (a) The average difference of digitized and calculated data as a function of the quantity of 

data used during the calculations. (b) Liquidus curves calculated by using the A(i) parameters 

obtained at different quantities of data (phase rich in MgO, MgO-Al2O3 system)      

(a) (b) 

(a) (b) 



Investigation of the magnitude of data base in case of ternary systems  

The liquidus surface of α phase rich in Al [4][8] was processed in order to investigate the data-

requirement of calculations of ternary systems of ESTPHAD method. The isotherms of liquidus 

surface were digitized by a high quantity of data (it was not necessary to use an initial quantity of 

data of an order of magnitude of 100 on the basis of the results of binary system) then the quantity 

of data was decreased gradually in more steps. Similar to the binary investigations, the parameters 

of ESTPHAD equation were calculated at each decrease then the differences were analyzed for the 

whole data-base. The decreases were performed such a way that the melting point of pure Al as well 

as the peripheral data of isotherms were kept and the intermediate values were decreased. At last the 

decreased quantity of data indicated by circles in part (a) of Fig. 4 was obtained from the digitized 

data indicated by points in part (a) of Fig. 4. An investigation during which the decreased quantity 

of data was obtained in the last step such a way that an entire isotherm was taken out of the system 

was also performed (part (b) in Fig. 4).  

  
Fig. 4: (a) Data-base decreased uniformly and (b) data-base decreased by isotherm in case of the 

liquidus surface of α phase of Al-Cu-Fe system  

      3       

Fig. 5. (a) Differences between the values of liquidus temperatures calculated during the digitized 

[4] and decreased data bases and (b) the values of the average- and highest differences as a function 

of the value of data base in case of the liquidus surface of α phase of Al-Cu-Fe system  

In Figs 5 (a) and (b) it can be seen that the liquidus temperature can be calculated by an 

approximately identical exactness by decreasing the quantity of data to 19 data as if a data base of 

wide range was processed. If the quantity of data is less than the aforementioned quantity (15 data), 

the differences become higher but even in this case, the differences are under ±1% as compared to 
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the values of digitized liquidus temperature. The values of differences follow the previous extent in 

case if one isotherm is missed but we have got more data about the existing isotherms (i.e. the 

overall quantity of data is constant – 15 pieces). 6-9 calculated parameters are used for the exact 

description of liquidus surfaces in the ESTPHAD method. Consequently, it can be stated that the 

liquidus surface of ternary systems can be described in an order of magnitude by a suitable 

exactness by using data the quantity of which is twice more than the number of applied parameters.  

Conclusions 

The data-requirement of ESTPHAD method for calculating the phase diagram was investigated in 

case of binary- and ternary systems. On the basis of the results of investigations, it can be stated that 

it is not necessary to record a lot of data-points in order to describe a liquidus curve/surface but it is 

enough to determine the liquidus temperature at 6-7 compositions in the binary systems and at 15-

18 compositions in the ternary systems (having a suitably representative concentration distribution) 

without the essential deterioration of the results. In general it can be stated that the quantity of 

necessary measurement data-base is twice more than the number of polynomial parameters in the 

ESTPHAD equation used for the description of curve/surface.   
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Abstract. From the lattice orientation of a sample, elements of the Nye-tensor can be 

determined. With the help of Nye’s tensor, dislocation density can be calculated for the certain 

sample. Since the measures were carried out with scanning electronmicroscope (SEM), just 

superficial orientations can be measured. Hence the Nye-tensor is an incomplete matrix, with 

five elements. Because of the absence of the other four elements just a quasi-dislocation density 

can be obtained. The algorithm of the calculation was programmed on the language C#.  

Introduction 

Nowadays metals are widely used materials. The strongest magnets or structural materials as 

well as conducting cables are made of metals and alloys, but many other applications can be 

mentioned. Therefore, it is very important to have information about physical (e.g. mechanical, 

optical, conduction) properties. These features do not only depend on chemical composition, but 

are highly influenced by the lattice and the grain structure. 

In practice, lattice structures have defects in every case. Lattice defects can be divided into four 

groups according to their spatiality: pointlike, linear, superficial, spatial. Mechanical properties 

(elasticity, etc.) are highly influenced by one-dimensional defects called dislocations. Let a 

perfect crystal be considered. If a part of the crystal is shifted along a plane or a semiplane 

(slideplane), the lattice will be deformed and tension will appear. The shifted and non-shifted 

part of the lattice are separated by the dislocation line which is a one-dimensional domain. 

Dislocations can be catalogued into three groups: edge dislocation, screwed dislocation, and 

mixed dislocation. Considering mechanical properties, not the type, but the amount of 

dislocations does matter.  

Crystal orientation is defined as the directionality of the Cartesian coordinate system fitted on a 

part of the lattice. The position of this coordinate system is compared to a reference Cartesian 

system which is fixed to the sample being examined. It is can be clearly seen, that orientation 

changes are eventuated by dislocations. (Although orientation changes are also caused by 

superficial and spatial defects, due to a certain condition they can be eliminated during the 

calculation.) The measuring technique - worked out during the research – is based on this 

correlation between crystal orientation and dislocations: the amount of dislocations can be 

determined from the inner metallic orientation changes. 

The orientation of each points contained by the sample can be determined with the help of the 

EBSD (Electron BackScattering Diffraction) function of a scanning electronmicroscope (SEM). 

It is very important to note, that the scanning of the surface is not continuous. In other words: 

with SEM only the orientation of discrete superficial points (with an adjustable measuring step, 

i.e. resolution) can be measured; and spatial scanning cannot be carried out.  



Inter alia, the Euler angles between the coordinate system of each points and the reference 

system are contained by a database obtained by the software of the microscope. Using these data, 

the so-called Nye dislocation density tensor referred to one point can be obtained with the help 

of a mathematical algorithm. For the whole sample it can be obtained by averaging.  

Hundreds or thousands of points is being examined during one measuring. It is impossible to 

evaluate manually, thus a code have been written in the language C#. Due to this program, Nye 

tensor can be determined easily from the database containing the Euler angles. 

Method 

A metallic sample – after adequate preparation – can be examined with the help of a SEM with 

the EBSD function mentioned above. In determined points on the surface of the sample, lattice 

orientation can be measured, and the Euler angles can be obtained. Naturally, one point does not 

have orientation, but the electron beam emitted by the cathode has finite cross-section, therefore 

the “point” being examined is not literally a point, but a domain. In this domain lattice 

orientation is assumed to be the same. The measuring points are placed on a square grid. 

The file which contains the Euler angles and Cartesian coordinates of the points in the reference 

system (on the square grid in x-, y-directions) is read by the program written in C#. From the 

Euler angles and the position of the points the Nye-tensor – mentioned in the Introduction - can 

be calculated with a mathemathical algorithm. Henceforward this algorithm will be reviewed. 

Let ϕ1; ϕ2; and φ be the Euler angles of the i-th point on the surface of the sample being 

examined. Then the so-called Bunge orientation tensor denoted with G can be obtained for each 

point [4] with Eq. 1. 

𝑮 = [

cos𝜑1 cos 𝜑2 −  sin𝜑1 sin𝜑2 cos𝜙 sin𝜑1 cos𝜑2 +  cos𝜑1 sin𝜑2 cos 𝜙 sin 𝜑2 sin 𝜙

−cos𝜑1 sin𝜑2 −  sin𝜑1 cos𝜑2 cos 𝜙 −sin𝜑1 sin𝜑2 +  cos 𝜑1 cos 𝜑2 cos 𝜙 cos𝜑2 sin𝜙
sin𝜑1 sin𝜙 −cos𝜑1 sin𝜙 cos𝜙

] (1)  

Assuming that misorientation between two adjacent points caused by the dislocations between 

them, a mathemathical object is needed for characterizing the degree of the misorientation. This 

object is the misorientation tensor - denoted with M – and can be obtained with the following 

equation [3]  

 𝐌𝐢 = 𝐆𝐀𝐆𝐁
−𝟏𝐂𝐢,  (2) 

where G matrices are the orientation matrices of two neighboring points indexed with A and B. 

The Ci matrices are the symmetry matrices. (In cubic systems there are 24 of them [3].) 

Henceforward quaternionic representation will be used [1], because of the simpler usage. In this 

representation, the orientation of a point (Eq. 3) and the misorientation (Eq. 4) of two 

neighboring points can be seen below.  

𝑞0 =  
1

2
√𝑮𝑖𝑖 + 1 ;  𝑞𝑖 =  −  

𝜀
𝑖𝑗𝑘 

 𝑮𝑗𝑘

4𝑞0
 (3) 

𝐪𝐀𝐪𝐁
−𝟏 = Δq  (4) 



As it mentioned above, there are many misorientation matrices - such as Δq quantities - can be 

obtained between two points. That Δq quantity will be the chosen one, which belongs to the 

minimal misorientation angle denoted with ϴ, and can be calculated with Eq. 5 [1]. 

Ө = 2arccos⁡(∆q0)  (5) 

Then the values of the Δq for each first-neighbored measuring point separately for the x- and y-

directions will be averaged. With the help of these average values the elements of the Nye-tensor 

(Eq. 6) can be easily calculated with Eq. 7 [2].  

𝜶 = [

𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
𝛼31 𝛼32 𝛼33

]  (6) 

αlk = ∆qk
2⁡arccos⁡(∆q0)

√1−∆q0
2

1

∆xl
  (7) 

In Eq. 7 the step size in the separate directions denoted with xl. (Since the measuring points are 

fitted in a square grid, the value of xl will be the same for the x direction as well as the y 

direction.)  

It can be clearly seen that not all of the elements can be obtained because with SEM spatial 

examination cannot be carried out. Thus a so-called quasi-dislocation density can be obtained, 

with  

ρ∗ =
1

b
(|𝛼12| + |𝛼13| + |𝛼21| + |𝛼23| + |𝛼33|), (8) 

where b is the length of the Burgers-vector and ρ* is the quasi-dislocation density [1]. 

As it mentioned above, a measuring software have been created. The input is the .txt file 

obtained by the software of the SEM, the output is the obtainable elements of the Nye-tensor and 

the quasi-dislocation density. 

Results 

The software – carried out during our research – was tested on two FCC (Face Centered Cubic) 

samples, which went through different kinds of plastic-forming methods. 

Comparison of annealed and caliber-rolled austenitic steel samples   

The first test was performed on austenitic steel samples. One of the samples was long-time 

annealed, the other was caliber-rolled and heat-treated for ten minutes. On each sample two 

different parts were chosen and measured using SEM. During the evaluation for the value of the 

Burgers-vector |b| = 2.51·10
-10 

m was set. Each measure was carried out with square technique. 

The step size was 6 µm. Quasi-dislocation density data can be seen in Table 1. 

  



 

Data of austenitic steel samples 

Quasi-dislocation density [1/m2] 

Number of the sample Annealed Formed 

1 2,13E+13 8,79E+13 

2 3,54E+13 3,05E+14 

Table 1 

3.54E13

3.05E14

2.13E13

8.79E13

annealed caliber rolled

0.00E+000

5.00E+013

1.00E+014

1.50E+014

2.00E+014

2.50E+014

3.00E+014
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Fig. 1 

Dislocation-density in annealed and caliber rolled austenitic steel 

Based on Table 1. and Fig. 1, it can be determined that the values given by the software are such 

as expected: in the caliber-rolled sample there is a higher value of dislocation density. It is very 

important to note, that these values are just relatively reliable. Much more tests are needed to 

make conclusions about the values absolutely. 

Summary 

From the lattice orientation dislocation density can be calculated. Dislocation density can be 

obtained from Nye’s tensor which is an incomplete matrix. This matrix has five elements. The 

other four cannot be obtained because the measures were carried out just on the surface of the 

certain sample with the help of scanning electronmicroscope. Hence just a quasi-dislocation 

density can be obtained. Since, on the surface of the sample there are hundreds, thousands or 

even more measuring points, the algorithm of the calculation was programmed in the language 

C#. The input is the database obtained by the software of the SEM and the Burgers-vector; the 

outputs are the elements of the Nye tensor, and the quasi-dislocation density. The operation of 



the program was tested with annealed and caliber-rolled austenitic steel samples. (Tests were 

carried out with the database of other samples too, e.g. annealed and equal-channel angular 

pressed copper.) According to our results, we can say that the samples, relative to each other 

have the expected dislocation density values. For further conclusions (e.g. choosing the right 

resolution, reliability of the dislocation density values) more tests are needed.  
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Abstract. In the design of metalworking technologies, one of the most important amount is the flow 

stress of the material. A few experimental method can be used to measure it. The most commonly 

used tests to determine the flow curve of materials include upsetting of cylindrical or prismatic 

specimens, tension or torsion tests. In our work, the determination method of flow curve were 

investigated based on the principle of virtual power with cold working conditions. The experimental 

method, cylindrical upsetting, was executed on the Gleeble 3800 thermo-mechanical simulator. The 

goal was to determine reliable flow curve for large plastic strain. The results showed that reliable 

flow stress values were obtainable in equivalent plastic strain range of 0 to 0.7 by continuous 

cylindrical upsetting. 

 

Introduction 

A number of simple mechanical tests can be used for measuring the flow curve. In all cases, a kind 

of specific stress state in the whole volume are desired. Under large strain the geometry of the 

deforming sample is distorted, the initially homogeneous state of strains and stresses become 

inhomogeneous. There are two widely used methods, in case of cylindrical upsetting, to reduce the 

effect of friction. In one case, the friction reduced by high viscosity lubricant placed between the 

tool and the specimens [1]. In the other case shape correction is used to eliminate the effect of 

friction [2,3]. The plane strain compression test, otherwise known as Watts-Ford test, gives the best 

approximation for the flow curve [4]. In this test to minimize the effect of friction, the specimens 

are re-lubricated at each compression step; and to keep the plane strain state a determined tool and 

specimen geometry are required. In our work, the calculated flow stress results are compared to the 

results obtained by Watts-Ford method. 

 

Mechanical model   

A mechanical model was developed using the data from the simulations. The model is based on the 

following fundamentals. During the compression the maximum diameter and the actual height are 

measured. There are two approximation to describe the contour of the deformed specimen. In this 

model, parabolic approximation is used. The geometry of the specimen at the initial and the 

deformed state are shown in Fig. 1. 



 

 

Fig. 1 The geometry of the specimen at the initial (left) and the final state (right)  

 

Applying the principle of virtual power, the functional of plasticity has to be determined at its 

stationary point, which gives the actual one among all the kinematically admissible velocity field v . 

The material is assumed to isotropic and incompressible and the inertia forces are suppressed [5]. 
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The first term expresses the internal power over the deformed volume p
V , where 

0

( )
f

I k d



    is 

the power of the plastic deformation over a unit volume, where kf is the flow stress,   is the 

equivalent plastic strain. The second term covers the frictional power on the contact surface A

, 

where 
τ  is the shear stress vector, v  is the relative velocity vector between the anvil and the 

workpiece. The third term defines the shear power over the surface of velocity discontinuities A

, 

where τ  is the shear losses vector on surfaces of velocity discontinuities, v  is the velocity 

discontinuity vector. The fourth term represents the power of the 

t  stress vectors acting on surface 

A
 . The last term is the external power, where 


Q  is the external force vector acting on the rigid 

body, which is connected to the deformation zone and rigidv  is the velocity vector of the rigid body. 

The variation of this functional is zero at its stationary point. In the case of cylindrical upsetting the 

third, fourth and fifth term are equal to zero. The Eq. 1 becomes 

pV A

J IdV dA




    τ v  

 

(2) 

Velocity field and strain rate tensor field. The radial component of the velocity field, taking 

account the barrelling effect, is obtained as 

2 2
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1
1 3

2
r

r z
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  
  

 

(3) 

where 1, 2a a  are the variational parameters, Rmax the maximum radius, h the height at a given state 

and
0

v

h
    . Taking into account the volume constancy the components of the strain rate tensor are 
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(4) 

 

The equivalent plastic strain rate is obtained as follows: 
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(5) 

The calculation of the equivalent plastic strain, because of the inhomogeneous state of strain, is 

difficult. In case of low friction factor value the average equivalent plastic strain, characterized the 

whole deformed volume, is calculated as: 

02ln
f

H

H


 
   

 

   

 

 

(6) 

where Hf and H0 are the maximum and initial height, respectively. 

Internal power of deformation. The internal power of deformation is 

0 0

2
contourrh

i f
W rk drdz     

 

(7) 

where kf  is the flow stress and rcontour is the contour of the specimen assuming parabolic 

approximation. 
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where rmin is the minimum radius, calculated from the volume constancy. 

Frictional power. The frictional power is obtained as: 

A

W v dA


 
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(9) 

where, according to the constant shear assumption 
3

f
k

m    is the shear stress, v  is the relative 

velocity between the specimen and the anvil in the direction of the shear. The friction factor m can 

vary between the limits 0 1m  . The relative velocity, at z h , is 
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The frictional power becomes 

min 2

0 1 2 2

max0

1
2

23

r

fk r
W m r r a a dr

R
   
   

 
   

 

 

(11) 

Calculation method. Substituting Eq. 7 and Eq. 9 into Eq. 2 gives the external supplied power. 
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By the solution of Eq. 12 the externally supplied power is obtained as: 

0 02 2J Fv pAv    

 

(13) 

where F is the measured force during the compression, v0 is the velocity of the anvil, p  is the 

calculated pressure and 2

minA r    is the contact surface. The stationary value of variational 

function Eq. 2 is determined based on the Ritz method [6]. 
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The variational parameters 
1, 2a a  can be determined as follows: 
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(15) 

where maxDv  and minDv  are the velocity of the outer surface at point maxR  and minR , respectively. 

From Eq. 14 and Eq. 15 the friction factors (m1 and m2), from Eq. 12 and Eq. 13 the flow stress can 

be determined.  The solution gives two friction factor, one of them, with physical meaning 

(0≤m≤1), is used in the calculation of the flow stress. The calculated flow stress is compared to the 

results from the plane strain compression test. 

 

Experiments 

The experiments were performed with 6082M aluminium alloy. Cylindrical specimens were 

manufactured from the rod raw material, then annealed at 370°C through 2.5 hours. The cylindrical 

upsetting tests were made on Gleeble 3800 simulator. The velocity of the anvil was 1 (mm/s), the 

initial diameter (D0) of the specimen was 10 (mm), the initial height (H0) was 15 (mm) and the final 

height (Hf) was 8 (mm). The tests were performed with two layers of graphite foil on both 

contacting surfaces as lubricants. During the compression the change of Dmax was measured by 

diametral extensometer. The experimental setup and the specimen before and after the deformation 

are shown in Fig 2. 

       

Fig. 2 The experimental setup for cylindrical upsetting 



 

Results and discussion 

The key factor during the test the reliable measurement of the maximum diameter
maxD , in Fig. 3 the 

change of maxD  is shown. 
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Fig. 3 Maximum diameter – height reduction (left) and force – height reduction (right) diagrams 

The variational parameters and the friction factors are not constant during the compression, they are 

calculated in each state of the compression. The calculated values are shown in Fig 4. 
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Fig. 4 Variational parameters – height reduction (left) and friction factor – height reduction (right) 

diagrams 

The comparison between the plane strain compression test and the cylindrical upsetting test are 

shown in Fig. 5. The results of the plane strain compression test, which gives the best 

approximating flow stress curve, and the cylindrical upsetting tests are in good agreement in the 

equivalent plastic strain range of 0-0.7.  

In a simple continuous compression test, barrelling occurs due to friction between the specimen and 

the die. Suitable lubricant may reduce the effect of friction, but never eliminate it. The correction of 

the effect of friction (barrelling), will improve the calculated flow stress results. In the case of 

unknown friction factor by measuring the maximum diameter and height, reliable results can be 

obtained by continuous cylindrical upsetting test in strain range of 0-0.7. 
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Fig. 5 Results obtained by plane strain compression test  

and cylindrical upsetting with correction 
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Abstract. To classify quantitatively the topological structure of all carbon fullerene molecules 

(fullerene graphs) we suggest a novel two-step method based on the following concept: As a first 

step, the duals of the fullerene graphs are generated, and as a second step, by using two molecular 

descriptors called Zagreb indices, we construct appropriately defined topological indices for 

structural characterization of fullerene isomers. Performing comparative tests on the set of C40 

fullerene isomers, it will be demonstrated that the method suggested can be efficiently applicable to 

the stability prediction of fullerene-like materials. 

Introduction 

A large number of topological graph invariants (called topological or molecular descriptors) are 

used for the quantitative characterization of molecular graphs. In the structural chemistry the two 

types of molecular descriptors called Zagreb indices belong to the family of the oldest and most 

studied topological invariants. They have been introduced more than thirty years ago by Gutman and 

Trinajstić [1]. Several results related to the successful application of Zagreb indices were 

communicated in the mathematical and chemical literature [2,3].  

In this study, based on the use of Zagreb indices, a novel method for the structural 

characterization of fullerene graphs is presented. Performing a comparative test on the set of C40 

fullerene isomers, it will be demonstrated that the method proposed can be efficiently applicable to 

the stability prediction of fullerene-like materials. 

Theoretical considerations 

 

The definition of Zagreb indices is based on the standard graph theoretical concept [1,2,3]: Let G 

be a simple connected graph with vertex number V  and edge number E   , where V and E denote 

the finite set of vertices and edges of G, respectively.  For a vertex u of G, the degree of u, denoted 

by d(u) is the number of edges incident to u. We denote by Δ= Δ(G) and δ= δ(G) the maximum and 

the minimum degrees of vertices of G. A graph is called r-regular if all its vertices have the same 

degree r. A graph is called irregular if it contains at least two vertices with different degrees. 



 

Bidegreed graph is a connected non-regular graph whose vertices have exactly two degrees δ and Δ, 

where Δ >δ ≥1. 

Denoting by uv an edge of G, the first Zagreb index M1(G) and the second Zagreb index (M2) of 

a graph G are defined as  
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As can be seen, the first Zagreb index M1(G) is equal to the sum of squares of the degrees of the 

vertices, and the second Zagreb index M2(G) is equal to the sum of products of the degrees of pairs 

of adjacent vertices of the graph G.  

Using the first and second Zagreb indices, four different topological parameters of graph G has 

been selected for the structural graph characterization: 
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Zhou verified that for any connected graph G with a spectral radius ρ(G) the inequality Φ(G) 

≤ρ(G) holds [4]. Moreover, the equality holds if graph G is regular or pseudo-regular [5]. The 

topological invariant Ω(G) can be considered as a possible approximation of the graph spectral 

radius. It has been shown that there exists a broad class of connected graphs for which the equality 

Ω(G) =ρ(G) is fulfilled. 

The topological quantities IRM(G) and IRZ(G) belong to the family of the so-called graph 

irregularity indices [6,7,8]. From their definition it follows that both of them are non-negative 

numbers, and they are equal to zero if and only if graph G is a regular graph [9].   

 

Characterization of dual graphs of fullerene isomers 

 

A fullerene (fullerene graph) with k vertices, denoted by Ck exists for all even k≥ 20 except 

k=22, where the number of pentagon is 12, and the number of hexagons is k/2-10 [10]. In several 

cases, for the stability prediction of lower fullerene isomers Ck with k≤70 the so-called pentagon 

adjacency index NP is used [10-14]. By definition, Np is equal to the total number of edges between 

adjacent pentagons. In other words, Np is identical to the number of fused pentagon pairs in an 

isomer. 

Generally, it is supposed that fullerenes which minimize NP are more likely to be stable than 

those that do not [10-14]. According to this hypothesis the buckminsterfullerene is the most stable 

C60 fullerene, because in the case of 20<k<70, this is the only one for which NP has a minimum 

value (NP=0). However, in some particular cases the discriminating performance (i.e. the efficiency 

of prediction) of NP index is limited. 



 

A more efficient structural characterization of fullerenes can be performed if we use the dual 

graphs of the original fullerene graphs. This implies that the two-step method suggested for the 

structural characterization of fullerene graphs is based on an indirect approach.  

In the first step, the duals of the traditional fullerene graphs are generated. The dual graphs of 

fullerenes are non-regular, bidegreed graphs, they contain 12 vertices of degree 5, and any 

remaining vertices are of degree 6. It is easy to show that for the dual graph dual

kC  of a traditional 

fullerene isomer Ck, the following equalities hold [15]: 
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where Np is the pentagon adjacency index of a fullerene isomers.  

 

Using the above formulas, for a traditional k-vertex fullerene isomer Ck, the following 

descriptors can be obtained as a particular case: 
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As can be seen, Φd is a linear function of Np index. Moreover,  
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For irregularity index IRZd, one obtains 
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As can be seen, the pentagon adjacency index is included in each formula. That means that for a 

fixed vertex number k, the topological invariants given above can be directly calculated as a 

function of  Np. However, from this observation it does not follows that for classical fullerenes the 

discriminating power of various topological descriptors is considered to be equivalent. It is 

interesting that the irregularity index IRZd is the only one which does not depend on the vertex 

number k. 

 



 

Tests performed on the set of C40 isomers 

 

We tested the discriminating performance of the five preselected topological descriptors (Np, Φd, 

Ωd, IRMd and IRZd) on the finite set of C40 fullerene isomers. Additionally, for comparative 

purposes, we computed the spectral radius Rd of the dual fullerene isomers, as well [16]. 

Simultaneously, using Density Functional Tight-Binding (DFTB) method [17] we calculated the 

total energy values TQ characterizing the relative stability of isomers. 

 

Table 1 Computed topological descriptors and total energy values for forty C40 isomers. 

Isomer 

Topological parameter Total 

energy 
  TQ [eV] Rd Φd 

 

Ωd IRMd  

 

IRZd Np 

C40:38 5.4890495 5.4848 5.4924 24.876 40 10 –342.031 

C40:39 5.4897603 5.4848 5.4924 24.876 40 10 –341.631 

C40:31 5.4913203 5.4879 5.4939 25.876 38 11 –341.438 

C40:29 5.4917461 5.4879 5.4939 25.876 38 11 –341.345 

C40:26 5.4918157 5.4879 5.4939 25.876 38 11 –341.094 

C40:24 5.4922670 5.4879 5.4939 25.876 38 11 –341.022 

C40:37 5.4910060 5.4879 5.4939 25.876 38 11 –340.636 

C40:40 5.4927389 5.4909 5.4954 26.876 36 12 –340.580 

C40:14 5.4946883 5.4909 5.4954 26.876 36 12 –340.476 

C40:36 5.4910060 5.4879 5.4939 25.876 38 11 –340.431 

C40:30 5.4939737 5.4909 5.4954 26.876 36 12 –340.304 

C40:25 5.4945800 5.4909 5.4954 26.876 36 12 –340.277 

C40:22 5.4947709 5.4909 5.4954 26.876 36 12 –340.230 

C40:35 5.4917209 5.4879 5.4939 25.876 38 11 –340.196 

C40:21 5.4956524 5.4909 5.4954 26.876 36 12 –340.151 

C40:27 5.4937994 5.4909 5.4954 26.876 36 12 –340.126 

C40:15 5.4944877 5.4909 5.4954 26.876 36 12 –339.943 

C40:17 5.4960335 5.4939 5.4970 27.876 34 13 –339.884 

C40:34 5.4936774 5.4909 5.4954 26.876 36 12 –339.827 

C40:28 5.4944236 5.4909 5.4954 26.876 36 12 –339.777 

C40:16 5.4964612 5.4909 5.4970 27.876 34 13 –339.645 

C40:20 5.4957915 5.4939 5.4954 26.876 36 12 –339.627 

C40:9 5.4977966 5.4939 5.4970 27.876 34 13 –339.614 

C40:10 5.4977120 5.4939 5.4970 27.876 34 13 –339.558 

C40:12 5.4970645 5.4939 5.4970 27.876 34 13 –339.370 

C40:13 5.4976413 5.4939 5.4970 27.876 34 13 –339.347 

C40:19 5.4962914 5.4939 5.4970 27.876 34 13 –339.292 

C40:23 5.4972724 5.4939 5.4970 27.876 34 13 –338.690 

C40:6 5.5011144 5.4970 5.4985 28.876 32 14 –338.624 

C40:18 5.4989259 5.4970 5.4985 28.876 32 14 –338.341 

C40:5 5.5020757 5.4970 5.4985 28.876 32 14 –338.332 

C40:32 5.4994279 5.4970 5.4985 28.876 32 14 –338.270 

C40:8 5.5046265 5.5000 5.5000 29.876 30 15 –338.113 

C40:33 5.4999739 5.4970 5.4985 28.876 32 14 –337.922 

C40:4 5.5039109 5.5000 5.5000 29.876 30 15 –337.348 

C40:7 5.5029706 5.5000 5.5000 29.876 30 15 –337.330 

C40:11 5.5019917 5.5000 5.5000 29.876 30 15 –336.642 

C40:2 5.5086293 5.5030 5.5015 30.876 28 16 –336.489 

C40:3 5.5160459 5.5091 5.5045 32.876 24 18 –335.193 

C40:1 5.5260158 5.5151 5.5076 34.876 20 20 –333.806 

 

The computed topological descriptors of dual fullerene isomers and the corresponding tight 

binding energy values (TQ) are given in Table 1. All of them were generated and sorted in terms of 



 

the calculated total energy values. The number of topologically different C40 isomers is 40. Each 

isomer is labeled according to Fowler and Manolopoulos [10]. 

For C40 fullerene isomers, several topological descriptors have been already calculated [11-14]. 

Among the 40 isomers of C40, C40:38 is predicted to be the isomer of lowest energy by many 

methods, this is followed by C40:39 and C40:31. The “least stable” isomer is C40:1 with Np=20. 

As shown in Table 1, by using the topological descriptors (Np, Φd  Ωd and  IRMd ) and the 

spectral radius of dual graphs (Rd), we obtained the same trends of relative stability, namely: C40:38 

> C40:39> C40:31. This corresponds to the theoretical results based on ab initio calculations [11-

14]. The discriminating performance of the descriptors Np, Φd, Ωd and IRMd are judged be 

equivalent for the set of C40 isomers. 

It is important to note that the topological index IRZd gives a completely opposite stability 

ranking. Surprisingly, the least stable C40:1 isomer is characterized by the smallest irregularity 

index (20), while the most stable C40:38 and C40:39 isomers possess the largest irregularity index 

(40). This observation implies that the irregularity measures of different type are not necessarily 

compatible. 

Summary 

 

As a result of the comparative study performed on the set of C40 isomers, we can conclude, that 

the topological descriptors (Φd, Ωd, IRMd) correlate highly with the computed tight binding total 

energy values (TQ). All of them are efficiently used for the stability prediction of fullerene 

molecules.  

Topological indices IRMd and IRZd are indirect quantitative measures of the heterogeneity of 

original fullerene structures. In other words, both of them characterize the irregularity of the local 

arrangement of pentagonal and hexagonal faces in fullerene isomers. However, topological indices 

IRMd and IRZd are not compatible. The irregularity measure IRZd gives a completely reverse order, 

consequently, it can not be used for the prediction of fullerene stability. 

 An additional advantage of the topological descriptors Φd, Ωd and IRMd is that they can be 

applicable to the structural characterization of non-classical fullerenes including square and 

heptagonal faces, as well.  
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Abstract. The austenitization of steels can occur in a wide variety of initial microstructures. In this 

study we addressed the transformation of banded pearlite steels. Banded pearlite initial structures 

similar to the real ones were created. In these structures the entire transformation process was 

simulated whose part processes are nucleation and grain growth. The nucleation is described by a 

free energy based model, and the Fick II. diffusion equation by using Finite Difference Method 

describes the grain growth. These models have been coupled in cellular automata simulations. 

Introduction 

Ferrite and pearlite can appear in steels as alternating bands. Practically all hypoeutectoid steels 

show this pearlite/ferrite banding if the steel has been heavily deformed, followed by slow cooling 

from the austenite range. All wrought steels are heavily deformed by some method, usually a 

mixture of hot and cold rolling. If such steels are slow cooled and if they are sectioned parallel to 

the deformation direction, they will practically always appear banded. The banded appearance of 

the microstructure affects mainly the impact energy and the ductility of the steels, while other 

mechanical properties are not significantly altered. Microstructural banding is due to the 

segregation of substitutional alloying elements during dendritic solidification. Several investigations 

have shown manganese to be the alloying element most responsible for the development of 

microstructural banding in low alloy steels [1-3]. Moreover, austenitizing temperature, austenite 

grain size, and cooling rate influence the severity of microstructural banding. 

Initial model microstructures I. 

The first type of initial structures was made as follows: one-phase grain structures were created by 

using a grain coarsening simulation [4]. Smaller sub-grains could be developed by further grain-

coarsening (Fig. 1) in these grains by modifying the simulation. The boundaries of the earlier grains 

indicate the former grain boundaries of austenite while the boundaries of the above smaller grains 

indicate the boundaries of pearlite colonies. The pearlite colonies can be obtained in such a way that 

the cementite lamellae having identical distance and thickness but different orientation are drawn 

into each sub-grain by the software by using its own algorithm. The lamellae can be made 

fragmented similar to the real structures. The banded pearlite initial structures were developed from 

these pearlite structures in such a way that horizontal ferrite bands were drawn on the previously 

obtained pearlite structure and using these bands as mask another one-phase grain structure was 

joint on the ferrite bands. We can see the obtained pearlite and banded pearlite structures in Fig. 1. 

Initial model microstructures II. 

Initial structures similar to the real ones can be developed by using microscopic images as well. An 

image taken of banded pearlite steel is shown in Fig. 2 The individual pearlite colonies cannot be 



 

separated moreover the cementite lamellae cannot be seen  so the following solution was chosen: 

the binary images are obtained by performing first the Otsu auto-detection [5] (Fig. 2). 

In the images taken in such a way, the black colour indicates the pearlite and the white colour 

indicates the ferrite bands. The insignificant errors – tiny white points, black holes – can be 

cancelled by performing the opening and closing operations or just removing them from the images. 

Each black pixel indicates a pearlite colony in the binary image at the start. During the next step, the 

final pearlite colonies are developed by coarsening the many small pearlite colonies, and finally the 

cementite lamellae are drawn in the pearlite colonies (Fig. 2). 

   
Fig. 1, Development of pearlite and banded pearlite structures (a, simulated grain structure with 

sub-grains, b, pearlite model structure, c, banded pearlite model structure 

   
Fig. 2, Development of banded pearlite structure by using a microscopic image 

(a, grey image [6], b, detected binary image, c, structure to the real ones) 

Model of nucleation. 

The austenite nuclei can form at three types of ferrite/cementite interface: at the meeting of pearlite 

colonies (type 1), at the interface of ferrite and pearlite bands (type 2), and along the cementite 

lamellae inside the pearlite colonies (type 3). In practice the nuclei mainly form at the type 1 and 2 

interfaces, as these places have higher free energy. Fig. 3 shows the three different places of 

nucleation. 

 
Fig. 3, Nucleation places in a banded pearlite model structure 

The thermodynamic driving force of nucleation is the difference between the free energy of ferrite 

and cementite and the austenite: 

𝐺𝑉 = 𝐺𝛾 − 𝐺𝛼+𝐹𝑒3𝐶                                                                                                                            (1) 

a) b) c) 

a) b) c) 



 

According to the model, each cell has a thermal free energy 𝐺𝑇 (similar to the atoms) which follows 

the Maxwell-Boltzmann distribution. A free energy is optionally allocated to each cell at each time-

step randomly [4]. By following the classical theory of nucleation, the nucleation rate is as follows: 
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where: 

𝑁 – number of places of nucleation in a unit area, Δ𝐺𝑛 – activation free energy of nucleation, Δ𝐺𝑠𝑡𝑟 

– free energy coming from the structure of interface, Δ𝐺𝐷 – activation free energy for transfer 

through the austenite/ferrite interface (approximated by the activation free energy of carbon 

diffusion in austenite, 𝑇 – absolute temperature, 𝑇0 – equilibrium temperature of transformation, 𝑘 – 

Boltzmann-constant, 𝑅 – general gas constant, ℎ – Planck-constant, 𝛾 – surface energy at the 

austenite/ferrite interface, 𝐿 – latent heat of transformation, 𝐾1, 𝐾2, 𝐾3 – constants. Austenite can 

develop where 𝐺𝑇 > ∑ Δ𝐺. 

The effect of parameters on the nucleation. 

The simulations were performed in such a way that only one parameter was changed at one 

simulation; the other parameters were constants. The effects of the following parameters were 

investigated: ferrite/cementite interface free energies, temperature, carbon concentration, pearlite 

grain size number, pearlite interlamellar spacing. 

The first linear section of curves flattening out later can be explained by the fact that at the 

beginning the nucleation places are free and therefore the nucleation rate is approximately constant 

(Fig. 4). However, fewer nuclei can develop as the number of free places decreases, and as a 

consequence the process slows and the nucleation places run out. 

Fig. 5 shows the results of simulations performed using different interface free energies. Ever fewer 

nuclei of type 3 develop if the interface free energy decreases and at the end the number of type 3 

nuclei will be lower than the number of type 1 nuclei. By increasing the interface free energy, the 

process displaces more and more towards the nucleation of type 3 taking place along the 

boundaries, because there are much more type 3 nucleation places than type 1 ones. 

Fig. 6 shows that the nucleation rate decreases if the overheating decreases and it is equal to zero at 

the equilibrium temperature 𝐴1. The curve can be approximated by an exponential function. 

 

  
 

 

 

Fig. 4, Number of nuclei as a function 

of time 
Fig. 5, Nucleation rate as a function 

of interface free energies 



 

  
 

 

 

The size of banded pearlite parts changes linearly by changing the carbon concentration, as a 

consequence the number of places of nucleation increases also near linearly so the nucleation rate 

changes near linearly as a function of concentration (Fig. 7). 

  
 

 

 

By changing the size of pearlite colonies, as a consequence the quantity of pearlite-pearlite 

boundaries and the places of possible nucleation (type 1) changed as well. An approximately linear 

curve is kept for the nucleation rate as a function of grain size number (Fig. 8). 

The number of possible nucleation places is inverse proportion of pearlite interlamellar spacing. If 

the interlamellar spacing is increased, due to the presence of less cementite lamellae the number of 

possible nucleation places is decreased and the nucleation rate will finally increase (Fig. 9). 

Model of grain growth. 

The growth of the γ phase is directed by the carbon diffusion through the γ and α phases (Fig. 10). 

The 𝑑𝑥 change of the thickness of phases can be obtained by solving the following equation system 

(Eq. 7-11): 
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The used concentrations are demonstrated in Fig. 10. The carbon concentrations of the different 

phase boundaries were calculated by using the ESTPHAD method [7]. The equation system was 

solved by the explicit Finite Difference Method. 600x800 cells were taken into consideration in the 

Fig. 6, Nucleation rate as a function 

of temperature 
 

Fig. 7, Nucleation rate as a function 

of carbon concentration 

Fig. 8, Nucleation rate as a function 

of pearlite grain size 

Fig. 9, Nucleation rate as a function 

of pearlite interlamellar spacing 



 

two-dimensional model. By supposing the Neumann-neighbourhood, the concentration of the 𝑖, 𝑗𝑡ℎ 

cell in the ℎ𝑡ℎ time step is as follows: 

𝐶𝑖,𝑗
ℎ =

𝐷Δ𝑡

Δ𝑥2 (𝐶𝑖−1,𝑗
ℎ−1 + 𝐶𝑖+1,𝑗

ℎ−1 + 𝐶𝑖,𝑗−1
ℎ−1 + 𝐶𝑖,𝑗+1

ℎ−1 − 4𝐶𝑖,𝑗
ℎ−1) + 𝐶𝑖,𝑗

ℎ−1                                                      (12) 

where: 

ℎ – number of Cell Automation Step (CAS), 𝑖 – cell rows, 𝑗 – cell columns, 𝐷 – diffusion 

coefficient, Δ𝑡 – one time step, Δ𝑥 – size of one cell. 

 
 

Fig. 10, Carbon concentrations at the 𝛼 𝛾⁄ , 𝛼 𝐹𝑒3𝐶⁄  and 𝛾 𝐹𝑒3𝐶⁄  boundaries 

Simulation of the whole process. 

The whole process can be simulated by the common use of the models of nucleation and grain 

growth. The transformation of a banded pearlite structure can be seen in Fig. 11. The transformed 

ratio 𝐹 of the initial structure is given by the Avrami-law as a function of time: 

𝐹 = 1 − 𝑒𝑥𝑝(−𝑘𝑡𝑛) 

where: 

𝑘 – constant as a function of time, 𝑛 – Avrami-exponent. 

It can be seen that the austenite grains grow faster in the direction of pearlite colonies, and slower to 

the ferrite because its lower carbon concentration. Hence the transformed structure will also be 

directional. From the obtained data the specific TTT diagram is represented (Fig. 12). 

 

   
 

 

 

Fig. 11, Partially transformed 

banded pearlite structure 
Fig. 12, Time-temperature-transformation 

(TTT) diagram of banded pearlite structure 



 

Summary 

This simulation is suitable for describing the isothermal austenitization in case of unalloyed 

hypoeutectoid, eutectoid and hipoeutectoid steels. It was shown that how the nucleation and grain 

growth occur in case of banded pearlite structures. In comparison with other models [8-11], the 

significant difference is that in this case a real lamellar structure is used instead of a simplified 

initial one. The simulation of the whole process is not restricted only to the transformation of the 

ferrite, the nucleation takes place both in the direction of the banded pearlite and the ferrite in the 

structures. 
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