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ABSTRACT 

Three different unidirectional interlayer hybrid composite configurations comprising different 

grades of carbon fibre/epoxy prepregs were designed and tested. The design of the hybrid 

configurations was based on two simple criteria to assure sufficient strength of the higher strain 

material layer and to avoid unstable delamination at the first fracture of the lower strain material layer. 

One of the three tested configurations demonstrated a favourable pseudo-ductile failure character 

along with outstanding initial stiffness and up to 1% pseudo-ductile strain between the first fracture 

and the final failure. A recently developed representation of the predicted failure sequence in the form 

of damage mode maps was applied to the tested configurations to understand the observed failure 

modes better. Good correlation was confirmed between the predictions and the experimental results; 

therefore the validity and merit of this new design tool was highlighted. 

 

1 INTRODUCTION 

High performance polymer matrix carbon fibre composites are utilised traditionally for a very 

demanding set of applications including military and civil aerospace, spacecraft, motorsports and high 

specification sport equipment (e.g. bicycle frames, golf shafts, tennis racquets etc.) for their 

exceptional specific stiffness and strength, fatigue and corrosion resistance. However, a fundamental 

limitation of current carbon fibre reinforced composites is their inherent brittleness. Failure can be 

sudden and catastrophic, with little or no warning and usually poor residual load-bearing capacity if 

any. This unfavourable failure character of carbon composites representing a significant risk of 

unexpected catastrophic fractures is usually compensated for by very conservative design limits and 

hinders component producers from exploiting the excellent mechanical properties of these materials. 

High performance ductile composites showing a safe failure character are therefore of significant 

interest and could extend the scope of applications towards new fields such as automotive or 

construction where sudden failure is not tolerated. This may be achieved by the development of new 

composite materials demonstrating a gradual failure with features similar to ductile metals’ failure 

such as yielding and strain-hardening which can preserve the load carrying capacity and integrity of 

seriously damaged structures. Clear and detectable warning before final failure indicating the onset 

and accumulation of damage in the material is also a key safety feature to realise. 
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These aims are very ambitious given that the traditional constituent materials of high performance 

composites such as glass, carbon fibres and epoxy resins are all brittle. The High Performance Ductile 

Composites Technology (HiPerDuCT) programme aims at exploring various ductility concepts 

utilising approaches ranging from the development of new ductile fibres/matrices to modification of 

the architecture of the composite laminates based on commercially available materials to allow one or 

more of the previously identified ductility mechanisms to be exploited. The second group of 

approaches can lead to pseudo-ductile materials, despite the fact that the constituents are all brittle. 

Interlayer (or layer-by layer) hybridisation of unidirectional (UD) glass and thin-ply carbon fibre 

reinforced epoxy showed very good potential for pseudo-ductility in tensile loading [1]. The thin-ply 

hybrid composite specimens showed stable fragmentation and pull-out of the carbon layer due to the 

low amount of energy released by the thin plies after their fractures during the mode II inter-laminar 

fracture propagation (layer pull-out) phase. 

The aim of the reported research is to extend the recently demonstrated thin-ply glass/carbon 

hybrid composites ductility concept towards higher performance material combinations utilising pairs 

of different (high strength HS/high modulus HM) grade carbon fibre/epoxy prepregs. The proposed 

HS carbon/epoxy-HM carbon/epoxy hybrid composite configurations are expected to show similar 

linear-plateau-linear style stress-strain graphs to those of the glass-carbon hybrids, but with higher 

initial modulus, which is required by industries such as aerospace which traditionally utilise high 

stiffness and lightweight carbon fibre composite materials to increase the efficiency of their products. 

 

2 MATERIAL AND CONFIGURATION DESIGN 

This section gives details of the applied materials and the design considerations to assure a stable 

pseudo-ductile failure of the hybrid laminates. 

 

2.1 Materials 

The materials considered for design, and used in the experimental part of the study were thin 

T1000 carbon/epoxy, M40 carbon/epoxy, M46 carbon/epoxy and XN80 carbon/epoxy prepregs 

manufactured by North Thin Ply Technology Ltd. The resin type in all the prepregs were North TPT’s 

ThinPreg 120 EPHTg- 402 type 120°C cure, medium viscosity, toughened epoxy system. Properties of 

the applied fibres and composite prepregs can be found in Tables 1 and 2.  

 

 

Carbon fibre type Manufacturer 

Elastic 

modulus 

Strain to 

failure 

Tensile 

strength 
Density 

[GPa] [%] [GPa] [g/cm
3
] 

Torayca T1000 Toray 294 2.2 6.37 1.80 

Torayaca M40JB Toray 377 1.2 4.40 1.75
 

Torayaca M46JB Toray 436 0.9 4.02 1.84
 

Granoc XN80 Nippon GFC 780 0.5 3.43 2.17 

Table 1: Fibre properties of the applied UD prepregs based on manufacturer’s data 

 

 

Prepreg 

material 

Fibre mass per 

unit area 

Cured ply 

thickness 

Fibre volume 

fraction 

Initial elastic 

modulus 

[g/m
2
] [µm] [%] [GPa] 

T1000/epoxy 28 32.4 48 143 

M40/epoxy 40 42.5 54 204 

M46/epoxy 29 29.7 53 233 

XN80/epoxy 50 46.7 49 387 

Table 2: Material properties of the cured UD thin composite plies applied (All figures are based 

on/calculated from manufacturer’s data.) 
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2.2 Design of hybrid laminates 

Figure 1 shows the interlayer hybrid composite laminate design comprising a central HM carbon 

layer with low failure strain and two outer HS carbon layers with high failure strain. When the hybrid 

specimen is loaded in tension, the central low strain layer starts fracturing first, and the load is shed to 

the outer high strain layers. If the hybrid configuration is carefully designed for pseudo-ductility, the 

low strain layer should show multiple fragmentation and stable delamination from the high strain 

layers without any significant load drop until the final failure of the hybrid material. 

 

 

 
Figure 1: Interlayer hybrid composite laminate design 

 

 

We identified and published the following design criteria earlier [1] to assure stable pseudo-ductile 

failure for UD glass/carbon interlayer hybrids. The same criteria are adapted here for the similar 

configuration with new sets of constituent prepregs: 

(i) The outer, high strain layers need to be thick enough to take the full load after low strain material 

fracture and pull-out with a sufficient margin required to account for stress concentrations which are 

not considered in this approach. 
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Where E1 is the modulus of the high strain (HS carbon) layers, E2 is the modulus of the low strain 

(HM carbon) layer, t1 is the thickness of one high strain (HS carbon) layer (see Figure 2), t2 is the 

thickness of the low strain (HM carbon) layer, σ1b is the strength of the high strain (HS carbon) layers, 

σ2b is the strength of the low strain (HM carbon) layer. 

 

(ii) The energy release rate (GII) at the expected failure strain of the low strain (HM carbon) layer must 

be lower than the mode II fracture toughness (GIIC) of the interface to avoid mode II delamination of 

the central low strain layer after its first fracture. This criterion assures the condition for the multiple 

fractures (i.e. fragmentation) and stable pull-out of the low strain layer. 
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      (2) 

 

Where ε2b is the failure strain of the low strain (HM carbon) layer. 

 

Table 3 shows the configurations designed according to equations (1) and (2). It is worth noting that 

an advantageous high HM/HS carbon ratio with the currently available minimum ply thicknesses can 

be achieved only if a very high modulus central layer is applied, which starts failing at low strains 

therefore keeping the GII low. The other thing to note is that all the predicted GII values are lower than 

the typical GIIC=1 N/mm for this type of epoxy matrix UD prepreg composites, therefore 

fragmentation and stable pull-out of the central HM carbon layer is expected. 
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Spec. Type 

Fibre masses per 

unit area 

Nominal 

thickness 

Nominal HM/HS 

carbon volume 

ratio 

Predicted GII at 

HM carbon 

failure strain 

[g/m
2
] [mm] [-] [N/mm] 

5T1000/2M40/5T1000 140/80/140 0.409 0.29 0.860 

3T1000/3M46/3T1000 84/87/84 0.284 0.51 0.734 

2T1000/2XN80/2T1000 56/100/56 0.223 0.74 0.666 

Table 3: Interlayer hybrid configurations (Numbers in the specimen designation indicate the number of 

thin prepreg plies.) 

 

 

3 EXPERIMENTAL 

This section describes the specimen geometry, composite processing and sample fabrication as well 

as the test equipment and procedure applied. 

 

3.1 Specimen geometry and manufacturing 

Figure 2 shows the geometric parameters on the side and top view schematics of an interlayer 

hybrid composite tensile specimen. 

 

 

 
Figure 2: Schematic of the specimen geometry 

 

 

The UD hybrid composite plates were manufactured by hand lay-up stacking the specified prepreg 

plies on top of each other keeping the same fibre direction and curing them in an autoclave according 

to the recommended cycle (2 hours at 120°C). Since all prepreg materials had the same matrix, there 

were no problems with bonding between the layers. Individual specimens were fabricated with a 

diamond cutting wheel, and 40 mm long, 2 mm thick cross-ply glass/epoxy end-tabs were bonded on 

them. 

 

3.2 Test method 

Testing of the parallel edge specimens was executed under uniaxial tensile loading and 

displacement control using a crosshead speed of 2 mm/min on a computer controlled Instron 8801 type 

100 kN rated universal hydraulic test machine with wedge type hydraulic grips. Strains were measured 

using an Imetrum videogauge system, with a nominal gauge length of 130 mm. 

 

3.3 Results and discussion 

Figure 3. shows the stress-strain curves of the 5T1000/2M40/5T1000 type specimens. This series 

of specimens showed unfavourable catastrophic failure for three of the six specimens tested. The other 

three specimens showed a few large load drops before final failure but this behaviour was not 

acceptable for pseudo-ductility. The first load drop occurred at strains close to the HM carbon fibre 

failure strain.  
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Figure 3: Test results of the 5T1000/2M40/5T1000 type specimens 

 

 

Figure 4 shows the stress-strain response of 3T1000/3M46/3T1000 type specimens. This 

configuration demonstrated a gradual failure starting at strains slightly lower than the failure strain of 

the M46 fibres. Although the observed failure type was not catastrophic, the extent of the load drops 

was too high to render this response pseudo-ductile.  

 

 

 
 

Figure 4: Test results of the 3T1000/3M46/3T1000 type specimens 

 

 

Figure 5 shows the stress-strain graphs of 2T1000/2XN80/2T1000 type specimens. This 

configuration demonstrated a favourable pseudo-ductile failure process comprising a linear, a plateau 

and a second rising part in the stress-strain graphs. During the initial linear phase the material did not 

encounter significant damage and the modulus was simply determined by the constituent HM and HS 

carbon fibre composite layers. The first fracture in the HM carbon layer occurred around 0.4% strain, 

which is significantly lower than the 0.5% fibre failure strain quoted in the datasheet of the fibres. It 

was followed by fragmentation (i.e. multiple fractures) of the HM carbon layer until saturation of the 

cracks. Finally the HS carbon layers started to carry even more load and allowed for a second, quasi-

linear rising part in the stress-strain curve. 
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Figure 5: Test results of the 2T1000/2XN80/2T1000 type specimens 

 

 

Table 4 summarises the results of the tensile tests for the three configurations. The pseudo-yield strain 

and stress were taken from the first knee point on the stress-strain graph of the 

2T1000/2XN80/2T1000 configuration. It is worth highlighting that the initial modulus of this 

successful configuration was increased by up to 80% compared to that of the high strain material 

(T1000/epoxy) of the hybrid plate. On the other hand, the pseudo-yield stress of this configuration, 

which can be interpreted as a design stress is reduced by a factor of almost two, compared to the 

highest strength (lowest ductility) 5T1000/2M40/5T1000 configuration.  The observed strong trade-off 

between stiffness and strength is based on the mechanical properties of the available carbon fibre 

grades, but hybridisation was able to add a key extra feature to the stiffest grade: a 1% strain margin 

between the onset of damage and final failure which can be exploited for structural health monitoring 

and warning before failure. 

 

 

Spec. type   

Nominal 

HM/HS 

carbon 

volume 

ratio 

Initial 

modulus 

Modulus 

increase 

to T1000 

Pseudo- 

yield/ 

first 

drop 

strain 

Pseudo-

yield/ 

first 

drop 

stress 

Approx. 

final 

failure 

strain 

Pseudo- 

ductile 

strain 

    [%] [GPa] [%] [%] [MPa] [%] [%] 

5T1000/2M40/ 

5T1000 

Av
a 0.294 145.9 2.5 1.21 1882 1.30 - 

CoV
b - 3.0 - 3.4 4.4 9.7 - 

3T1000/3M46/ 

3T1000 

Av 0.507 162.6 13.7 0.86 1489 1.51 - 

CoV - 2.3 - 4.1 2.8 8.7 - 

2T1000/2XN80/

2T1000 

Av 0.741 256.5 79.4 0.41 1036 1.47 0.96 

CoV - 5.2 - 6.0 1.3 9.2 - 
aAverage 
bCoefficient of variation 
 

Table 4: Summary of test results (Modulus and stress values were calculated with nominal 

thicknesses) 

 

 

In order to find the possible reasons for the unfavourable failure character of the first two specimen 

configurations, careful observation of the failed specimens was carried out. The failure of 

5T1000/2M40/5T1000 type specimens was explosive, therefore it was hard to establish the failure 

sequence. Observation of the remaining pieces revealed, that a significant part of the specimen was 
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delaminated, but splitting was dominant as well, together with the presence of local fibre fractures. As 

three of the specimens showed load drops, it is likely, that the first failure type right after HM carbon 

fracture was delamination in those specimens. The specimens showing catastrophic failure probably 

encountered delamination and HS carbon layer fracture simultaneously at the first HM carbon layer 

fracture. 

Extensive delamination was observed for 3T1000/3M46/3T1000 type failed specimens: the layers 

of the hybrid materials were separated over most of the volume of the specimens and there was no 

obvious sign of coincident through thickness cracks in the originally adjacent layers. This suggests 

that the final failure of the specimens was not triggered by an overall catastrophic fracture of all the 

layers at the same position due to stress concentrations from the fragmenting HM carbon layer. The 

load drops on the stress-strain curves indicate, that the specimens probably delaminated at the first HM 

carbon layer fracture. 

The extent of the first unstable delamination and the corresponding load drop under displacement 

control is governed by the energy release rate at the strain of carbon fracture and the mode II fracture 

toughness of the specimen configuration, therefore the more catastrophic behaviour of the 

5T1000/2M40/5T1000 type is understandable since its energy release rate is higher, as shown in  

Table 3.  

The energy release rate of the 3T1000/3M46/3T1000 specimen type was lower, therefore the extent 

of the delamination at first HM carbon layer fracture was expected to be smaller, so the HS carbon 

layer could survive it, allowing for a more gradual failure process. Later, other HM carbon layer 

fractures (and limited delamination) could take place resulting in further load drops in parallel with 

other failure modes e.g. splitting along the fibres due to localised fibre fractures. 

According to the above mentioned observations and attempts to estimate the failure mode sequence 

of the specimen types, the following possible reasons for premature failure were identified: 

(i) The actual GIIC of the applied interlayer hybrid materials was significantly lower than the 

assumed typical value (1 N/mm). (ii) The recorded final failure strains (i.e. at failure of the 

T1000/epoxy layers) were significantly lower than that quoted for the T1000 fibres. This may have 

been the consequence of prepreg manufacturing defects (minor fibre waviness was observed during 

lay-up of the plies) and stress concentrations around the low strain (HM carbon) layer fractures and the 

end-tabs.  

In order to understand the failure mechanisms better, a novel representation of the damage modes 

of interlayer hybrid composites developed recently by Jalalvand et al [2, 3] was applied to the tested 

configurations of this study. Each damage mode map in Figure 6 was generated assuming a typical 

GIIC=1 N/mm fracture toughness and first HM carbon layer fracture at the failure strain of the 

corresponding constituent fibres (based on manufacturer’s data in Table 1). The high strain material 

failure was predicted using a statistical strength distribution based on the fibre strain and typical 

Weibull parameters for high strength carbon fibres. Stress concentrations around the fractured low 

strain layer were taken into account as explained in [2]. The maps show the expected damage modes 

and the achievable pseudo-ductile strains for the selected configurations marked with circles. The 

coloured regions of the map indicate pseudo-ductile failure and the white region shows premature 

failure due to various reasons. All the expected damage modes for the four regions are described in 

Figure 6b. The pseudo-ductile strain is defined between a point at the initial slope line at failure stress 

and the final failure strain as shown on Figure 7.  
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Figure 6: Damage mode maps of the tested configurations with GIIC=1 N/mm: a) 

5T1000/2M40/5T1000, b) 3T1000/3M46/3T1000, c) 2T1000/2XN80/2T1000, (epsp is the predicted 

pseudo-ductile strain, LSM is the Low Strain Material- HM carbon in this study and the relative 

thickness is calculated as HM carbon thickness/full specimen thickness) 

 

 

 
Figure 7: Definition of pseudo-ductile strain 

 

 

Figure 6a shows that the 5T1000/2M40/5T1000 configuration should fail catastrophically because 

of the weak HS carbon layer (due to its too low thickness). Please note that the analytical equations 

applied to draw the damage mode maps, take the stress concentrations around fractures in the HM 

carbon layer into account, which was not incorporated in the simple design equations used earlier in 

this study therefore the premature failure in the experiments was unexpected. The stress concentration 

is especially pronounced in regions (1) and (3) of the maps (see fig 6b) under the positive slope 

inclined line which indicates the limit for delamination. No delamination is predicted for this 

configuration although the more gradual failure with multiple load drops of three specimen and the 

observations of the failed specimens suggested the presence of this damage type.  

The marker for the 3T1000/3M46/3T1000 configuration in Figure 6b is very close to the boundary 

for catastrophic failure, therefore transitional behaviour might be expected. This configuration showed 

significant drops on the stress-strain curves each of which probably corresponded to limited but 

unstable delamination of the layers triggered by the first HM carbon layer fracture. Since the map does 

not show any delamination for this configuration, it is likely, that the GIIC assumed for the maps is too 

high for the material system applied. 

Figure 6c confirms the pseudo-ductile response of the 2T1000/2XN80/2T1000 configuration 

through fragmentation of the HM carbon layer in the hybrid. This successful configuration generated 

up to 1% pseudo-ductile strain and exhibited a very high initial stiffness due to the ultra-high modulus 

carbon central layer. The damage mode map however, only shows 0.5% pseudo-ductile strain for this 

configuration with the current input parameters which is only half of the experimental result. 

A second set of damage mode maps shown in Figure 8 were generated to incorporate some of the 
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experimental observations in the model such as the realistic failure strains of the XN80 and M46 

carbon layers (using the bold values in Table 3). The mode II fracture toughness of the layer interfaces 

was also modified to one half of the originally assumed value based on test results of other interlayer 

hybrid configurations with the same resin system, where a change from unstable to stable failure was 

observed around GII=0.5 N/mm. The failure strains of M40 and T1000 layers were not changed. 

 

 

 
Figure 8: Damage mode maps of the tested configurations with GIIC=0.5 N/mm and experimentally 

determined failure strains for M46/epoxy and XN80/epoxy layers: a) 5T1000/2M40/5T1000, b) 

3T1000/3M46/3T1000, c) 2T1000/2XN80/2T1000, (epsp is the predicted pseudo-ductile strain, LSM 

is the Low Strain Material- HM carbon in this study and the relative thickness is calculated as HM 

carbon thickness/full specimen thickness) 

 

 

The updated map in Figure 8a shows unstable delamination instead of overall catastrophic failure 

(i.e. fracture of all layers) for the 5T1000/2M40/5T1000 configuration, due to the lower GIIC used. 

This agrees with the observations made on the failed specimens. Delamination typically releases the 

direct stress concentrations on the high strain layer therefore saving it from instantaneous failure after 

the first crack in the low strain layer. The catastrophic failures observed experimentally for three of the 

six specimens indicate that this configuration was also prone to HS carbon layer failure due to stress 

concentrations around the HM layer fractures and the end tabs. 

Unstable delamination is now shown for 3T1000/3M46/3T1000 type specimens as well (see Figure 

8b), which could result in significant load drops and a gradual decrease of stress as observed on the 

experimental stress-strain curves. The released energy was significantly lower for this configuration 

and therefore the high strain layers were able to survive the first delamination, however they probably 

suffered significant damage as indicated by the gradual decrease of the stress on the stress-strain 

curves instead of an expected rising part after delamination if the high strain layer would have 

remained intact. 

The damage mode map in Figure 8c for 2T1000/2XN80/2T1000 type specimens changed 

significantly by using more realistic input parameters. The lower failure strain (0.41%) for the low 

strain material extended the allowable relative thickness of HM carbon layer significantly which could 

be useful for designing even higher performance configurations. The shown damage mode was 

changed from fragmentation to fragmentation+stable delamination, which can provide higher pseudo-

ductile strain. The predicted amount of pseudo-ductile strain agrees with the experiments for this set of 

input parameters. 

Although the damage mode maps were applied here for damage analysis only, they proved the 

strong potential for supporting the design of pseudo-ductile interlayer hybrid composites provided 

accurate input parameters are available. 
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4 CONCLUSIONS 

The following conclusions were drawn from the study of high modulus (HM)-high strength (HS) 

carbon/epoxy interlayer hybrid composites: 

 The thin-ply hybrid composite ductility concept was successfully extended to high performance 

HM carbon-HS carbon/epoxy hybrid material combinations. 

 One of the developed unidirectional HM carbon-HS carbon/epoxy hybrid composite materials 

exhibited outstanding initial modulus up to 257 GPa and up to 1% pseudo-ductile strain before 

final failure in tension. 

 The wide margin between the first fracture in the high modulus carbon layer and final failure of the 

hybrid laminate can act as a clear and detectable warning sign which can make the operation of a 

component made of the new pseudo-ductile material safer. 

 The damage mode maps were helpful in explaining the experimentally observed failure types, 

which highlights the merit of this new tool in the design of unidirectional interlayer hybrid 

composites. 
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