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Abstract

We generalize the structure theorem of Robertson and Seymour for graphs excluding a fixed
graph H as a minor to graphs excluding H as a topological subgraph. We prove that for a fixed
H, every graph excluding H as a topological subgraph has a tree decomposition where each part
is either “almost embeddable” to a fixed surface or has bounded degree with the exception of a
bounded number of vertices. Furthermore, we prove that such a decomposition is computable
by an algorithm that is fixed-parameter tractable with parameter ∣H ∣.

We present two algorithmic applications of our structure theorem. To illustrate the mechan-
ics of a “typical” application of the structure theorem, we show that on graphs excluding H as
a topological subgraph, Partial Dominating Set (find k vertices whose closed neighborhood
has maximum size) can be solved in time f(H,k) ⋅nO(1) time. More significantly, we show that
on graphs excluding H as a topological subgraph, Graph Isomorphism can be solved in time
nf(H). This result unifies and generalizes two previously known important polynomial-time
solvable cases of Graph Isomorphism: bounded-degree graphs [22] and H-minor free graphs
[27]. The proof of this result needs a generalization of our structure theorem to the context of
invariant treelike decomposition.

1 Introduction

We say that a graph H is a minor of G if H can be obtained from G by deleting vertices, deleting
edges, and contracting edges. A graph G is H-minor free if H is not a minor of G. Robertson and
Seymour [33] proved a structure theorem for the class of H-minor-free graphs: roughly speaking,
every H-minor free graph can be decomposed in a way such that each part is “almost embeddable”
into a fixed surface. This structure theorem has important algorithmic consequences: many natural
computational problems become easier when restricted to H-minor free graphs [5, 15, 7, 17, 16, 6,
11]. These algorithmic results can be thought of as far-reaching generalizations of algorithms on
planar graphs and bounded-genus surfaces.

A more general way of defining restricted classes of graphs is to exclude topological subgraphs
instead of minors. A graph H is a topological subgraph (or topological minor) of graph G if a
subdivision of H is a subgraph of G. It is easy to see that if H is a topological subgraph of G, then
H is also a minor of G. Thus the class of graphs excluding H as a topological subgraph is a more
general class than H-minor free graphs.

One can ask if graphs excluding H as a topological subgraph admit a similar structure theorem
as H-minor free graphs. However, graphs excluding a topological subgraph can be much more
general. For example, no 3-regular graph can contain a subdivision of K5 (as K5 is 4-regular).

∗An extended abstract of the paper appeared in the proceedings of the 44th annual ACM symposium on Theory
of computing (STOC 2012).
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Therefore, the class of graphs excluding K5 as a topological subgraph includes in particular every
3-regular graph. This suggests that it is unlikely that this class can be also characterized by (almost)
embeddability into surfaces. It is also worth mentioning that graph classes that are closed under
taking minors can be characterised by finitely many excluded minors, or equivalently, the minor-
relation is a well quasi order; this is Robertson and Seymour’s famous Graph Minor Theorem [34].
It is easy to show that the analogous result for classes closed under taking topological subgraphs
fails (see, for example, [30]). Thus the topological-subgraph relation and the minor relation differ
significantly.

Nevertheless, our first result is a structure theorem for graphs excluding a graph H as a topo-
logical subgraph. We prove that, in some sense, only the bounded-degree graphs make this class
more general than H-minor free graphs. More precisely, we prove a structure theorem that decom-
poses graphs excluding H as a topological subgraph into almost bounded-degree parts and into
H ′-minor free parts (for some other graph H ′). The H ′-minor free parts can be further refined into
almost-embeddable parts using the structure theorem of Robertson and Seymour [33], to obtain
our main structural result (see Corollary 4.4 for the precise statement):

Theorem 1.1 (informal). For every fixed graph H, every graph excluding H as a topological
subgraph has a tree decomposition where every torso

(i) either has bounded degree with the exception of a bounded number of vertices, or

(ii) almost embeddable into a surface of bounded genus.

Furthermore, such a decomposition can be computed in time f(H) ⋅ ∣V (G)∣O(1) for some computable
function f .

Our structure theorem allows us to lift problems that are tractable on both bounded-degree
graphs and on H-minor free graphs to the class of graphs excluding H as a topological subgraph.
We demonstrate this principle on the Partial Dominating Set problem (find k vertices whose
closed neighborhood is maximum). Following a bottom-up dynamic programming approach, we
solve the problem in each bag of the tree decomposition (using the fact that the problem can be
solved in linear-time on both bounded-degree and on almost-embeddable graphs).

Theorem 1.2. Partial Dominating Set can be solved in time f(k,H) ⋅ nO(1) when restricted
to graphs excluding H as a topological subgraph.

One could prove similar results for other basic problems such as Independent Set or Domi-
nating Set. However, a result of Dvorak et al. [8] shows that problems expressible in first-order
logic can be solved in linear time on classes of graphs having bounded expansion, and therefore on
graphs excluding H as a topological subgraph. The problems Independent Set and Dominating
Set (for a fixed k) can be expressed in first-order logic, thus the analogs of Theorem 1.2 for these
problems follow from [8]. On the other hand, Partial Dominating Set is not expressible in
first-order logic, hence the techniques of Dvorak et al. [8] do not apply to this problem.

The main algorithmic result of the paper concerns the Graph Isomorphism problem (given
graphs G1 and G2, decide if they are isomorphic). Graph Isomorphism is known to be polynomial-
time solvable for bounded-degree graphs [22, 2] and for H-minor free graphs [27, 10]. In fact, for
these classes of graphs, even the more general canonization problem can be solved in polynomial
time: there is an algorithm labeling the vertices of the graph with positive integers such that
isomorphic graphs get isomorphic labelings. It is tempting to expect that our structure theorem
together with a bottom-up strategy give a canonization algorithm for graphs excluding H as a
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topological subgraph: in each bag, we use the canonization algorithm either for bounded-degree
graphs or H-minor free graphs (after encoding somehow the canonized versions of the child bags,
which seems to be a technical problem only). However, this approach is inherently doomed to
failure: there is no guarantee that our decomposition algorithm produces isomorphic decompositions
for isomorphic graphs. Therefore, even if two graphs are isomorphic, the bottom-up canonization
algorithm could be working on two completely different decompositions and therefore could obtain
different results on the two graphs.

We overcome this difficulty by generalizing our structure theorem to the context of treelike de-
compositions introduced by the first author in [12, 10]. A treelike decomposition is similar to a tree
decomposition, but it is defined over a directed acyclic graph instead of a rooted tree, and therefore
it contains several tree decompositions. The Invariant Decomposition Theorem (Section 8) general-
izes the structure theorem by giving an algorithm that computes a treelike decomposition in a way
that the decompositions obtained for isomorphic graphs are isomorphic. Then the Lifting Lemma
(Section 9) formalizes the bottom-up strategy informally described in the previous paragraph: if
we can compute treelike decompositions for a class of graphs in an invariant way and we have a
canonization algorithm for the bags, then we have a canonization algorithm for this class of graphs.
Although the idea is simple, in order to encode the child bags, we have to state this algorithmic
result in a more general form: instead of graphs, we have to work with weighted relational struc-
tures. This makes the statement and proof of the Lifting Lemma more technical. Putting together
these results, we obtain:

Theorem 1.3. For every fixed graph H, Graph Isomorphism can be solved in polynomial-time
restricted to graphs excluding H as a topological subgraph.

Actually, we not only obtain a polynomial time isomorphism test, but also a polynomial time
canonisation algorithm. Our theorem generalizes and unifies the results of Babai and Luks [22, 2]
on bounded-degree graphs and of Ponomarenko [27] on H-minor free graphs. Let us remark that
Ponomarenko’s result implies that there is a polynomial time isomorphism test for all classes of
graphs of bounded genus, which has been proved earlier by Filotti and Mayer [9] and Miller [26],
and for all classes of graphs of bounded tree width, which was also proved later (independently) by
Bodlaender [3]. Miller [25] gave a common generalization of the bounded degree and bounded genus
classes to classes that he called k-contractible. These classes do not seem to have a simple graph-
theoretic characterization; they are defined in terms of properties of the automorphism groups
needed for the algorithm. Excluding topological subgraphs, on the other hand, is a natural graph
theoretic restriction that generalizes both bounding the degree and excluding minors and hence
bounding the genus.

For the convenience of the reader, let us summarize how the different results in the present
paper depend on previous results in the literature:

• The proof of the existence of the decomposition into H-minor free and almost bounded-
degree parts is self-contained. The algorithm computing such a decomposition needs the
minor testing algorithm of [32] or [18].

• The proof of the existence of the more refined decomposition into almost-embeddable and
almost bounded-degree parts needs the graph structure theorem of Robertson and Seymour
[33]. The algorithm computing such a decomposition needs the algorithmic version of the
structure theorem [6]; to achieve f(H)⋅nO(1) running time, a more recent stronger algorithmic
result is needed [19, 14].
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• The algorithm for Partial Dominating Set needs the more refined decomposition, hence
it relies on [32, 19]. Additionally, it needs the fact proved in [11] that almost-embeddable
graphs have bounded local treewidth.

• The result on Graph Isomorphism needs the minor testing algorithm of [32] or [18] to
compute the treelike decomposition. Additionally, the canonization algorithms for bounded-
degree graphs [2] and for H-minor free graphs ([27] or [10]) are needed.

Note that none of the results rely on the topological subgraph testing algorithm of [13] or need any
substantial result from the monograph [10].

The paper is organized as follows. Sections 2–3 introduce the notation used in the paper.
Section 4 states the structure theorem and shows how it can be proved by appropriate local de-
composition lemmas. Section 5 introduces the notion of tangles, which is an important tool in the
proofs of the local decomposition lemmas in Section 6. Section 7 uses the structure theorem in an
algorithm for Partial Dominating Set. Section 8 introduces treelike decomposition and proves
the Invariant Decomposition Theorem. Section 9 proves the Lifting Lemma for canonizations,
completing the proof of Theorem 1.3.

2 Preliminaries

Z and N denote the sets of integers and nonnegative integers, respectively. For m,n ∈ Z, we let
[m,n] ∶= {` ∈ Z ∣m ≤ ` ≤ n} and [n] ∶= [1, n]. The power set of a set S is denoted by 2S , and the set
of all k-element subsets of S by (

S
k
). For a mapping f defined on S, we let f(S) ∶= {f(s) ∣ s ∈ S}.

The cardinality of a set S is denoted by ∣S∣.
Let G be a graph. The order of a graph G is ∣G∣ ∶= ∣V (G)∣. The set of all neighbors of a vertex

v ∈ V (G), called the open neighborhood of v, is denoted by NG(v). The closed neighborhood of v
is the set NG[v] ∶= {v} ∪NG(v). The closed and open neighborhood of a subset W ⊆ V (G) are the
sets NG[W ] ∶= ⋃w∈W NG[w] and NG(W ) ∶= NG[W ] ∖W , respectively, and the closed and open
neighborhood of a subgraph H ⊆ G are the sets NG[H] ∶= NG[V (H)] and NG(H) ∶= NG(V (H)),
respectively. We omit the index G if G is clear from the context, and we do the same for similar
notations introduced later. We let ∂G(W ) = ∣NG(W )∣.

For every set V , we let K[V ] be the complete graph with vertex set V , and for every n ∈ N, we
let Kn ∶=K[[n]].

Let G be a graph. A graph H is a minor of G (denoted by H ⪯ G) if H can be obtained from
G by deleting vertices, deleting edges, and contracting edges. Equivalently, we can define H ⪯ G
the following way. Two sets S,T ⊆ V (G) touch if either S ∩ T ≠ ∅ or there is an edge vw ∈ V (G)

such that v ∈ S and w ∈ T . It can be shown that H ⪯ G if and only if there is a family (Iw)w∈V (H)

of pairwise disjoint connected subsets of V (G) such that for every u, v ∈ V (H) that are adjacent
in H, the sets Iu and Iv touch in G. We call this family I an image of H in G and the sets Iw are
the branch sets of the image.

Theorem 2.1 ([32, 18]). There is an f(H) ⋅ ∣V (G)∣3 time algorithm (for some computable f) that
finds an H-minor image in G, if it exists.

A subdivision H ′ of a graph H is obtained by replacing each edge of H by a path of length
at least 1. We say that H is a topological subgraph (or topological minor) of G and denote it by
H ⪯T G if a subdivision of H is a subgraph of G. Equivalently, H is a topological subgraph of G
if H can be obtained from G by deleting edges, deleting vertices, and dissolving degree 2 vertices
(which means deleting the vertex and making its two neighbors adjacent). For fixed H, it can be
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decided in cubic time whether a graph G contains a subdivision of H (although we do not need
this result in the current paper):

Theorem 2.2 ([13]). There is an f(H) ⋅ ∣V (G)∣3 time algorithm (for some computable f) that
finds a subdivision of H in G, if it exists.

Let D be a digraph. For every t ∈ V (D), we let ND
+
(t) ∶= {u ∈ V (D) ∣ tu ∈ E(D)}. We call

vertices of in-degree 0 roots and vertices of out-degree 0 leaves of D. The height of an acyclic
digraph D is the length of the longest path in D.

It will be convenient for us to view trees as being directed, unless we explicitly call them
undirected. Hence for us, a tree is an acyclic digraph T that has a unique node r(T ) (the root)
such that for every node t there is a exactly one path from r(T ) to t.1

For two graphs A and B, the graph A∪B is defined by V (A∪B) = V (A)∪V (B) and E(A∪B) =

E(A) ∪E(B). Let G be a graph. A separation of G is a pair (A,B) of subgraphs of G such that
A ∪B = G and E(A ∩B) = ∅. The order of a separation (A,B) is ∣V (A) ∩ V (B)∣.

3 Tree Decompositions

A tree decomposition of a graph G is a pair (T,β), where T is a tree and β ∶ V (T ) → 2V (G),
such that for all nodes v ∈ V (G) the set {t ∈ V (T ) ∣ v ∈ β(t)} is nonempty and connected in the
undirected tree underlying T , and for all edges e ∈ E(G) there is a t ∈ V (T ) such that e ⊆ β(t). It
will be convenient for us to view the tree in a tree decomposition as being directed. Most readers
will be familiar with this definition, but it will be convenient for us to view tree decompositions
from a different perspective here.

If (T,β) is a tree decomposition of a graph G, then we define mappings σ, γ,α ∶ V (T ) → 2V (G)

by letting for all t ∈ V (T )

σ(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∅ if t is the root of T ,

β(t) ∩ β(s) if s is the parent of t in T ,
(3.1)

γ(t) ∶= ⋃
u is a descendant of t

β(u), (3.2)

α(t) ∶= γ(t) ∖ σ(t). (3.3)

We call β(t), σ(t), γ(t), α(t) the bag at t, separator at t, cone at t, component at t, respectively. It
is easy to verify that the following conditions hold:

(TD.1) T is a tree.

(TD.2) For all t ∈ V (T ) it holds that α(t) ∩ σ(t) = ∅ and NG(α(t)) ⊆ σ(t).

(TD.3) For all t ∈ V (T ) and u ∈ NT
+
(t) it holds that α(u) ⊆ α(t) and γ(u) ⊆ γ(t).

(TD.4) For all t ∈ V (T ) and all distinct u1, u2 ∈ N
T
+
(t) it holds that γ(u1)∩γ(u2) = σ(u1)∩σ(u2).

(TD.5) For the root r of T it holds that σ(r) = ∅ and α(r) = V (G).

Conversely, consider a triple (T,σ,α), where T is a digraph and σ,α ∶ V (T ) → 2V (G). We define
γ, β ∶ V (T ) → 2V (G) by

γ(t) ∶= σ(t) ∪ α(t), (3.4)

β(t) ∶= γ(t) ∖ ⋃
u∈NT+ (t)

α(u) (3.5)

1What we call “directed tree” here is somtimes called “out branching”. Moreover, there is an obvious one-to-one
correspondence between directed trees and rooted trees.
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for all t ∈ V (T ). Then it is easy to prove that if (TD.1)–(TD.5) are satisfied, then (T,β) is
a tree decomposition (see [10] for a proof). Thus we may also view triples (T,σ,α) satisfying
(TD.1)–(TD.5) as tree decompositions. We jump back and forth between both versions of tree
decompositions, whichever is more convenient. The treelike decompositions introduced in Section 8
need to be defined as triples (T,σ,α), thus looking at tree decompositions also this way in the first
part of the paper makes the transition between the two concepts smoother.

Let (T,β) be a tree decomposition of a graph G. The width of (T,β) is max{∣β(t)∣−1 ∣ t ∈ V (T )},
and the adhesion of (T,β) is max{∣σ(t)∣ ∣ t ∈ V (T )}. The tree width of a graph G is the minimum
possible width of a tree decomposition of G. However, in the current paper, rather than minimizing
tree width (i.e., minimizing the size of the bags), we are mostly interested in decompositions where
the graph induced by each bag (plus some additional edges) is “nice” in a certain sense. For every
node t ∈ V (T ), the torso at t is the graph

τ(t) ∶= G[β(t)] ∪K[σ(t)] ∪ ⋃
u∈NT+ (t)

K[σ(u)]. (3.6)

That is, we take the graph induced by bag β(t), turn σ(t) into a clique, and make vertices x, y
adjacent if they appear together in the separator (or equivalently, the cone) of some child u of t.
For a class A of graphs, (T,β) is a tree decomposition over A if all its torsos are in A.

A related notion is the torso of G with respect to a set C ⊆ V (G), denoted by torso(G,C),
which is defined as graph on C where u, v ∈ V (G) are adjacent if there is a path P in G with
endpoints u and v such that the internal vertices of P are disjoint from C. In other words,

torso(G,C) ∶= G[C] ∪ ⋃
X is a component of G ∖C

K[NG
(X)].

It is easy to see that torso(G,β(t)) ⊆ τ(t). Equality is not true in general: G[α(u)] for some
u ∈ NT

+
(t) is not necessarily connected, thus it is not necessarily true that σ(u) is NG(X) for some

component X of G ∖ β(t).

4 Local and Global Structure Theorems

The main structural result of the paper is a decomposition theorem for graphs excluding a topo-
logical subgraph:

Theorem 4.1 (Global Structure Theorem). For every k ∈ N, there exists constants a(k), b(k),
c(k), d(k), e(k), such that the following holds. Let H be a graph on k vertices. Then for every
graph G with H /⪯T G there is a tree decomposition (T,β) of adhesion at most a(k) such that for
all t ∈ V (T ) one of the following three conditions is satisfied:

(i) ∣β(t)∣ ≤ b(k).

(ii) τ(t) has at most c(k) vertices of degree larger than d(k).

(iii) Ke(k) /⪯ τ(t).

Furthermore, there is an algorithm that, given graphs G,H of sizes n, k, respectively, in time f(k) ⋅
nO(1) for some computable function f , computes either such a decomposition (T,β) or a subdivision
of H in G.

The reader could find it convenient to refer to the constants a, b, c, d, e as the bounds on the
adhesion, bag size, number of apices, maximum degree, and excluded clique. We remark that
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all the constants are polynomially large. Note that (i) is redundant: by choosing d(k) or e(k)
sufficiently large, a bag satisfying (i) trivially satisfies (ii) and (iii). We state the result this way,
because it shows the high-level structure of the proof, which involves three decomposition results
corresponding to the three cases.

The proof of the Global Structure Theorem 4.1 builds a tree decomposition step by step, iter-
atively decomposing the graph locally in each step. The Local Structure Theorem describes the
“local” structure of a graph, as seen from a single node of a tree decomposition. We describe this
local structure in terms of star decompositions, to be defined next. A star is a tree of height 1. We
usually call the root of a star its center and the leaves of a star its tips. A star decomposition of a
graph G is a tree decomposition (T,β) where T is a star. Note that if (T,β) is a star decomposition,
then for every tip t of the star T it holds that β(t) = γ(t).

Theorem 4.2 (Local Structure Theorem). For every k ∈ N, there exists constants a(k), b(k),
c(k), d(k), e(k) such that the following holds. There is an f(k) ⋅ ∣V (G)∣O(1) time algorithm that,
given a graph G, a set S ⊆ V (G) of size ≤ a(k), and an integer k,

(1) either returns a subdivision of Kk in G,

(2) or computes a star decomposition ΣS = (TS , σS , αS) of G ∪ K[S] of adhesion ≤ a(k) such
that S ⊆ βS(s) for the center s, αS(t) ⊂ αS(s) for every tip t, and one of the following three
conditions is satisfied:

(a) ∣βS(s)∣ ≤ b(k).

(b) τS(s) does not contain a Ke(k)-minor.

(c) At most c(k) vertices of τS(s) have degree more than d(k) in τS(s).

The condition that αS(t) is a proper subset of αS(s) makes sure that we make progress and
compute a tree decomposition after a finite number of applications of Theorem 4.2. Note the
technical detail that ΣS in (2) is a decomposition of G∪K[S] instead of G. As G∪K[S] has more
edges than G, this makes the statement slightly stronger (because it makes harder to satisfy the
requirements on τS(s)). The proof of the Global Structure Theorem 4.1 needs this extra condition,
since the set S will connect the graph to the part of the tree decomposition already computed. In
(1), however, the Kk-subdivision is found in G (which is a slightly stronger statement than finding
it in G ∪K[S]).

The proof of the Global Structure Theorem 4.1 follows from the Local Structure Theorem by a
fairly simple induction (see below). In Section 4.2, we show that Local Structure Theorem 4.2 can
be proved by putting together three decomposition lemmas. We prove these lemmas in Sections 5–6.
Let us remark that the Global Structure Theorem can be seen as an instance of a general theorem
due to Robertson and Seymour [31, (11.3)], explaining how to construct a tree decomposition whose
torsos have a “nice structure” in graphs with a “nice local structure”, where the local structure
is described with respect to a tangle (see Section 5). Our proof follows the ideas of Robertson
and Seymour’s construction, but as Robertson and Seymour’s theorem is not algorithmic, and
since there would be a large notational overhead, we see no benefit in appealing to Robertson
and Seymour’s theorem here and instead carry out our own version of the construction, which is
not very difficult anyway. Not only here, but in several places throughout this paper we have to
carefully re-work results from Robertson and Seymour’s structure theory in order to make them
algorithmic and, in addition, obtain invariance results thate we need for the isomorphism test later.

Proof of the Global Structure Theorem 4.1. Let a(k), b(k), c(k), d(k), e(k) as in the Local Struc-
ture Theorem 4.2. Let G be a graph. We shall describe the construction of a tree decomposition
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(T,β) of G satisfying all conditions asserted in the lemma. The construction may fail, but in that
case it yields a subdivision of H in G.

We will built the tree T inductively starting from the root. For every node t we will define the
set NT

+
(t) of its children and sets σ(t), α(t) such that ∣σ(t)∣ ≤ a(k) and NG(α(t)) ⊆ σ(t). As usual,

we define γ(t), β(t), and τ(t) as in (3.4), (3.5), and (3.6). In each step, we will prove that τ(t)
satisfies one of (i), (ii), or (iii).

We start with a root r of T and let σ(r) ∶= ∅ and α(r) ∶= V (G). For the inductive step, let t be
a node for which σ(t) and α(t) are defined, but NT

+
(t) is not yet defined. We let Gt ∶= G[γ(t)]. Let

us run the algorithm of Theorem 4.2 on Gt (as G), σ(t) (as S), and k. If it returns a subdivision of
Kk in Gt, then we can clearly return a subdivision of H in G and we are done. Otherwise, it returns
a star decomposition Σt ∶= (Tt, σt, αt) of G ∪K[σ(t)] having adhesion at most a(k); let st be the
center of Tt. We let NT

+
(t) ∶= V (Tt) ∖ {st} be the set of tips of Tt, where without loss of generality

we assume that this set is disjoint from the tree T constructed so far. For every u ∈ NT
+
(t) we

let σ(u) ∶= σt(u) and α(u) ∶= αt(u). Observe that we have β(t) = γ(t) ∖ ⋃u∈NT+ (t) α(u) = βt(st).
Furthermore, since Σt is a decomposition of G∪K[σ(t)] and σ(t) induces a clique in G∪K[σ(t)],
we have τ(t) = τt(st). Thus one of the three cases of Theorem 4.2 holds for the node t as well.

To see that (T,β) is a tree decomposition, it is easiest to verify it satisfies (TD.2)–(TD.4): it
follows from the fact that the star decomposition Σt used in each step of the construction does
satisfy these conditions. Condition (TD.1) is obvious and (TD.5) follows because we start the
construction with a node t having α(t) = V (G) and σ(t) = ∅. Note that the bound a(k) on the
adhesion of Σt implies the same bound on the adhesion of (T,β).

To see that the construction terminates, note that for all t ∈ V (T ), Theorem 4.2 states that
αt(u) ⊂ αt(st) for every tip u of Tt. This means that that α(u) ⊂ α(t) holds for every u ∈ NT

+
(t)

and hence the height of the tree is at most ∣V (G)∣. Moreover, α(u1) and α(u2) are disjoint for two
distinct children of node t and it follows that the total number of leaves can be bounded by ∣V (G)∣.
Thus the algorithm, excluding the calls to Theorem 4.2, runs in polynomial time. The claim on
the running time follows from Theorem 4.2.

4.1 Almost Embeddable Graphs and a Refined Structure Theorem

In this section, we combine our structure theorem with Robertson and Seymour’s structure theorem
for graphs with excluded minors [33], which says that for graph H, all graphs excluding H as a
minor have a tree decomposition into torsos that are almost embeddable into some surface.

We start by reviewing Robertson and Seymour’s structure theorem. We need first the definition
of (p, q, r, s)-almost embeddable graphs (for the current paper, the exact definition will not be
important, thus the reader can safely skip the details). We assume that the reader is familiar with
the basics of surface topology and graph embeddings. A path decomposition is a tree decomposition
(P,β) where P is a path. For every n ∈ N, by Pn we denote the path with vertex set [n] and edges
i(i+1) for all i ∈ [n−1]. A p-ring is a tuple (R,v1, . . . , vn), where R is a graph and v1, . . . , vn ∈ V (R)

such that there is a path decomposition (Pn, β) of R of width p with vi ∈ β(i) for all i ∈ [n]. A
graph G is (p, q)-almost embedded in a surface S if there are graphs G0,G1, . . . ,Gq and mutually
disjoint closed disks D1, . . . ,Dq ⊆ S such that:

(i) G = ⋃
q
i=0Gi.

(ii) G0 is embedded in S and has a nonempty intersection with the interiors of the disks D1, . . . ,Dq.

(iii) The graphs G1, . . . ,Gq are mutually disjoint.
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(iv) For all i ∈ [q] we have E(G0 ∩Gi) = ∅, and there are ni ∈ N and vi1, . . . , v
i
ni
∈ V (G) such that

V (G0∩Gi) = {vi1, . . . , v
i
ni
}, and the vertices vi1, . . . , v

i
ni

appear in cyclic order on the boundary
of the disk Di.

(v) For all i ∈ [q] the tuple (Gi, v
i
1, . . . , v

i
ni
) is a p-ring.

A graph G is (p, q, r, s)-almost embeddable if there is an apex set X ⊆ V (G) of size ∣X ∣ ≤ s such that
G ∖X is isomorphic to a graph that is (p, q)-almost embedded in a surface of Euler genus r.

Theorem 4.3 ([33, 19, 14]). For every graph H there are constants p, q, r, s ∈ N such that every
graph G with H /⪯ G has a tree decomposition (T,β) such that for all t ∈ V (T ) the torso τ(t) is
(p, q, r, s)-almost embeddable.

Furthermore, there is an algorithm that, given G and H, in time f(∣H ∣) ⋅ n2 for some com-
putable function f , either finds an H-minor image in G, or computes such a tree decomposition
and moreover, computes an apex set Zt of size at most s for every t ∈ V (T ).

As a corollary of this theorem and our structure theorem we get:

Corollary 4.4. For every graph H there are constants c, d, p, q, r, s ∈ N such that every graph G
with H /⪯T G has a tree decomposition (T,β) such that for all t ∈ V (T ),

(i) either τ(t) is (p, q, r, s)-almost embeddable,

(ii) or at most c vertices of τ(t) have degree greater than d.

Furthermore, there is an algorithm that, given G and H, in time f(∣H ∣) ⋅nO(1) for some computable
function f , either finds a subdivision of H in G, or computes such a tree decomposition, and
moreover computes an apex set Zt of size at most s for every bag of the first type.

Proof. Let G,H be a graphs such that H /⪯T G. We let k ∶= ∣H ∣ and choose constants b, c, d, e
(the adhesion a is irrelevant here) according to the Global Structure Theorem 4.1. Without loss of
generality we may assume that c ≥ b. Then G has a tree decomposition (T 1, β1) into torsos τ1(t)
that either have at most c vertices of degree greater than d or exclude Ke as a minor.

We choose constants p, q, r, s according to Theorem 4.3 applied to Ke (as H). We refine the
decomposition (T 1, β1) as follows: Let t ∈ V (T 1) be a node such that Ke /⪯ τ1(t). Then by
Theorem 4.3, we can find a decomposition (T 2

t , β
2
t ) of τ1(t) into torsos that are (p, q, r, s)-almost

embeddable. As σ1(t) and σ1(u) for all u ∈ NT 1

+
(t) are cliques in τ1(t), there are nodes xt and xu

such that σ1(t) ⊆ σ2
t (xt) and σ1(u) ⊆ σ2

t (xu). Without loss of generality we assume that xt is the
root of T 2

t . We define a new decomposition by deleting t from T 1, adding T 2
t , and adding edges

from the parent of t in T 1 to xt (if t is the root of T 1, we omit this step) and from xu to u for all
u ∈ ND

+
(t). All nodes in t1 ∈ V (T 1) ∖ {t} keep their bags β1(t) in the new decomposition, and all

nodes in t2 ∈ V (T 2
t ) keep their bags β2

t (t2) as well. We carry out this construction for all t ∈ V (T 1)

such that Ke /⪯ τ1(t). All torsos of the resulting tree decomposition (T,β) satisfy either (i) or (ii).
Furthermore, the decomposition (T,β) can be computed in time f(∣H ∣) ⋅ nO(1) because both

(T 1, β1) and (T 2
t , β

2
t ) can.

4.2 The Three Local Decomposition Lemmas

We prove the Local Structure Theorem 4.2 by stacking three decomposition lemmas on top of each
other (see Figure 4.1). Each lemma provides either a star decomposition corresponding to one of
the three cases (i)–(iii) or an “obstruction” which can be fed into the next lemma as input.

The first decomposition lemma either finds a star decomposition where the center bag has
bounded size or finds a “highly connected” set in the following sense.
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X

Lemma 4.6
Star decomposition with
bounded-size center

Lemma 4.9
Star decomposition with
Ke-minor free center

Lemma 4.10
Star decomposition with
almost bounded-degree center

Kk-subdivision

m-unbreakable set X

(i)

m-unbreakable set X
K`-minor m-attached to X

(ii)

(iii)

Figure 4.1. The three decomposition lemmas in the proof of Local Structure Theorem 4.2.
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Definition 4.5. Let G be a graph and X ⊆ V (G). A separation (A,B) of G breaks X if ∣(V (A) ∩

X) ∪ V (A ∩B)∣ < ∣X ∣ and ∣(V (B) ∩X) ∪ V (A ∩B)∣ < ∣X ∣.
The set X is m-unbreakable if there is no separation (A,B) of G of order <m that breaks X.

The notion of an m-unbreakable set is closely related to that of an m-linked set or a well-linked
set [28, 29, 4]. We decided to present our results in terms of the definition above, as it expresses
most faithfully our requirements in the proofs to follow. To the best of our knowledge, notions of
this type were first used (implicitly) by Robertson and Seymour [31, 32] in a similar context as
ours. The following lemma can be also traced back to [32].

There is a simple way of detecting if a set X is m-unbreakable by considering all possible ways
of breaking X. Note that the running time of the following algorithm is exponential in the size of
the set, but we will use it only on sets of bounded size.

Lemma 4.6. There is an algorithm that, given a graph G and a set X ⊆ V (G) and m ∈ N, either
computes a separation of G of order <m that breaks X or correctly decides that X is m-unbreakable.
The running time of the algorithm is 3∣X ∣nO(1).

Proof. The algorithm goes through all integers 0 ≤ λ < m and partitions (XA,XQ,XB) of X with
∣XA∣ +λ < ∣X ∣ and ∣XB ∣ +λ < ∣X ∣. For each λ and partition, we try to find a set YQ ⊆ V (G) ∖XQ of
size < λ− ∣XQ∣ such that Q ∶=XQ ∪ YQ separates XA from XB, or in other words, YQ separates XA

from XB in G∖XQ. Finding such a set can be done using standard polynomial-time minimum cut
algorithms. If it succeeds to find such (XA,XQ,XB) and YQ, then it returns a separation (A,B)

with V (A)∩V (B) = Q such that A contains all connected components ofG∖Q that have a nonempty
intersection with XA and B contains the remaining connected components of G ∖ Q. We have
∣(V (A)∩X)∪V (A∩B)∣ < ∣XA∣+∣XQ∣+∣YQ∣ ≤ ∣XA∣+λ < ∣X ∣ and ∣(V (B)∩X)∪V (A∩B)∣ < ∣X ∣ follows
similarly, implying that (A,B) breaks X. If the algorithm fails to find such a λ, (XA,XQ,XB),
and YQ, then it correctly concludes that X is m-unbreakable.

It is not difficult to see that a large unbreakable set is an obstruction for having small treewidth,
that is, for having a tree decomposition where every bag has small size. Therefore, it is not surprising
that the proof of the first local decomposition lemma is very similar to algorithms finding tree
decompositions.

Lemma 4.7 (Bounded-size star decomposition). For every m ∈ N, there is a constant b∗(m)

such that the following holds. There is an f(m) ⋅ ∣V (G)∣O(1) time algorithm that, given a graph G,
an integer m, a set X of size ≤ 3m − 2, and an integer k,

(1) either finds an m-unbreakable set X ′ ⊇X of size 3m − 2.

(2) or computes a star decomposition ΣX = (TX , σX , αX) of G ∪K[X] having adhesion < 3m − 2
such that X ⊆ βX(s) and ∣βX(s)∣ ≤ b∗(m) for the center s of TX .

Proof. Let b∗(m) = 4m−3. If ∣V (G)∣ < 3m−2, then we can return a star decomposition consisting of
a single center node s with α(s) = V (G) and σ(s) = ∅. Otherwise, let X ′ be an arbitrary superset
of X having size 3m − 2. Let us use the algorithm of Lemma 4.6 to test if X ′ is m-unbreakable; if
so, then we can return X ′ and we are done. Otherwise, there is a separation (A,B) of G having
order < m such that ∣(X ′ ∩ V (A)) ∪Q∣, ∣(X ′ ∩ V (B)) ∪Q∣ < ∣X ′∣ = 3m − 2 for Q ∶= V (A) ∩ V (B).
Let us construct a star decomposition ΣX = (TX , σX , αX) with center s and tips tA, tB. First, let
α(s) = V (G) and σ(s) = ∅. Let α(tA) = V (A) ∖ (Q ∪X ′) and σ(tA) = (X ′ ∩ V (A)) ∪Q; it is clear
that ∣σ(tA)∣ < 3m − 2. Similarly, let α(tB) = V (B) ∖ (Q ∪X ′) and σ(tB) = (X ′ ∩ V (B)) ∪Q. It
is straightforward to verify that this is indeed a star decomposition of G ∪K[X] with adhesion
< 3m − 2. Furthermore, ∣β(s)∣ = ∣Q ∪X ′∣ ≤m − 1 + 3m − 2 = b∗(m).

11



The second local decomposition lemma takes an unbreakable set X of appropriate size, and
either finds a star decomposition where the torso of the center node excludes some minor or finds
a large clique minor. Furthermore, this clique minor has the additional property that it is close to
the unbreakable set X in the following sense:

Definition 4.8. Let I be an H-minor image in G and let X be a set of vertices. We say that I is
m-attached to X if there is no separation (A,B) of order < m such that I(v) ⊆ V (A) ∖ V (B) for
some v ∈ V (H) and ∣(V (B) ∩X) ∪ V (A ∩B)∣ ≥ ∣X ∣.

In particular, if X is an m-unbreakable set and I is m-attached to X, then whenever I(v) ⊆
V (A) ∖V (B) for some v ∈ V (H) and separation (A,B) of order <m, then we know that ∣(V (A) ∩

X) ∪ V (A ∩ B)∣ ≥ ∣X ∣. Thus in every separation, I is on the same side as the larger part of X.
(This definition is similar to the notion of a tangle controlling a minor, introduced by Robertson
and Seymour [33].)

Lemma 4.9 (Excluded-minor star decomposition). For every `,m ∈ N, there is a constant
e∗(`,m) such that the following holds. There is an f(`,m) ⋅ ∣V (G)∣O(1) time algorithm that, given
a graph G, integers `, m, and an m-unbreakable set X of size 3m − 2

(1) either finds a K`-minor image I in G that is m-attached to X,

(2) or computes a star decomposition ΣX = (TX , σX , αX) of G∪K[X] having adhesion < ∣X ∣ such
that X ⊆ βX(s) and τX(s) does not contain a Ke∗(`,m)-minor for the center s of TX .

Furthermore, suppose that the algorithm computes ΣX on input (G,X) and let (G′,X ′) be a pair
such that there is an isomorphism f from G to G′ with f(X) =X ′. Then the algorithm computes a
star decomposition Σ′

X′ on input (G′,X ′) and there exists an isomorphism g from TX to TX′ such
that for all t ∈ V (TX) we have σX′(g(t)) = f(σX(t)) and αX′(g(t)) = f(αX(t)).

Lemma 4.9 states an invariance condition saying that for isomorphic input the decomposition
is isomorphic. This condition is not required for the proof of the Global Structure Theorem 4.1,
but will be essential for the proof of the Invariant Decomposition Theorem 8.6 in Section 8. Note
that Lemma 4.7 does not state such an invariance condition and in fact there does not seem to be
an obvious way of ensuring invariance (for example, already the selection of X ′ in the first step of
the proof is completely arbitrary and hence cannot be done in an invariant way). This is precisely
the reason why we need to use the more general treelike decompositions in Sections 8–9 if we want
the construction to be invariant.

The proof of Lemma 4.9 is deferred to Section 6.2. The algorithm repeatedly finds K`-minor
images and tests if they are m-attached to S. If so, it returns it, otherwise there is a separator that
we can use to decrease the bag of the center in such a way that this particular image is no longer
in the torso of the center. Note that when we exclude some vertices from the bag, then new cliques
can appear in the torso. The main technical challenge is to ensure that no new clique minor images
are created when decreasing the size of the bag.

The third and final decomposition lemma takes a clique minor image I attached to an un-
breakable set S and finds either a star decomposition where the torso of the center has “almost
bounded degree” (that is, bounded degree with the exception of a bounded number of vertices) or
a subdivision of a clique.

Lemma 4.10 (Bounded-degree Star Decomposition). For every k ∈ N, there exist constants
c∗(k), d∗(k), m∗(k), `∗(k) such that the following holds. There is an f(k)∣V (G)∣O(1) time algo-
rithm that given a graph G, integer k, an m-unbreakable set X of size 3m−2 (for m ∶=m∗(k)) and
an image I of K` that is m-attached to X (for ` ∶= `∗(k)),

12



(1) either finds a subdivision of Kk in G,

(2) or computes a star decomposition ΣX = (TX , σX , αX) of G ∪ K[X] having adhesion < ∣X ∣

such that X ⊆ β(s) and at most c∗(k) vertices of τ(s) have degree greater than d∗(k) in τ(s),
where s is the center of TX .

Furthermore, suppose that the algorithm computes ΣX on input (G,X) and let (G′,X ′) be a pair
such that there is an isomorphism f from G to G′ with f(X) =X ′. Then the algorithm computes a
star decomposition Σ′

X′ on input (G′,X ′) and there exists an isomorphism g from TX to TX′ such
that for all t ∈ V (TX) we have σX′(g(t)) = f(σX(t)) and αX′(g(t)) = f(αX(t)).

The proof of Lemma 4.10 is deferred to Section 6.3. The main idea is that we are trying to
remove every high-degree vertex from the bag of the center using appropriate separations. If there
are at least k high-degree vertices that cannot be removed this way, then these vertices are close to
the clique minor image I, and we can use this fact to construct a subdivision of a clique.

With the three local decomposition algorithms of Lemmas 4.7–4.10 at hand, we are ready to
prove Local Structure Theorem 4.2:

Proof of Local Structure Theorem 4.2. Let c(k) = c∗(k), d(k) = d∗(k), ` = `(k) = `∗(k), m =m(k) =
m∗(k) using the functions c∗, d∗, `∗, m∗ in Lemma 4.10. Let e(k) = e∗(`,m) for the function e∗ in
Lemma 4.9. Let b(k) = b∗(m) for the function b∗(k) in Lemma 4.7. Let a(k) = 3m − 3. Note that
b∗(m) ≥ 3m − 3 in Lemma 4.7: otherwise, neither (1) nor (2) would be possible if X = V (G) and
∣X ∣ = 3m − 3. Thus we can assume b(k) ≥ a(k).

If S = V (G), then we can return a star decomposition consisting of a single center node s with
α(s) = V (G) and σ(s) = ∅ (here we use that b(k) ≥ a(k) ≥ ∣S∣). Otherwise, let X ∶= S ∪ {v} for
an arbitrary vertex v /∈ S. Let us call the algorithm of Lemma 4.7 on G, X, and m. If it returns
a star decomposition ΣX = (TX , σX , αX), then we return it and we are done. Note that in this
case v ∈ X ⊆ βX(s) for the root s of TX , thus v /∈ αX(t) for any tip t of TX , which means that the
requirement αX(t) ⊂ αX(s) indeed holds. Otherwise, let X ′ be the m-unbreakable superset of X
returned by the algorithm. Let us call the algorithm of Lemma 4.9 with G, `, m, and X ′. Again,
if it returns a star decomposition, we are done. Otherwise, it returns a K`-minor image I that is
m-attached to X ′. Let us call the algorithm of Lemma 4.10 with G, k, X ′, and I. It returns either
a Kk-subdivision or a star decomposition; we are done in both cases.

5 Tangles

In the proofs of the local decomposition lemmas (Section 6), we need to deal with separations that
separate some set from (the larger part of) an unbreakable set. Robertson and Seymour [31] defined
the abstract notion of tangles, which is a convenient tool for describing such separations. While
in principle our results could be described without introducing tangles (in particular, we are not
using any previous results about tangles), we feel that they provide a convenient notation for our
purposes, and they make our results slightly more general.

Let m ∈ N ∖ {0}. A tangle of order m in a graph G is a set T of separations of G of order < m
such that the following axioms are satisfied:

(TA.1) For every separation (A,B) of G of order <m, either (A,B) ∈ T or (B,A) ∈ T.

(TA.2) For all (A1,B1), (A2,B2), (A3,B3) ∈ T it holds that A1 ∪A2 ∪A3 ≠ G.

(TA.3) For all (A,B) ∈ T it holds that V (A) ≠ V (G).
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Intuitively, one can think of each separation (A,B) in the tangle T as having a “small side” A and
“big side” B. Axiom (TA.2) states that the “small side” is so small that not even three of them
can cover the whole graph.

In this section, we introduce basic concepts for dealing with tangles in the algorithmic context
we need later. The ideas are not new, most of them already appear in [31, 28] in a similar form.
However, our exact definitions are sometimes different (and therefore we use different terms), and
it will be important for us to work with these precise definitions.

In this paper, we only consider tangles of a special form. These tangles are defined by unbreak-
able sets (in the sense of Definition 4.5).

Lemma 5.1. Let X be an m-unbreakable set of size at least (3m − 2) in graph G. Let T contain
every separation of order < m such that ∣(X ∩ V (B)) ∪ V (A ∩ B)∣ ≥ ∣X ∣. Then T is a tangle of
order m in G (and we call it the tangle of order m defined by the set X). Furthermore, for every
separation (A,B) ∈ T it holds that ∣V (A) ∩X ∣ ≤ ∣V (A ∩B)∣ <m.

Proof. Let us first observe that for every separation (A,B) ∈ T with Q ∶= V (A ∩ B) we have
∣V (A) ∩X ∣ ≤ ∣Q∣ ≤m − 1: otherwise, we would have

∣(X ∩V (B))∪V (A∩B)∣ = ∣(X ∩(V (B)∖V (A)))∪Q∣ = ∣X ∣ − ∣V (A)∩X ∣ + ∣Q∣ < ∣X ∣ − ∣Q∣ + ∣Q∣ = ∣X ∣,

contradicting the assumption that (A,B) ∈ T. In particular, this makes it impossible that V (A) =

V (G), proving (TA.3).
To see that T satisfies (TA.2), let (A1,B1), (A2,B2), (A3,B3) ∈ T. By our observation in the

previous paragraph, we have ∣V (Ai) ∩X ∣ ≤m − 1 for i = 1,2,3, thus

∣(V (A1) ∩X) ∪ (V (A2) ∩X) ∪ (V (A3) ∩X)∣ ≤ 3m − 3 < ∣X ∣.

Therefore, X /⊆ V (A1 ∪A2 ∪A3), implying (TA.2).
Finally, (TA.1) follows immediately from the fact that X is m-unbreakable.

The size of a tangle (even of small order) can be exponential in the size of the graph. Observe
that specifying the vertex set V (A) ∩ V (B) is not sufficient for describing the separation (A,B).
For example, a star with n leaves have at least 2n separations of order 1. Therefore, when stating
algorithmic results that take a graph and a tangle as input, we have to state how the tangle is
represented. To obtain maximum generality of the results, we assume that the tangle is given by
an oracle. We define two type of oracles. The first type simply answers if a separation (A,B) is a
member of the tangle. However, in applications we often need to find a separation of small order in
the tangle that separates two given sets S and T . The min-cut oracle answers queries of this type.
Note that there are more than one natural way of defining such oracles, in particular, we might
want to allow or forbid the separator V (A)∩V (B) to intersect S and/or T . We define the min-cut
oracle in a way that includes all these possibilities: the query contains a set F of forbidden vertices
and we require the separator to be disjoint from F .

Definition 5.2. Let T be a tangle of order k in a graph G.

(1) An oracle for T answers in constant time whether a given separation (A,B) is in T.

(2) Given sets S,T,F ⊆ V (G) and an integer λ < k, a min cut oracle for T returns in constant
time either a separation (A,B) ∈ T of order at most λ such that S ⊆ V (A), T ⊆ V (B), and
V (A) ∩ V (B) ∩ F = ∅, or “no” if no such separation exists.

For tangles defined by unbreakable sets it is easy to implement both type of oracles:
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Lemma 5.3. Let X be an m-unbreakable set of size at least 3m − 2 in a graph G and let T be the
tangle of order m defined by X.

(1) The oracle for T can be implemented in polynomial time.

(2) The min cut oracle for T can be implemented in time 2∣X ∣ ⋅ ∣V (G)∣O(1).

Proof. To implement the oracle, all we have to do is to check if ∣X ∩ V (B ∖A)) ∪ V (A ∩B)∣ ≥ ∣X ∣,
which can be clearly done in polynomial time.

To implement the min cut oracle, observe that the answer for a query S, T , F , λ is yes if and
only if there is a separation (A,B) with separator Q = V (A) ∩ V (B) satisfying

(1) S ⊆ V (A),

(2) T ⊆ V (B),

(3) Q ∩ F = ∅,

(4) ∣Q∣ ≤ λ, and

(5) there is a set X ′ ⊆X of size at least ∣X ∣ − ∣Q∣ with X ′ ⊆ V (B) ∖ V (A).

In this case, (A,B) ∈ T and satisfies the requirements. To find such an (A,B), we guess the size
of ∣Q∣ (at most λ + 1 possibilities) and the set X ′ (at most 2∣X ∣ possibilities). For each such guess,
we check if there is a Q of the given size that is disjoint from F ∪X ′ and separates S from T ∪X ′.
This can be checked using standard minimum cut algorithms in polynomial time. If we find such
a set Q for at least one of the guesses, then we can return a separation (A,B) ∈ T satisfying the
requirements. If there is no such Q for any of the guesses, then the answer is no.

Remark 5.4. Let us mention that for all tangles, and not only tangles defined by unbreakable
sets, we can implement a min cut oracle using just a plain oracle in time 2O(k)nO(1), where n is the
order of the graph and k the order of the tangle. This can be proved using “important separators”
(introduced in [24]). As we do not need this result in the present article, we omit the proof.

5.1 Boundaries and separations

In this section, we summarize some useful properties of boundaries of sets and their relations to
tangles. These facts will be used extensively in Section 6.

Recall that ∂(X) = ∣N(X)∣. The following lemma states that the function ∂ satisfies the
submodular inequality and a variant of the posimodular inequality:

Lemma 5.5. Let G be a graph and X,Y ⊆ V (G).

(1) ∂(X) + ∂(Y ) ≥ ∂(X ∩ Y ) + ∂(X ∪ Y ).

(2) ∂(X) + ∂(Y ) ≥ ∂(X ∖N[Y ]) + ∂(Y ∖N[X]).

Proof. Both statements can be proved by checking that the contribution of each vertex to the
right-hand side is at most the contribution to the left-hand side. This can be verified by a simple
case analysis. Figure 5.1 may help.

(1) Any vertex that contributes to one of the terms on the right-hand side (i.e., appears in
N(X ∩Y ) or in N(X ∪Y )) has to appear either in N(X) or in N(Y ), and therefore contributes at
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X N(X) V (G) ∖N[X]

Y

N(Y )

V (G) ∖N[Y ]

Figure 5.1. Proof of Lemma 5.5; note that there are only edges between regions whose boundaries
have at least one point in common

least one to the left-hand side. Furthermore, if a vertex v appears in both N(X∩Y ) and N(X∪Y ),
then it is easy to check that v ∈ N(X) and v ∈ N(Y ).

(2) If v ∈ N(X ∖N[Y ]), then either v ∈ N(X), or v ∈ N[Y ]. Note that there is no edge between
X ∖N[Y ] and Y , thus in the latter case v ∈ N(Y ) holds. Similarly, v ∈ N(Y ∖N[X]) implies that
either v ∈ N(Y ) or v ∈ N(X). Finally, we claim that if v ∈ N(X ∖N[Y ]) and v ∈ N(Y ∖N[X])

both hold, then v ∈ N(X) and v ∈ N(Y ). Suppose that v /∈ N(X); by v ∈ N(X ∖ N[Y ]), this
is only possible if v ∈ X. Every neighbor of v is in N[X], thus v has no neighbor in Y ∖N[X],
contradicting the assumption that v ∈ N(Y ∖N[X]).

We often work with separations that separate a subset of vertices from the rest of the graph:

Definition 5.6. Let G be a graph and X ⊆ V (G). Then we define the separation SG(X) = (A,B)

by A = G[N[X]], V (B) = V (G) ∖X, E(B) = E(G) ∖E(A).

Note that the order of SG(X) is exactly ∂(X).
The following observation, together with Lemma 5.5, will allow us to use uncrossing arguments

in Section 6:

Lemma 5.7. Let T be a tangle of order m in graph G and let X,Y ⊆ V (G) be sets such that
SG(X), SG(Y ) ∈ T.

(1) For every X ′ ⊆X, if SG(X
′) is of order <m, then SG(X

′) ∈ T.

(2) If SG(X ∩ Y ) is of order <m, then SG(X ∩ Y ) ∈ T.

(3) If SG(X ∪ Y ) is of order <m, then SG(X ∪ Y ) ∈ T.

Proof. (1) Let SG(X) = (A,B) and SG(X
′) = (A′,B′); note that B′ ⊇ B. If (A′,B′) /∈ T and has

order <m, then (B′,A′) ∈ T by (TA.1). But then A ∪B′ ⊇ A ∪B = G and (TA.2) is violated.
(2) Follows from (1).
(3) Let SG(X) = (AX ,BX), SG(Y ) = (AY ,BY ), and SG(X∪Y ) = (AX∪Y ,BX∪Y ). If SG(X∪Y ) /∈

T and has order < m, then (BX∪Y ,AX∪Y ) ∈ T by (TA.1). We claim that AX ∪ AY ∪ BX∪Y = G,
violating (TA.2). Consider an edge e ∈ E(G). If e has an endpoint in X, then e ∈ E(G[N[X]]) =

E(AX). Similarly, if e has an endpoint in Y , then e ∈ E(G[N[Y ]]) = E(AY ). Finally, if e does not
have an endpoint in X ∪ Y , then e /∈ E(G[N[X ∪ Y ]]) = E(AX∪Y ), implying that e ∈ E(BX∪Y ) =

E(G)∖E(AX∪Y ). We can conclude that E(G) = E(AX)∪E(AY )∪E(BX∪Y ). A similar argument
shows that V (G) = V (AX) ∪ V (AY ) ∪ V (BX∪Y ).
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We say that a separation (A,B) removes a set X ⊆ V (G) if X ⊆ V (A) ∖ V (B). Note that
SG(W ) removes X if and only if X ⊆W . It follows from Lemmas 5.5 and 5.7 that for every set X,
there is a unique “closest minimum cut” of the tangle that removes X:

Lemma 5.8. Let T be a tangle of order m in a graph G. Suppose that there is an (A,B) ∈ T with
X ⊆ V (A ∖B). Then there is a unique W (X) ⊆ V (G) such that

(1) X ⊆W (X),

(2) SG(W (X)) ∈ T,

(3) among sets satisfying (1) and (2), the order of SG(W (X)) is minimum possible, and

(4) among sets satisfying (1)–(3), ∣W (X)∣ is minimum possible.

Furthermore, given a min cut oracle for T, this unique minimal set can be found in polynomial
time.

Proof. Let m0 <m be the minimum possible order of a separation SG(W ) ∈ T over all W containing
X (the set V (A ∖B) shows that at least one such W exists). To prove the uniqueness of W (X),
we show a stronger statement: there is such a W (X) with the property that W (X) ⊆W for every
W ⊇ X with SG(W ) ∈ T and ∂(W ) = m0. To prove this statement, suppose that W1,W2 ⊇ X are
sets such that SG(W1), SG(W2) ∈ T both have order m0. By Lemma 5.5(1),

2m0 = ∂(W1) + ∂(W2) ≥ ∂(W1 ∩W2) + ∂(W1 ∪W2).

Observe that W1∩W2 and W1∪W2 both contain X. If ∂(W1∪W2) <m0, then SG(W1∪W2) ∈ T by
Lemma 5.7(3), contradicting the minimality of the order of SG(W1) and SG(W2). If ∂(W1 ∪W2) ≥

m0, then ∂(W1 ∩W2) ≤ m0. By Lemma 5.7(2), SG(W1 ∩W2) ∈ T, and its order is not larger than
the order of SG(W1) and SG(W2). Thus the intersection of the two sets is also a set satisfying the
requirements. It follows that the common intersection of every Wi ⊇ X such that ∂(Wi) =m0 and
SG(Wi) ∈ T is the required minimal set W (X).

To find this unique set W (X), we let S ∶= X, initially define T = ∅, and use the min cut
oracle to check if there is a separation (A,B) of order at most λ with X ⊆ V (A), T ⊆ V (B), and
V (A) ∩ V (B) disjoint from F ∶=X. Let us fix the smallest λ for which the answer is yes: then the
min cut oracle returns a separation (A,B) ∈ T, such that W ∶= V (A)∖V (B) satisfies the first three
properties above. To ensure that the last property holds as well, we pick a vertex v ∈W , and call
the min cut oracle to check if there is a separation (A′,B′) ∈ T of order λ such that X ⊆ V (A′),
T ∪{v} ⊆ V (B′), and V (A′)∩V (B′) disjoint from X. If there is such a separation, then we include
v in T , and repeat this process with the new separation (A′,B′). As the size of T strictly increases,
eventually we arrive at a set W such that including any vertex v ∈W into T increases the minimum
cut size to above λ. We have seen that this set W contains the unique minimal set W (X) defined
above. Furthermore, W =W (X) has to hold: otherwise, including a vertex v ∈W ∖W (X) into T
would not increase the minimum cut size.

In the following, we will denote by W (X) the unique set defined by Lemma 5.8. Note that if
there is no separation (A,B) ∈ T with X ⊆ V (A ∖B), then W (X) is undefined.

Proposition 5.9. Let X ⊆ V (G) such that W (X) is defined and G[X] is connected. Then
G[W (X)] is connected.

Proof. Suppose that G[W (X)] is not connected. Since X ⊆ W (X), there is a component C
of G[W (X)] containing C. By Lemma 5.7(1), SG(W (X)) ∈ T implies SG(C) ∈ T. Clearly,
N(C) ⊆ N(W (X)), thus ∂(C) ≤ ∂(W (X)). Together with C ⊂ W (X), this contradicts the
minimality of W (X).
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6 Proofs of the Local Decomposition Lemmas

This section completes the proof of Global Structure Theorem 4.1 by proving Lemmas 4.9 and
4.10. First, in Section 6.1 we describe a useful tool (taken from [32]): using a clique minor as a
“crossbar switch” to connect a set of vertices. The proofs of Lemmas 4.9 and 4.10 are contained in
Sections 6.2 and 6.3, respectively. Note that the proofs in this section contain somewhat more work
than what is strictly necessary for the proof of the Global Structure Theorem 4.1: the proof of the
invariance conditions in Lemmas 4.9 and 4.10 require extra arguments. These invariance conditions
are not needed for the Global Structure Theorem, but they will be crucial for the invariance of the
treelike decompositions in Section 8 and therefore for the results of Section 9 on isomorphism and
canonization.

We prove variants of Lemmas 4.9 and 4.10 stated in terms of tangles instead of unbreakable
sets (Lemmas 6.10 and 6.12, respectively); the proofs of Lemmas 4.9 and 4.10 follows easily from
these variants. The statements involving tangles need the following definitions:

Definition 6.1. Let T,T′ be tangles in graphs G,G′, respectively. An isomorphism from (G,T) to
(G′,T′) is an isomorphism f from G to G′ such that for all (A,B) ∈ T we have (f(A), f(B)) ∈ T′.

Definition 6.2. Let Σ = (T,β) be a star decomposition of graph G and let T be a tangle of
G. We say that Σ respects T if for every tip t of T the separation (A,B) with A = G[γ(t)] and
V (B) = V (G) ∖ α(t) is in T. In particular, this implies SG(α(t)) ∈ T and ∣σ(t)∣ is less than the
order of T.

6.1 Using a clique minor

The following lemma follows from [32, (5.3)]:

Lemma 6.3 ([32]). For every r ∈ N, there is a constant t(r) = O(r2) such that the following
holds. Let G be a graph and R ⊆ V (G) with ∣R∣ = r. Let t ≥ t(r) and let (Bi)i∈[t] be an image of a
Kt-minor in G. Suppose that there is no separation (G1,G2) of G of order < ∣R∣ with R ⊆ V (G1)

and Bb∩V (G1) = ∅ for some b ∈ [t]. Then there is a K∣R∣-minor image in G such that every branch
set contains exactly one vertex of R and such an image can be found in polynomial time.

In fact, [32, (5.3)] gives a better constant t(r) = O(r). For completeness, we give a short and
self-contained proof of Lemma 6.3 here (which achieves only r(r) = O(r2)). We need the following
lemma first:

Lemma 6.4. Let G be a graph and R ⊆ V (G). Let ` > ∣R∣, and let (Bi)i∈[`] be an image of a
K`-minor of G. Suppose that there is no separation (G1,G2) of G of order < ∣R∣ with R ⊆ V (G1)

and Bb ∩ V (G1) = ∅ for some b ∈ [`]. Then there are pairwise vertex-disjoint paths P1, . . . , P∣R∣

such that the following conditions are satisfied.

(1) The first endpoint of each Pi is a vertex of R.

(2) The second endpoints of the Pi’s are in distinct branch sets Bi.

(3) The ∣R∣ paths intersect exactly ∣R∣ branch sets.

Proof. Let bi be an arbitrary vertex of Bi. By Menger’s Theorem, we get that either there are ∣R∣

vertex-disjoint paths P1, . . . , P∣R∣ such that Pi connects R and bi, or there is a separation (G1,G2)

of order < ∣R∣ such that R ⊆ V (G1) and every bi with 1 ≤ i ≤ ∣R∣ is in G2. Now ∣V (G1)∩V (G2)∣ < ∣R∣

means that there is a Bi with 1 ≤ i ≤ ∣R∣ that is disjoint from V (G1) ∩ V (G2). However, since
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Bi is connected and bi ∈ V (G2), this would imply that Bi is fully contained in V (G2) ∖ V (G1),
contradicting the assumption of the lemma. Therefore, there exists paths P1, . . . , P∣R∣ that satisfy
the first two conditions. In order to ensure that the third condition holds, pick a path Pi and, if
possible, shorten it such that its new second endpoint is in a branch set different from where the
second endpoints of the other paths are. If it is not possible to shorten any of the paths this way,
then no path visits a branch set other than where the endpoints of the other paths are. In other
words, the paths visit exactly ∣R∣ branch sets.

Proof of Lemma 6.3. Let t(r) = r2 + r. Let I0 = (Bi)i∈[t]. For i = 1, . . . , r, we define Bi and Ii as
follows. We use Lemma 6.4 to obtain a collection Pi of paths between R and the branch sets in
Ii−1. Let Bi be the set of branch sets that the paths in Pi intersect and let Ii be obtained by
removing Bi from Ii−1. As t ≥ t(r) = r2 + r, Ir is well defined and has at least r branch sets.

Let G′ obtained from G by contracting each branch set of Ir into a single vertex. Let v1, . . . , vr
be contracted versions of the r branch sets of Ir. Suppose that there are vertex-disjoint paths P1,
. . . , Pr in G′ such that Pi connects R and vi. Let Si be the union of V (Pi) and the uncontracted
version of vi in G. Clearly, the Si’s are vertex-disjoint and they form the required Kr-minor image.

Suppose that there are no r vertex-disjoint paths connecting R and {v1, . . . , vr} in G′. By
Menger’s Theorem, this means that G′ has a separation (G′

1,G
′

2) of order < r such that R ⊆ V (G′

1)

and {v1, . . . , vr} ⊆ V (G′

2). Therefore, there is a vj in V (G′

2)∖V (G′

1). For every 1 ≤ i ≤ r, the branch
sets in Bi and the paths in Pi are disjoint from the branch sets in Ir, hence these sets and paths
still appear in the contracted graph G′. As the sets B1, . . . , Br are disjoint, there is a 1 ≤ i ≤ r
such that V (G′

1) ∩ V (G′

2) is disjoint from the r branch sets in Bi. This means that these branch
sets are fully contained in V (G′

2)∖V (G′

1): they cannot be contained in V (G′

1)∖V (G′

2), since they
are adjacent to vj ∈ V (G′

2) ∖ V (G′

1). Therefore, each of the r vertex-disjoint paths in P i has to go
through V (G′

1) ∩ V (G′

2), which is of size < r, a contradiction.

6.2 Star decomposition with clique-minor free center

We prove Lemma 4.9 in this section. First we prove a variant of the lemma stated in terms of
tangles (Lemma 6.10) and then deduce Lemma 4.9 it at the end of the section.

Recall that a separation (A,B) removes a set X if X ⊆ V (A)∖V (B). We say that a separation
(A,B) removes the H-minor image I = (Iw)w∈V (H) if it removes one of the branch sets, that is,
Iw ⊆ V (A) ∖ V (B) for some w ∈ V (H). A tangle T in G removes an H-minor image I if I is
removed by some (A,B) ∈ T with order < ∣H ∣. The following lemma is analogous to Lemma 5.8:
for every clique minor, there is a unique “closest minimum separation” that removes it.

Lemma 6.5. Let T be a tangle of order m in a graph G and let e > 2m. For every image I of Ke

in G removed by T, there is a unique W (I) ⊆ V (G) such that

(1) SG(W (I)) removes I,

(2) SG(W (I)) ∈ T,

(3) among sets satisfying (1) and (2), the order of SG(W (I)) is minimum possible, and

(4) among sets satisfying (1)–(3), ∣W (I)∣ is minimum possible.

Furthermore, G[W (I)] is connected and there is a polynomial-time algorithm that, given G, m, I,
and a min cut oracle for T, either finds W (I) or concludes that T does not remove I.
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Proof. As T removes I, there has to be at least one separation (A,B) ∈ T that removes I. Thus
the set W = V (A) ∖ V (B) is one such set. To prove the uniqueness, suppose that there are two
distinct minimal sets X and Y . By Lemma 5.5(1), either ∂(X ∩ Y ) ≤ ∂(X) or ∂(X ∪ Y ) < ∂(Y ).

Suppose first that ∂(X ∩ Y ) ≤ ∂(X) < m. By Lemma 5.7(2), SG(X ∩ Y ) ∈ T. We claim that
SG(X ∩ Y ) removes I. As both SG(X) and SG(Y ) remove I, there are vertices x, y ∈ V (Ke) such
that V (Ix) ⊆ X and V (Iy) ⊆ Y . Since ∂(X), ∂(Y ) < m and e > 2m, there is a vertex z ∈ Ke such
that V (Iz) is disjoint from NG(X)∪NG(Y ). As Ke is a clique, a vertex of V (Iz) has to be adjacent
to V (Ix) ⊆ X, which is only possible if this vertex is also in X (since it cannot be in NG(X)). It
follows that V (Iz) is fully contained in X. A symmetrical argument shows that V (Iz) ⊆ Y . Thus
V (Iz) ⊆X ∩Y , i.e., SG(X ∩Y ) removes I. Therefore, X ∩Y ⊂X and ∂(X ∩Y ) ≤ ∂(X) contradicts
the minimality of X.

Suppose now that ∂(X∪Y ) < ∂(Y ) <m. By Lemma 5.7(3), SG(X∪Y ) ∈ T. Clearly, SG(X∪Y )

removes I (as any branch set contained in X or Y is also contained in X∪Y ). Therefore, SG(X∪Y )

contradicts the minimality of SG(Y ).
To check if an image I is removed by T, we use the algorithm of Lemma 5.8 to compute the

set W (Iv) for every v ∈ V (Ke) (if such a set exists). If T removes I, then at least one of these sets
should exist. Furthermore, if T removes I, then it should be clear that W (I) is equal to one of these
sets W (Iv): if W (I) contains Iv, then it cannot be different from W (Iv) (as it would contradict
the minimality and uniqueness of either W (I) or W (Iv)). As W (Iv) is connected by Prop. 5.9, it
follows that W (I) is connected as well.

A simple uncrossing argument shows that the minimum separations defined in Lemma 6.5
cannot properly intersect one other:

Lemma 6.6. Let T be a tangle of order m in a graph G and let e > 2m. Let Ix and Iy be two
Ke-minor images removed by T. Then either

(1) W (Ix) ⊆W (Iy),

(2) W (Ix) ⊇W (Iy), or

(3) W (Ix) and W (Iy) are disjoint and do not touch.

Proof. Let X ∶= W (Ix) and Y ∶= W (Iy) and suppose that none of the three possibilities hold.
Assume first that Ix has a branch set fully contained in X ∩Y ⊂X. If ∂(X ∩Y ) ≤ ∂(X) <m, then
SG(X∩Y ) ∈ T by Lemma 5.7(2) and SG(X∩Y ) removes Ix, contradicting the minimality of W (Ix).
Thus we can assume that ∂(X ∩ Y ) > ∂(X). By Lemma 5.5, it follows that ∂(X ∪ Y ) < ∂(Y ) <m.
Therefore, SG(X ∪ Y ) is in T by Lemma 5.7(3) and it clearly removes Iy (since SG(Y ) already
does), contradicting the minimality of Y =W (Iy).

We have proved that Ix has no branch set fully contained in X∩Y , and a symmetrical argument
shows that Iy has no such branch set either. By Lemma 5.5(2), either ∂(X) ≥ ∂(X ∖N[Y ]) or
∂(Y ) ≥ ∂(Y ∖N[X]). Assume without loss of generality the first case. Consider a branch set Ix1
of Ix fully contained in X (such a set exists, as SG(X) removes Ix) and a branch set Ix2 disjoint
from NG(X) ∪NG(Y ) (since e > 2m, there has to be such a set). The branch set Ix2 has a vertex
adjacent to Ix1 ⊆ X. Since Ix2 is disjoint from NG(X), this is only possible if Ix2 is fully contained
in X. Moreover, we assumed that Ix2 is disjoint from NG(Y ) and it is not fully contained in X ∩Y ,
thus Ix2 is fully contained in X ∖ NG[Y ], that is, the separation SG(X ∖ NG[Y ]) removes Ix.
Note that X ∖NG[Y ] is a proper subset of X, otherwise X and Y are disjoint and do not touch.
Lemma 5.7(1) implies that SG(X ∖N[Y ]) ∈ T, and therefore X ∖N[Y ] ⊂X violates the minimality
of X =W (Ix).
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Another useful property of the definition of minimum separation in Lemma 6.5 is that if
SG(W (I)) = (A,B), then the clique minor I allows us to connect vertices of V (A)∩V (B) with each
other using paths in A in an arbitrary way. We use the following definition to state this property:

Definition 6.7. We say that a separation (A,B) of order m is generic if there is a Km-minor
image in A such that each branch set contains exactly one vertex of V (A) ∩ V (B). Such an image
is called a witness.

Lemma 6.8. Let T be a tangle of order m in a graph G and let e > t(m) +m for the function t
of Lemma 6.3. For every image I of Ke in G removed by T, the separation SG(W (I)) is generic.
Furthermore, given I and a min cut oracle for T, a witness can be found in polynomial time.

Proof. Let SG(W (I)) = (A,B) and R = V (A)∩V (B). By definition, (A,B) removes I, thus at least
one branch set of I is contained in V (A)∖V (B) and at most ∣R∣ <m branch sets intersect R. Thus
at least t(m) branch sets are fully contained in V (A)∖V (B). Therefore, A contains a Kt(m)-minor
image I ′. We verify that the conditions of Lemma 6.3 hold for graph A and set R. Suppose that
there is a separation (G1,G2) of order < ∣R∣ with R ⊆ G1 and I ′w ⊆ V (G2) ∖V (G1) for some branch
set I ′w of I ′ (which is also a branch set of I). Let X ′ = V (G2) ∖ V (G1) ⊂ V (A) ∖ V (B) =W (I). It
follows that SG(X

′) has order < ∣R∣ (which is the order of (A,B)) and is in T by Lemma 5.7(1).
However, SG(X

′) also removes I, contradicting the minimality of W (I). We can conclude that
A and R satisfy the conditions of Lemma 6.3, and the existence of the required K∣R∣-minor image
follows.

It follows from Lemma 6.8 that if W (I) = (A,B), then removing V (A) ∖ V (B) and replacing
V (A) ∩ V (B) with the clique K[V (A) ∩ V (B)] does not create any new clique minor images in
B (because the edges in the clique K[V (A) ∩ V (B)] can be simulated by connections in A in the
original graph). Repeated application of this observation shows that after removing all the clique
minor images, we get a bag whose torso does not contain clique minors of the given size.

Lemma 6.9. Let T be a tangle of order m in a graph G and let e > t(m) +m for the function t
of Lemma 6.3. Let I1, . . . , Ip be Ke-minor images removed by T. Let W = ⋃

p
i=1W (Ii) and let

G′ = torso(G,V (G)∖W ). The graph G′ has a Ke-minor I ′ if and only if G has a Ke-minor image
I not removed by any SG(W (Ii)). Furthermore, given a min cut oracle for T and such a Ke-minor
image I, one can compute a Ke-minor image I ′ in G′ in polynomial time and vice versa.

Proof. We can assume that the sets W (I1), . . . , W (Im) are pairwise incomparable (because if
W (Ii) ⊆W (Ij), then omitting Ii from this collection does not change W ), thus by Lemma 6.6, we
can assume that these sets are pairwise disjoint and do not touch. This means that Ri = N

G(W (Ii))
is a subset of V (G) ∖W and induces a clique in G′. By Lemma 6.5, each G[W (Ii)] is connected.
Thus G′ = torso(G,V (G) ∖W ) is exactly the union of G ∖W with a clique on each Ri.

Let I ′ be the image of a Ke-minor in G′. Note that this is not necessarily a Ke-minor image
in G ∖W as G′ has edges that G ∖W does not have. However, we can use the subgraph inside
G[W (Ii)] to simulate these edges. By Lemma 6.8, every SG(W (Ii)) is generic and we can obtain
the corresponding clique minor images. This means that for each Ri, there is a set of r pairwise
disjoint and touching connected subgraphs in G[NG[W (Ii)]]. Using these connected sets, we can
extend each I ′w of G′ into a connected set Iw of G and obtain a Ke-minor image I in G.

For the reverse direction, let I be a Ke-minor image in G not removed by any SG(W (Ii)). Let
I ′ be defined by I ′w = G′[V (Iw) ∖W ] for every w ∈ V (Ke). Note that V (I ′w) ≠ ∅: this would be
only possible if V (Iw) ⊆ W (Ii) for some 1 ≤ i ≤ p, which would imply that SG(W (Ii)) removes
I. We claim that I ′ is a Ke-minor image. The connectedness of I ′w is easy to see: any path with
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internal vertices in W (Ii) can be replaced by an edge in Ri (as Ri induces a clique in G′). To see
that I ′w and I ′u touch for every w,u ∈ V (Ke), consider an edge e between Iw and Iu in G. If both
endpoints of e are in W (Ii) ∪Ri, then I ′w and I ′u both intersect Ri, hence they touch. Otherwise,
e is an edge of G ∖W , implying that it is also an edge of G′.

Now we state and prove a version of Lemma 4.9 in terms of tangles. The following lemma
is closely related to Theorem (3.1) of [33], but in addition is algorithmic and has an invariance
statement that we need for our isomorphism test later.

Lemma 6.10. For every `,m ∈ N, there is a constant e′(`,m) such that the following holds. There
is an f(`,m) ⋅ ∣V (G)∣O(1) time algorithm that, given a graph G, `, m, a min cut oracle for a tangle
T of order m, either

(1) finds a K`-minor image I not removed by T, or

(2) computes a T-respecting star decomposition ΣT = (TT, σT, αT) with center s such that τT(s)
does not contain a Ke′(`,m)-minor.

Furthermore, if the algorithm returns ΣT for (G,T) and T′ is another tangle of order m in
a graph G′, and f is an isomorphism from (G,T) to (G′,T′), then the algorithm returns a star
decomposition ΣT′ for (G′,T′) such that there is an isomorphism g from TT to TT′ such that for all
t ∈ V (TT) we have σT′(g(t)) = f(σT(t)) and αT′(g(t)) = f(αT(t)).

Proof. Let e = e′(`,m) = max(`, t(m) +m + 1) for the function t in Lemma 6.3. We show first
that if T removes every K`-minor image (and therefore every Ke-minor image as e ≥ `), then there
exists a star decomposition satisfying the requirements. Suppose that T removes every K`-minor
image, implying that W (I) from Lemma 6.5 is defined for every Ke-minor image I. Let W contain
the inclusionwise-maximal sets in {W (I) ∣ I is a Ke-minor image}. Let us pick a representative
Ke-minor image for every W ∈ W: let p = ∣W ∣ and let I1, . . . , Ip be a list of Ke-minor images
such that {W (Ii) ∣ 1 ≤ i ≤ p} = W (this implies that W (Ii) ≠ W (Ij) for i ≠ j). By Lemma 6.6,
W (Ii) and W (Ij) do not touch for i ≠ j. Let W = ⋃

p
i=1W (Ii). We construct a star decomposition

ΣT = (TT, σT, αT) with center s and p tips ti (1 ≤ i ≤ p). We set αT(s) = V (G), σT(s) = ∅,
αT(ti) =W (Ii), and σT(ti) = N

G(W (Ii)).
It easy to verify that ΣT is a tree decomposition:

Claim 1. ΣT satisfies properties (TD.1)–(TD.5).

The definition of W (Ii) implies that SG(W (Ii)) ∈ T for every 1 ≤ i ≤ p. Therefore,

Claim 2. ΣT respects T.

Claim 3. G′ = τ(s) = torso(G,V (G) ∖W ) does not contain a Ke.

Proof. If G′ contains a Ke-minor, then Lemma 6.9 implies that there is a Ke-minor image I in G
not removed by any of the separations SG(W (Ii)). However, this contradicts the assumption that
Ii, . . . , Ip is the list of all images for which W (Ii) is inclusionwise maximal. 2 ⌟

Algorithmically, we can find the set W defined above as follows. We construct collections
I(0) ⊂ I(1) ⊂ . . . of Ke-minor images, each of which is removed by T. We start with I(0) = ∅. Given
I(j), we construct I(j+1) as follows. Let W (j) = ⋃I∈I(j)W (I) and G(j) = torso(G,V (G) ∖W (j)).

2Note to typesetter: we are following here the usual convention that the symbol marks the end of a proof and
the ⌟ symbol marks the end of the proof of a claim embedded in a longer proof. In our experience, this significantly
improves the readability of longer proofs.
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We test if G(j) has a Ke-minor (using the algorithm of Theorem 2.1). By Lemma 6.9, if there is a
Ke-minor model I ′ in G(j), then there is a corresponding Ke-minor model I(j) of G which is not
removed by SG(W (I)) for any I ∈ I(j). Let us use the algorithm of Lemma 6.5 to compute the set
W (I(j)). If the algorithm returns that W (I(j)) is not defined, that is, I(j) is not removed by T,
then we can stop and return I(j) (or more precisely, as e ≥ `, a restriction of I(j) to a K`-minor)
and we are done. Otherwise, let us obtain I(j+1) from I(j) by inserting I(j). Let us observe that
W (I(j)) /⊆ W (j): by Lemma 6.6, W (I(j)) ⊆ W (j) is only possible if W (I(j)) ⊆ W (I) for some
I ∈ I(j), but this means that SG(W (I)) already removes I(j), a contradiction. It follows that
W (j) ⊂W (j+1). After including I(j) into I(j+1), we repeat this procedure until we arrive to a j such
that G(j) has no Ke-minor.

As the size of W (j) strictly increases in each step, the process described above stops in at most
∣V (G)∣ steps with a G(j) that does not contain a Ke-minor.

Claim 4. W (j) =W .

Proof. Suppose that W (j) ≠W , i.e., there is an image I∗ such that W (I∗) /⊆W (j). Since G(j) has
no Ke-minor, by Lemma 6.9, there is an I ∈ I(j) such that SG(W (I)) removes I∗. As SG(W (I))
and SG(W (I∗)) both remove I∗, the sets W (I) and W (I∗) both contain a branch set of I∗, hence
it is not possible that the two sets are disjoint and do not touch. Therefore, by Lemma 6.6, one
of the two sets is contained in the other. From W (I∗) /⊆ W (j), we know that W (I∗) ⊆ W (I) is
not possible, hence we have W (I) ⊂ W (I∗), implying that SG(W (I∗)) removes I as well. Now
∂(W (I∗)) < ∂(W (I)) would contradict the minimality of W (I) and ∂(W (I∗)) ≥ ∂(W (I)) would
contradict the minimality of W (I∗) (as ∣W (I)∣ < ∣W (I∗)∣). Thus we have proved that W (j) obtained
by this procedure is indeed the set W defined at the beginning of the proof. ⌟

What remains to be proven is the invariance condition. Suppose that T′ is another tangle of
order m in a graph G′. Let f be an isomorphism from (G,T) to (G′,T′). Let I = (Iv)v∈V (K`)

be a
Ke-minor image in G and let I ′ = (f(Iv))v∈V (Ke)

be the corresponding Ke-minor image in G′. Let
W (I) and W ′(I ′) be the set given by Lemma 6.5 on I and I ′, respectively.

Claim 5. W ′(I ′) = f(W (I)).

Proof. The definition of the set W (I) depends only on the branch sets of I, the tangle T and
the graph-theoretical properties of G (size of the boundaries of certain sets etc.) and all these
properties are preserved by f . ⌟

Therefore, if {W (I1), . . . ,W (Ip)} is the collection of inclusionwise maximal sets appearing
in the definition of W for (G,T), then exactly {f(W (I1)), . . . , f(W (Ip))} is the collection of
sets appearing in the definition of W ′. If follows that for every ti, there is a g(ti) such that
αT(ti) = W (Ii) and αT′(g(ti)) = f(W (Ii)). Moreover, σT(ti) = NG(W (Ii)) and σT′(g(ti)) =

NG′
(f(W (Ii))) = f(NG(W (Ii))) follows, as required. Setting g(s) = s′ (where s′ is the center of

the decomposition of G′) completes the definition of g.

Finally, we can prove Lemma 4.9 by invoking Lemma 6.10 on the tangle defined by the un-
breakable set X:

Proof of Lemma 4.9. Let e∗(`,m) = e′(`,m) + 3m − 2 for the function e′ in Lemma 6.10. Let T be
the tangle of order m defined by the m-unbreakable set X; Lemma 5.1 provides an implementation
of the min-cut oracle for T. Let us call the algorithm of Lemma 6.10 with G, T, `, and m. If it
returns a K`-minor image I not removed by T, then this is equivalent to saying that I is m-attached
to X. Thus we can return I and we are done. Otherwise, the algorithm of Lemma 6.10 returns
a T-respecting star decomposition ΣT = (TT, σT, αT) of G. The star decomposition ΣT almost
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satisfies the requirements of Lemma 4.9, except that X is not necessarily contained in βT(s) for
the center s. To move X to the center, we construct a star decomposition a star decomposition
ΣX = (TX , σX , αX) as follows. First, let TX = TT and for the center s of TX , let αX(s) = V (G)

and σX(s) = ∅. For every tip t of TX , we let αX(t) = αT(t) ∖X and σX(t) = σT(t) ∪ (X ∩ αT(t)).
It is straightforward to verify that ΣX is also a star decomposition of G, and in fact it is star
decomposition even for the supergraph G∪K[X] (since X ⊆ βX(s)). Note that τT(s)∖X = τX(s)∖X
(because the two bags differ only in the vertices of X and all the extra edges of G∪K[X] are incident
to X). As τT(s) has no Ke′(`,m)-minor, this means that τX(s) cannot have a clique minor of order
e′(`,m)+∣X ∣ = e∗(`,m), as required. Furthermore, as ΣT is T-respecting, it follows that ∣σT(t)∣ <m
and SG(αT(t)) ∈ T for every tip t. By Lemma 5.1, this also means that ∣αT(t) ∩X ∣ ≤ m − 1 and
therefore ∣σX(t)∣ ≤ m − 1 +m − 1 < ∣X ∣. Thus the adhesion of ΣX is less than ∣X ∣, as required.3

The invariance condition follows easily from the invariance condition of Lemma 6.10: if f is an
isomorphism from G to G′ with f(X) =X ′ and T and T′ are the tangles defined by the unbreakable
sets X and X ′, respectively, then f is an isomorphism from (G,T) to (G′,T′).

6.3 Star decomposition with a bounded-degree center

The proof of Lemma 4.10 has the same high-level strategy as the proof of Lemma 4.9 in Section 6.2:
we identify those parts of the graph that we want to exclude from the bag of the center (this time,
the high-degree vertices) and we use an uncrossing argument to show that all of them can be
removed more or less independently from each other. The uncrossing argument is somewhat more
involved due to the technicality that a high-degree vertex can be part of the separator removing
some other high-degree vertex.

First we need the following lemma, which shows that all but at most k high-degree vertices can
be removed by separations in the tangle, or we can find a Kk-subdivision. Recall from Lemma 5.8
that if we have tangle T in a graph and a vertex v such that v ∈ V (A ∖ B) for some separation
(A,B) ∈ T, then W ({v}) is the “closest minimum separation” that removes v from the tangle. If
there is no (A,B) ∈ T such that v ∈ V (A∖B) then W ({v}) is undefined. The set Z in the following
lemma consist of all vertices that cannot be removed from the tangle T by a separation of order
less than k(k − 1).

Lemma 6.11. For every k ∈ N, there is a constant `′(k) such that the following holds. For a graph
G, integer k ∈ N, tangle T of order at least k(k−1), and an image I of K`′(k) not removed by T, we
define Z to be the set of all vertices v ∈ V (G) such that v has degree at least k and either W ({v})
is undefined or ∂(W ({v})) ≥ k(k − 1). If ∣Z ∣ ≥ k, then given G, k, a min-cut oracle for T, and I, a
subdivision of Kk in G can be found in polynomial time.

Proof. Let ` = `′(k) = t(k(k − 1)) for the function t in Lemma 6.3. We show that if ∣Z ∣ ≥ k, then we
can find a subdivision of Kk in G. Let Z0 be a subset of Z of size exactly k. Let G′ be the graph
obtained from G by extending each vertex z ∈ Z0 into a clique Kz of k−1 vertices: for every z ∈ Z0,
we introduce k − 2 new vertices that are adjacent to each other, to vertex z, and to every neighbor
of z. The clique Kz contains z and these k − 2 new vertices. Let R ∶= ⋃z∈Z0

Kz.
Let I1, . . . , I` be the branch sets in the K` minor image I. Let us show first that the conditions

of Lemma 6.3 hold for R in G′. Suppose for contradiction that (A′,B′) is a separation of G′

3This is the point (and the analogous argument in the proof of Lemma 4.10) where it becomes motived why we
used the tangle T defined by the unbreakable set X. If we have no bound on ∣αT(t)∩X ∣, then moving X to the center
can increase the adhesion by up to ∣X ∣ = 3m − 2, which means that the bound on the adhesion would be larger than
∣X ∣. Therefore, the repeated application of this lemma in the proof of Global Structure Theorem 4.1 would increase
the adhesion in each step. In all the arguments in the section, we were careful enough to use only separations that
are in T, and therefore we have the bound that the component of each child of t contains at most m−1 vertices of X.
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of order less than ∣R∣ = k(k − 1) with R ⊆ V (A′) and Ib ⊆ V (B′) ∖ V (A′) for some b ∈ [`]. Let
Q′ ∶= V (A′)∩V (B′) be the separator. Without loss of generality, we may assume that for all z ∈ Z0,
either Kz ∩Q

′ = ∅ or Kz ⊆ Q
′. Let A ∶= A′ ∖ (R ∖Z0) and B ∶= B′ ∖ (R ∖Z0) (i.e., we remove from

Q′ the extra vertices that were introduced in the definition of G′). Then (A,B) is a separation of
G; let Q = V (A) ∩ V (B) be the separator. Now it is clear that ∣Q∣ ≤ ∣Q′∣ < k(k − 1). Furthermore,
there has to be a vertex z ∈ Z0 which is not in Q: otherwise, Z0 ⊆ Q implies that the size of Q′ in
G′ is at least k(k − 1). Therefore, (A,B) is a separation of order < k(k − 1) with z ∈ V (A) ∖ V (B).
This separation is in T: otherwise, (B,A) ∈ T by (TA.1) (here we use that the order of T is at
least k(k − 1)) and Ib ⊆ V (B) ∖ V (A) means that T removes I, contradicting our assumption on I.
It follows that (A,B) ∈ T is a separation of order < k(k − 1) with z ∈ V (A) ∖ V (B), contradicting
z ∈ Z and the definition of Z. Thus we can conclude that there is no such separation (G′

1,G
′

2) of
G′, and the conditions of Lemma 6.3 hold for Z and G′.

Lemma 6.3 gives us a Kk(k−1)-minor image in G′, that is, for every q ∈ R, a connected set Iq

such that these sets are pairwise disjoint and touch. Consider a partition of R into (
k
2
) classes, each

of size 2, such that for every pair z1, z2 ∈ Z0 of distinct vertices, there is a class of the partition
containing a vertex of ẑ1 ∈ Kz1 and a vertex of ẑ2 ∈ Kz2 . (As the size of each Kz is exactly k − 1,
such a partition is possible.) We define a path P ′

{z1,z2}
⊆ Iẑ1 ∪Iẑ2 connecting ẑ1 and ẑ2; let P ′ be the

collection of these (
k
2
) paths. For each such path P ′

{z1,z2}
∈ P ′ of G′, there is a corresponding path

P{z1,z2} in G: whenever P ′

{z1,z2}
contains a vertex of some Kz, then we replace it by z. Let P be the

collection of these (
k
2
) paths in G. As the paths P ′ are pairwise disjoint, the corresponding paths

in P can intersect only in Z0. Therefore, we have k vertices Z0 and a collection of (
k
2
) internally

pairwise disjoint paths that connect every pair of vertices in Z0. In other words, we have formed a
Kk topological minor image in G, which we can return.

The following lemma is a version of Lemma 4.10 stated in terms of tangles:

Lemma 6.12. For every k ∈ N there are constants m′(k), d′(k), `′(k) such that the following holds.
There is a polynomial-time algorithm that, given a graph G, an integer k, min cut oracle for a tangle
T of order m′(k), and an image I of K`′(k) not removed by T either

(1) finds a subdivision of Kk in G, or

(2) computes a T-respecting star decomposition ΣT = (TT, σT, αT) of G with center s such that at
most k vertices of τT(s) have degree more than d′(k).

Furthermore, if the algorithm returns ΣT for (G,T) and T′ is another tangle of order m in
a graph G′, and f is an isomorphism from (G,T) to (G′,T′), then the algorithm returns a star
decomposition ΣT′ for (G′,T′) such that there is an isomorphism g from TT to TT′ such that for all
t ∈ V (TT) we have σT′(g(t)) = f(σT(t)) and αT′(g(t)) = f(αT(t)).

Proof. Let `′(k) be as in Lemma 6.11. We will define later (in Claim 4) a constant a depending
on k; let m′(k) = max{k(k − 1), a + 1}. Let Z contain a vertex v ∈ V (G) if v has degree at least
k and either W ({v}) is undefined or ∂(W ({v})) ≥ k(k − 1) (the algorithm of Lemma 5.8 can be
used to check this condition). If ∣Z ∣ ≥ k, then we can use the algorithm of Lemma 6.11 to return a
subdivision of Kk in G, and we are done.

Otherwise, let L ⊆ V (G) be the set of vertices not in Z having degree at least k. For every
v ∈ L, let us use the algorithm of Lemma 5.8 to compute the unique minimal set Wv =W ({v}) (as
v /∈ Z, such a set exists). By Prop. 5.9, G[Wv] is connected.
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Let W contain the inclusionwise-maximal sets in {Wv ∣ v ∈ L}; i.e., Wv ∈W if and only if there
is no u ∈ L with Wv ⊂Wu. Note that we define W such that it does not contain duplicate sets.

Claim 1. Every b ∈ V (G) appears in O(k2) members of W.

Proof. For every W ∈ W, let us choose a representative v ∈ L with W = Wv; let M ⊆ L be the set

of selected representatives. We define a directed graph
Ð→
H on M where Ð→vu ∈ E(

Ð→
H) if and only if

u ∈ NG(Wv). Note that ∣NG(Wv)∣ < k(k−1) implies that the outdegree of v is at most k(k−1)−1.

This further implies that the maximum clique size in the undirected graph H underlying
Ð→
H is at

most 2k(k − 1) − 1: the average degree of every subgraph of H is at most 2k(k − 1) − 2.
We show that the representatives of the sets in W containing b form a clique in H, thus by the

argument in the previous paragraph, there can be at most 2k(k − 1) − 1 sets in W containing b.
Consider two distinct vertices u, v ∈M with b ∈Wu and b ∈Wv. We claim that u and v are adjacent
in the undirected graph H. Otherwise, u /∈ NG(Wv) and v /∈ NG(Wu). We consider the following
cases:

Case 1: u ∈Wu ∩Wv. By Lemma 5.5(1), we have two possibilities:

(1) ∂(Wu ∪Wv) < ∂(Wv). In this case Wu ∪Wv contradicts the minimality of Wv (note that
by Lemma 5.7(3), SG(Wu ∪Wv) ∈ T).

(2) ∂(Wu ∪Wv) ≥ ∂(Wv) and ∂(Wu ∩Wv) ≤ ∂(Wu). In this case, Wu ∩Wv contradicts the
minimality of Wu (by Lemma 5.7(2), SG(Wu ∩Wv) ∈ T).

Case 2: v ∈Wu ∩Wv. Similar to case 1.

Case 3: u ∈Wu∖Wv and v ∈Wv∖Wu. Let W ′

u ∶=Wu∖N
G[Wv] and W ′

v ∶=Wv∖N
G[Wu]. Note that

b ∈Wu ∩Wv implies that W ′

u ⊂Wu and W ′

v ⊂Wv. Furthermore, the assumptions u ∈Wu ∖Wv

and u /∈ NG(Wv) imply that u ∈W ′

u, and we have v ∈W ′

v in a similar way. By Lemma 5.5(2),
either ∂(W ′

u) ≤ ∂(Wu) or ∂(W ′

v) ≤ ∂(Wv). If, say, ∂(W ′

u) ≤ ∂(Wu), then SG(W
′

u) ∈ T follows
by Lemma 5.7(1), contradicting the minimality of Wu.

Therefore, the vertices u of M for which b ∈Wu form a clique in H, thus there are less than 2k(k−1)
such vertices. ⌟

We define
B ∶= (V (G) ∖ ⋃

W ∈W
W ) ∪ ⋃

W ∈W
NG

(W )

(see Figure 6.1).

Claim 2. For every W ∈W, ∣NG[W ] ∩B∣ = O(k6).

Proof. Let us fix a W ∈W. We bound first the number of sets Y ∈W such that NG(Y ) intersects
W . As G[Y ] is connected and Y is not contained in W (by the definition of W), Y has to contain
a vertex b ∈ NG(W ). By Claim 1, there are at most O(k2) sets in W containing a particular
b ∈ NG(W ). Together with ∣NG(W )∣ < k(k − 1), this gives a total bound of O(k4) on the number
of sets Y ∈ W for which NG(Y ) intersects W . As ∣NG(Y )∣ < k(k − 1) for every Y ∈ W, this
means that W contains at most O(k6) vertices of B. Additionally, NG(W ) can contain at most
∣NG(W )∣ < k(k − 1) vertices of B, and the claim follows. ⌟

Let C1, . . . , Cp be the connected components of G ∖ B. We construct a star decomposition
ΣT = (TT, σT, αT) with center s and p tips ti (1 ≤ i ≤ p). We set αT(s) = V (G), σT(s) = ∅,
αT(ti) = Ci, and σT(ti) = N

G(Ci).
It easy easy to verify that ΣT is a tree decomposition:
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B

C1

C2

C3

C4

C5

C6

W1

W2

W4

W3

Figure 6.1. Definition of the set B in Lemma 6.12. The four solid circles represent the sets W1,
W2, W3, W4 contained in W. The dark gray area contains the boundaries of these sets. Set B
(light and dark gray area) is defined to be the union of these boundaries and the area outside these
sets. The six regions C1, . . . , C6 with dashed outline are the components of G ∖B.

Claim 3. ΣT satisfies properties (TD.1)–(TD.5).

The following claim implies a bound on the adhesion of ΣT:

Claim 4. There is a constant a = O(k6) such that ∣σT(ti)∣ ≤ a for every 1 ≤ i ≤ p.

Proof. Observe that αT(ti) is disjoint from B and therefore it has to be fully contained in W for
some W ∈W: vertices outside every W ∈W are in B and NG(W ) ⊆ B for every W ∈W, thus αT(ti)
has to be contained in a single W ∈W. Furthermore, αT(ti) ⊆W implies σT(ti) ⊆ N

G[W ] ∩B. By
Claim 2, ∣NG[W ] ∩B∣ = O(k6), and we have the required bound on ∣σT(t)∣. ⌟

Using the bound on the adhesion, it is easy to show that ΣT respects T:

Claim 5. SG(αT(ti)) ∈ T for every 1 ≤ i ≤ p.

Proof. As in the previous claim, αT(ti) ⊆W for some W ∈ W. The order of SG(αT(ti)) is exactly
∣σT(t)∣, which is at most a by Claim 4. As the order of T is m′(k) > a and αT(t) ⊆W , SG(W ) ∈ T
hold, Lemma 5.7(1) implies that SG(αT(ti)) ∈ T holds as well. ⌟

The following claim proves the bound on the maximum degree:

Claim 6. There is a constant d′(k) = O(k7) such that every vertex v /∈ Z has degree at most d′(k)
in τ(s),

Proof. Let us observe first that for every W ∈W, the graph τ(s) has no edge between W ∩B and
B∖NG[W ]. To see this, recall that, for every 1 ≤ i ≤ p, σ(ti) = N

G(αT(ti)), G[αT(ti)] is connected,
and αT(ti) ∩B = ∅. As NG(W ) ⊆ B, it follows that αT(ti) cannot have a neighbor both inside W
and outside NG[W ]. Therefore, σ(ti) is either a subset NG[W ] or disjoint from W . This means
that in the definition of τ(s), there is no clique that introduces an edge between a vertex in W and
a vertex outside NG[W ].

Consider a u ∈ B ∖Z.

Case 1: u ∈ W for some W ∈ W. By our observation above, every neighbor of u in τ(t) ∖ Z is
contained in NG[W ]. Therefore, Claim 2 gives a bound of O(k6) on the degree of u in τ(t).
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Case 2: u /∈ W for any W ∈ W. As u /∈ Z, this is only possible if the degree of u is at most k
in G. Therefore, u is adjacent to at most k components of G ∖B. Each new clique in τ(t)
corresponds to the neighborhood of such a component. Thus u is part of at most k cliques
introduced in the definition of τ(t). The size of each clique can be bounded by the adhesion
of ΣT, which is at most a by Claim 4. Therefore, k receives at most k ⋅O(k6) new edges. ⌟

What remains to be proven is the invariance condition. Suppose that T′ is another tangle of
order k in a graph G′. Let f be an isomorphism from (G,T) to (G′,T′). Let B and B′ be the sets
computed by the algorithm on (G,T) and (G′,T′), respectively.

Claim 7. B′ = f(B).

Proof. Let W and W ′ be the two collection of sets constructed by the algorithm on (G,T) and
(G′,T′), respectively. Let us observe that W ∈ W if and only if f(W ) ∈ W ′: the definition of
W depends only on the definition of the sets Wv, which depends only on the tangle T and the
graph-theoretic properties of G, all of which are preserved by the isomorphism f . Taking into
account that the definition of B depends only on the sets in W and their neighborhoods in G, we
can deduce B′ = f(B). ⌟

As B′ = f(B), for every component of G ∖B, there is a corresponding component of G′ ∖B′.
Let C ′

1, . . . , C ′

p be the components of G′, as enumerated by running the algorithm on (G′,T′), and
let s′, t′1, . . . , t′p be the nodes of the constructed star decomposition. Let us define g(s) = s′ and let
g(ti) = t

′

j such that f(Ci) = C
′

j .

Claim 8. For all t ∈ V (TT) we have σT′(g(t)) = f(σT(t)) and αT′(g(t)) = f(αT(t)).

Proof. The statement immediately follows from the fact that αT(ti) = Ci and αT′(g(ti)) = f(Ci)
by definition of G, and hence σT(ti) = N

G(Ci) and σT′(g(ti)) = N
G′

(f(Ci)) = f(N
G(Ci)).

Finally, we can prove Lemma 4.10 by invoking Lemma 6.12 on the tangle defined by the un-
breakable set X:

Proof of Lemma 4.10. Let c∗(k) = k+3m−2, d∗(k) = d′(k)+3m−2, ` = `∗(k) = `′(k), m =m∗(k) =
m′(k) for the functions d′, `′, m′ in Lemma 6.12. Let T be the tangle of order m defined by the
m-unbreakable set X (see Lemma 5.1); Lemma 5.3 provides an implementation of the min-cut
oracle for T. As I is m-attached to X, tangle T does not remove I. Let us call the algorithm of
Lemma 6.12 with G, k, T, and I. If it returns a subdivision of Kk in G, then we are done. Otherwise,
the algorithm of Lemma 6.12 returns a T-respecting star decomposition ΣT = (TT, σT, αT) of G.
The star decomposition ΣT almost satisfies the requirements of Lemma 4.10, except that X is
not necessarily contained in βT(s) for the center s. To move X to the center, we construct a
star decomposition ΣX = (TX , σX , αX) as follows. First, let TX = TT and for the center s of
TX , let αX(s) = V (G) and σX(s) = ∅. For every tip t of TX , we let αX(t) = αT(t) ∖ X and
σX(t) = σT(t) ∪ (X ∩αT(t)). It is straightforward to verify that ΣX is also a star decomposition of
G, and in fact it is star decomposition even for the supergraph G ∪K[X] (since X ⊆ βX(s)). As
τT(s) ∖X = τX(s) ∖X, and τT(s) contains at most k vertices of degree higher than d∗(k), we have
that τX(s) contains at most k + ∣X ∣ = c∗(k) vertices of degree higher than d∗(k). The bound < ∣X ∣

on the adhesion and the invariance requirement can be proved the same way as in Lemma 4.9.

7 Partial Dominating Set

The goal of this section is to prove that Partial Dominating Set (find k vertices whose closed
neighborhood has maximum size) can be solved in time f(H,k) ⋅nO(1) on graphs excluding H as a
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topological subgraph. We intend this result as a demonstration of the algorithmic use of the Global
Structure Theorem 4.1: it shows that by combining the techniques that work on almost-embeddable
and on bounded-degree graphs, we can solve problems on graphs excluding a topological subgraph.
We would like to emphasize that all the algorithmic techniques in this section are standard: it is the
new structure theorem that allows us to use these standard techniques on a larger class of graphs.
We remark that an f(k) ⋅ nf(H) algorithm was known for Partial Dominating Set on H-minor
free graphs [1], but instead of extending this algorithm, we give here a self-contained presentation
of the result on graphs excluding H as a topological subgraph.

We begin by defining a generalization of Partial Dominating Set, which will be convenient
for computations on tree decompositions. We extend the problem by introducing a cost function
κ ∶ V (G) → {0,1} and value function ν ∶ V (G) → {0,1}; now the goal is to find a set Z ⊆ V (G)

with κ(Z) ≤ k such that ν(NG[Z]) is maximizied. (As usual, κ and ν are extended to sets by
ν(Z) = ∑v∈Z ν(v) and κ(Z) = ∑v∈Z κ(v).) That is, the vertices with κ(v) = 0 can be used for “free”
and the domination of a vertex with ν(v) = 0 does not increase the objective function.

Definition 7.1. Let G be a graph and S ⊆ V (G) a set of vertices. The k-profile of G with respect
to S is a function π(z, κ, ν), which, for every integer 0 ≤ z ≤ k and functions κ, ν ∶ V (G) → {0,1}
that have value 1 on V (G) ∖ S, gives the maximum of ν(NG[Z]) taken over every Z ⊆ V (G) with
κ(Z) ≤ z.

That is, the k-profile with respect to S is described by (k + 1) ⋅ 2∣S∣ ⋅ 2∣S∣ integers. Observe that
if the k-profile with respect to S is known, then it is easy to deterimine the k-profile with respect
to some S′ ⊆ S.

First we show that the k-profile can be computed in a bottom-up manner on a tree decomposition
if every bag is small, that is, the decomposition has bounded width. Then we use a standard layering
argument to compute the k-profile on almost-embeddable torsos by reducing it to the bounded-
treewidth case. For this reduction, we need the fact that almost-embeddable graphs have bounded
local treewidth:

Theorem 7.2 ([11]). For every p, q, r ∈ N, there is a constant λ > 0 such that the following holds.
Let G be a minor of a (p, q, r,0)-almost embeddable graph, let x ∈ V (G), and let Nd[{x}] ⊆ V (G)

be the set of vertices at distance at most d from x. Then G[Nd[{x}]] has treewidth at most λ ⋅ d
for every d ≥ 0.

Finally, we compute the k-profile on almost bounded-degree torsos by using a standard random
coloring technique.

Lemma 7.3. Let (T,σ,α) be a tree decomposition of a graph G and t a node of T . Suppose that,
for every child t′ of t, the k-profile of G[γ(t′)] with respect to σ(t′) is known. Then the k-profile
of G[γ(t)] with respect to σ(t) can be computed

(1) in time f(s) ⋅ nO(1) if ∣β(t)∣ ≤ s and ∣NT
+
(t)∣ ≤ 2.

(2) in time f(w) ⋅ nO(1) if a tree decomposition of τ(t) having width w is given.

(3) in time f(k, p, q, r, s, a) ⋅ nO(1) if ∣σ(t)∣ ≤ a and a set P of size at most s is given such that
τ(t) ∖ P is almost (p, q, r,0)-embeddable.

(4) in time f(k, c, d, a) ⋅ nO(1) if ∣σ(t)∣ ≤ a and all but at most c vertices have degree at most d in
τ(t).
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Proof. (1) Let us assume that t has exactly two children t1 and t2; it is easy to adapt the proof
for the simpler cases that t has exactly one child or is a leaf. Let G0 = G[γ(t)]. For i = 1,2, let
Gi = G[γ(ti)] and let πi be the k-profile of Gi with respect to σ(ti). We claim that π(z, κ, ν) with
respect to σ(t) is the maximum of

ν(NG0[Z0] ∩ β(t)) + π1(z1, κ1, ν1) + π2(z2, κ2, ν2) (7.1)

taken over functions κi, νi ∶ γ(ti) → {0,1} for i = 1,2 and

z1, z2 ≥ 0

Z0 ⊆ β(t)

κ(Z0) + z1 + z2 ≤ z

κi(v) = νi(v) = 1 for i = 1,2 and every v ∈ α(ti)

νi(v) = 0 for i = 1,2 and every v ∈ NG0[Z0] ∩ σi(t)

ν1(v) + ν2(v) ≤ ν(v) for every v ∈ β(t)

κi(v) = 1 for i = 1,2 and every v ∈ β(t) ∖Z0

Suppose that Z ⊆ γ(t) is the set reaching the maximum in π(z, κ, ν); we show that (7.1) can
reach ν(NG0[Z]). Let Z0 = Z ∩ β(t) and let let κi(v) = 0 if and only if v ∈ Z0 ∩ σ(ti). Let
Zi = Z ∩ γ(ti), zi = κi(Zi), z2 = κ1(Z2). Observe that Z0, Z1, Z2 are not necessarily disjoint, but
κ(Z0) + z1 + z2 ≤ κ(Z) ≤ z holds, as κi(v) = 0 for any vertex that appears in more than one of
the sets. Let ν1(v) = 0 if v ∈ σ(t1) ∩ N

G0[Z0] and let ν1(v) = ν(v) otherwise. Let ν2(v) = 0 if
v ∈ σ(t2) ∩N

G0[Z ∪Z1] and let ν2(v) = ν(v) otherwise. It is easy to verify that every condition is
satisfied. Furthermore, Zi shows that πi(zi, κi, νi) is at least νi(N

Gi[Zi]). The sum of the three
terms in (7.1) is at least κ(NG0[Z]): every vertex v ∈ NG0[Z] is accounted for in one of the three
terms depending on which of v ∈ NG0[Z0], v ∈ N

G0[Z1] ∖N
G0[Z0], or v ∈ NG0[Z2] ∖N

G0[Z0 ∪Z1]

holds.
Conversely, consider the values of z1, z2, Z0, κi, νi that maximize (7.1). Let Zi be a set

that reaches the maximum in the definition of πi(zi, κi, νi). Let Z ∶= Z0 ∪ Z1 ∪ Z2. Clearly,
κ(Z) ≤ κ(Z0) + κ1(Z1) + κ2(Z2) ≤ κ(Z0) + z1 + z2 ≤ z (in the first inequality, we use the fact that
if κ(v) = 1 and κi(v) = 0 for some v ∈ Zi, then v is in Z0 as well). We claim that (7.1) is at most
ν(NG0[Z]). The first term counts the vertices v ∈ NG0[Z0] ∩ β(t) with ν(v) = 1. The second term
is ν1(N

G1[Z1]), i.e, counts those vertices v ∈ NG1[Z1] that have ν1(v) = 1. Similarly, the third
counts v ∈ NG2[Z2] that have ν2(v) = 1. Every vertex v counted this way is in NG0[Z] and has
κ(v) = 1. Furthermore, every such vertex is counted in at most one of the three terms: this is
ensured by the conditions on ν1 and ν2. Thus the three terms count the sizes of disjoint sets, which
means that their sum is at most ν(NG0[Z]) ≤ π(z, κ, ν).

(2) The treewidth of τ(t) is at most w by assumption, thus we can use standard algorithms to
compute in time f(w) ⋅ nO(1) a tree decomposition (Tt, βt) with ∣βt(x)∣ < w for every x ∈ V (Tt).
Since σ(t) is a clique in τ(t), there is an x ∈ V (Tt) with σ(t) ⊆ βt(x). Furthermore, if the children of
t in T are t1, . . . , tm, then σ(ti) is a clique in τ(t), hence there is an xi ∈ V (Tt) with σ(ti) ⊆ βt(xi)
for every 1 ≤ i ≤ m. By standard transformations, we can assume that σ(t) ⊆ βt(r) for the root r
of Tt, for every child ti there is a leaf xi of Tt with σ(ti) ⊆ βt(xi), and every node of Tt has at most
two children (we omit the details).

We modify (T,β) to obtain a new tree decomposition (T ′, β′) the following way. The tree T ′

is obtained from T by removing node t, adding every node of Tt, letting the parent of t be the
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parent of r (the root of Tt), and letting xi be the parent of ti for every 1 ≤ i ≤m. We set β′(y) to
be β(y) if y ∈ V (T ) ∖ {t} and to βt(y) otherwise. It is not difficult to verify that (T ′, β′) is also
a tree decomposition of G. We apply statement (1) on every node t′ ∈ V (Tt) ⊆ V (T ′) of this tree
decomposition in a bottom-up order to compute the k-profile of G[γ′(t′)] with respect to σ′(t′).
The conditions of (1) hold: whenever we consider a t′ ∈ V (Tt), then we already know the k-profile
of each child of t′: either it is in V (Tt) and we know the k-profile because of the bottom-up order
or it is ti and we know the k-profile by assumption. When this procedure reaches r (the root of
Tt), it computes the k-profile of G[γ′(r)] = G[γ(t)] with respect to σ′(r) = σ(t), as required.

(3) Let G′ be the (p, q, r,0)-almost embeddable graph τ(t) ∖ P and let Q contain one vertex
from each connected component of G′. Let level L[i] contain those vertices of G′ whose distance
from Q in G′ is exactly i. We define L[i, j] ∶= ⋃

j
`=iL[`]. We claim that G′[L[i, j]] has treewidth

at most λ ⋅ (j − i + 1) for some λ depending only on p, q, r. If i ≤ 1, then this follows immediately
from Theorem 7.2. If i ≥ 1, then let H be obtained from L[0, j] by contracting every edge whose
both endpoints are at distance at most i − 1 from Q. Observe now that G′[L[i, j]] is a subgraph
of H and that every vertex of H is at distance at most j − i + 1 from Q. As H is a minor of an
(p, q, r,0)-almost embeddable graph, Theorem 7.2 implies that the treewidth of H (and hence of
G′[L[i, j]]) is at most λ ⋅ (j − i + 1).

We compute π(z, κ, ν) with respect to σ(t) as follows. Suppose that Z ⊆ γ(t) is the set reaching
the maximum in the definition of π(z, κ, ν). We claim thatNG[Z∖P ] intersects at mostD ∶= 3(k+a)
levels. For every vertex v ∈ (Z ∖ P ) ∩ β(t), the closed neighborhood of v is fully contained in at
most 3 levels. For every vertex v ∈ Z ∩ α(t′) for some child t′ of t, NG({v}) intersects β(t) in a
subset of σ(t′), which induces a clique in τ(t). Thus NG({v}) intersects at most 2 levels of G′.
We have ∣Z ∣ ≤ k + a, because κ(Z) ≤ z ≤ k and κ(v) = 1 for all but the at most a vertices v ∈ σ(t).
Therefore, NG[Z ∖ P ] intersects at most 2(k + a) ≤D levels.

For 0 ≤ h ≤D, let Mh ∶= ⋃j≥0L[((D + 1)j + h]. Note that these D + 1 sets are pairwise disjoint.
As NG[Z ∖P ] intersects at most D levels, there is an h such that Mh is disjoint from NG[Z ∖P ].
This means that if we obtain Gh from G[γ(t)] by removing from every v ∈Mh the edges incident
to v and not going to P , then this does not change the value of π(z, κ, ν): removing edges cannot
increase this value, and as Mh is disjoint from NG[Z ∖ P ], none of these edges are induced by
NG[Z], thus it does not decrease the value either. Therefore, if we denote by πh the k-profile of
Gh with respect to σ(t), then π(z, κ, ν) = maxDh=0 πh(z, κ, ν).

(T,σ,α) is a tree decomposition also for Gh. Let (Th, σh, αh) be the tree decomposition of
Gh with the slight modification that σh(tj) = σ(tj) ∖Mh for every child tj . This is still a tree
decomposition: there are no edges between α(tj) and σ(tj) ∩Mh in Gh, as vertices of Mh have
neighbors only in P . Furthermore, the k-profile of G[γ(tj)] with respect to σh(tj) ⊆ σ(tj) can be
determined from the k-profile of G[γ(tj)] with respect to σ(tj), which is assumed to be known.

Let us bound the treewidth of τh(t). Observe that vertices of Mh are isolated in τh(t) ∖ P
and thus every component of τh(t) ∖ P contains at most D consecutive levels. Therefore, by our
observation above on the treewidth of G′[L[i, j]], we have that the treewidth of τh(t)∖P is at most
λ ⋅ (D + 1). The set P can increase treewidth by at most s. Thus the treewidth of τh(t) can be
bounded by a function depending only on p, q, r, s, and a. This means that we can use statement
(2) to compute the k-profile πh for every 0 ≤ h ≤D and deduce the value of π(z, κ, ν) with respect
to σ(t).

(4) Let P be the set of vertices with degree more than d in τ(t). Let us color every vertex of
β(t)∖P red or blue uniformly and independently at random. If there is a connected red component
of size larger than D ∶= (k+a)(d+1) in τ(t), then recolor every vertex of this component blue. Let
us obtain G′ from G[γ(t)] by removing every edge with at least one blue endpoint and not incident
to P .
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It is clear that this transformation cannot increase π(z, κ, ν). We claim that with positive
probability depending only on k, a, and d, this transformation does not decrease it either. Suppose
that Z ⊆ γ(t) is the set reaching the maximum in the definition of π(z, κ, ν). Let R ∶= NG[Z ∖P ]∩

β(t) and let B be the (open) neighborhood of R in τ(t)∖P . As there are at most a vertices v ∈ β(t)
with κ(v) = 0, the size of R is at most (k + a)(d + 1) and the size of B is at most (k + a)(d + 1)d.
Thus with positive probability depending only on k and d, R ends up red and B ends up blue.
This means that no vertex of R is recolored blue and therefore none of the edges in NG[Z ∖ P ] is
removed, implying that π(z, κ, ν) does not decrease.

Let (T ′, σ′, α′) be a tree decomposition of G′ obtained from (T,σ,α) by setting, for every child
tj of t, α′(tj) = α(tj) and letting σ′(tj) be σ(tj) minus the blue vertices. Similarly to (3), this
remains a tree decomposition and the k-profiles of G[γ(tj)] with respect to σ′(tj) can be assumed
to be known. We claim that the treewidth of τ ′(t) can be bounded by a function k, c, d, and
a. Indeed, every component of τ ′(t) ∖ P has size at most D (as we recolored every larger red
component to blue) and P can increase treewidth by at most c. Thus we can use (2) to compute
the profile of the modified graph and with probability depending only on k, a, and d, this will give
us exactly π(z, κ, ν) with respect to σ(t). By repeated application, the error probability can be
made an arbitrary small constant. Furthermore, the algorithm can be derandomized using standard
techniques, see e.g., [20].

Theorem 1.2 follows immediately by putting together Corollary 4.4 and Lemma 7.3(3–4): in a
bottom-up order, for every node t of the decomposition given by Corollary 4.4, we can compute
the k-profile of G[γ(t)] with respect to σ(t), which gives us the value of the optimum solution of
Partial Dominating Set.

Remark 7.4. Recall that a graph is d-degenerate if every subgraph has a vertex of degree at
most d. A classical result of Mader [23] shows that every graph excluding H as a topological
subgraph is dH -degenerate for some constant dH depending on H, thus it is a natural question
whether Theorem 1.2 can be generalized to the more general class of d-degenerate graphs. However,
Partial Dominating Set is W[1]-hard parameterized by k and d on d-degenerate graphs. To
see this, note that Maximum Independent Set, parameterized by the size k of the solution, is
W[1]-hard even on regular graphs. Let G be an r-regular graph (r ≥ 3) and let us subdivide every
edge by a new vertex. It is not difficult to see that G has an independent set of size k if and only
if the new graph G′ has a set of k vertices whose closed neighborhood has size (r + 1)k. As G′

is 2-degenerate, an f(k, d) ⋅ nO(1) time algorithm for Partial Dominating Set on d-degenerate
graphs would imply an f(k) ⋅ nO(1) time algorithm for Maximum Independent Set. Thus the
fixed-parameter tractability of Partial Dominating Set on graph excluding H as a topological
subgraph is not simply a consequence of the sparsity/degeneracy of such graphs, but essentially
depends on the structural properties of this class of graphs.

8 Invariant Treelike Decompositions

In this section, we relax the notion of tree decomposition to the more liberal notion of treelike
decomposition, first introduced in [12, 10]. The reason is that we want to make our decompo-
sitions invariant under automorphisms of the underlying graph, and this is not possible for tree
decompositions. Treelike decompositions are based on the axiomatisation of tree decompositions
by (TD.1)–(TD.5). From now on, a decomposition of a graph G is a triple ∆ = (D,σ,α), where
D is a digraph and σ,α ∶ V (D) ↦ 2V (G). For every t ∈ V (D), we define sets γ(t), β(t) ⊆ V (G)

and a graph τ(t) as in (3.4), (3.5), and (3.6). Two nodes t, u ∈ V (D) are ∆-equivalent (we write
t � u) if σ(t) = σ(u) and α(t) = α(u). Note that t � u implies γ(t) = γ(u), but not β(t) = β(u) or
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Figure 8.1. (a) The cycle C5 with (b) a tree decomposition and (c) an automorphism-invariant
treelike decomposition

τ(t) = τ(u). We will occasionally work with several decompositions at the same time, and in such
situations may use an index ∆, as for example in σ∆(t) or t �∆ u, to indicate which decomposition
we are referring to. However, we usually prefer implicit naming conventions such as the following:
If we have a decomposition ∆′ = (D′, σ′, α′), then we will denote γ∆′

(t) by γ′(t), β∆′
(t) by β′(t),

et cetera.
The width and adhesion of a decomposition are defined, as for tree decompositions, to be the

maximum size of the bags minus one and the maximum size of the separators, respectively. A
decomposition is over a class A of graphs if all its torsos are in A.

Definition 8.1. A treelike decomposition of a graph G is a decomposition ∆ = (D,σ,α) of G that
satisfies the following axioms:

(TL.1) D is acyclic.

(TL.2) For all t ∈ V (D) it holds that α(t) ∩ σ(t) = ∅ and NG(α(t)) ⊆ σ(t).

(TL.3) For all t ∈ V (D) and u ∈ ND
+
(t) it holds that α(u) ⊆ α(t) and γ(u) ⊆ γ(t).

(TL.4) For all t ∈ V (D) and u1, u2 ∈ N
D
+
(t), either u1 � u2 or γ(u1) ∩ γ(u2) = σ(u1) ∩ σ(u2).

(TL.5) For every connected component A of G there is a t ∈ V (D) with σ(t) = ∅ and α(t) = V (A).

Remark 8.2. Recall the axiomatisation (TD.1)–(TD.5) of tree decompositions. Note that (TD.2)
coincides with (TL.2) and (TD.3) coincides with (TL.3). Moreover, (TD.1) implies (TL.1) and
(TD.4) implies (TL.4). For connected graphs G, (TD.5) coincides with (TL.5), and thus every
tree decomposition of a connected graph is a treelike decomposition. For disconnected graphs, this
is not necessarily the case, but it can be shown that from every treelike decomposition one can
construct a tree decomposition with the same torsos. (See [10] for details.)
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Example 8.3. Figure 8.1(a) shows the cycle C5. Figure 8.1(b) shows a tree decomposition (T,β)
of C5 of width 2. Note that this tree decomposition is not invariant under automorphisms of C5,
in the sense that there is an automorphism f of C5 for which we cannot find an automorphism g
of T such that for all t ∈ V (T ) we have f(β(t)) = β(g(t)). It is easy to see that there is no tree
decomposition of C5 of width 2 that is invariant under automorphisms.

Figure 8.1(b) shows a treelike decomposition (D′, σ′, α′) of C5 of width 2. Actually, the sets
displayed in the nodes are the bags, but we can easily compute the separators and components
using (3.1) and (3.3). For instance, for the grey node t with bag β′(t) = {1,3,5} we have σ′(t) =
{1,3} and α′(t) = {4,5}. For the sake of completeness, we observe that γ′(t) = {1,3,4,5} and
τ ′(t) =K[{1,3,5}].

Note that the “subdecomposition” induced by the four grey nodes is precisely the tree decompo-
sition shown in Figure 8.1(b). The treelike decomposition contains many other tree decompositions
of C5; actually, it contains all images of the decomposition shown in Figure 8.1(b) under automor-
phisms of C5. And indeed, the treelike decomposition is invariant under automorphisms. ⌟

Example 8.3 illustrates how treelike decompositions can be made “invariant.” However, the
automorphism invariance of the example is not sufficient for our purposes, we need a more general
notion of invariance that involves decompositions of more than one graph.

Definition 8.4. A decomposition mapping for a class C of graphs is a mapping ∆ that associates
with each G ∈ C a decomposition ∆G = (DG, σG, αG) of G.

∆ is invariant if for all isomorphic graphs G,G′ ∈ C and all isomorphisms f from G to G′ there
is an isomorphism g from DG to DG′ such that for all t ∈ V (DG) we have σG′(g(t)) = f(σG(t)) and
αG′(g(t)) = f(αG(t)).

We need some additional terminology about decomposition mappings: We say that a decom-
position mapping ∆ for a class C is treelike if for all G ∈ C the decomposition ∆G is treelike. It has
adhesion at most a if for all G ∈ C the adhesion of ∆G is at most a, and it is over a class A of graphs
if for all G ∈ C the decomposition ∆G is over A. We say that a class C admits polynomial time
computable invariant treelike decompositions over A (of adhesion at most a) if there is a polynomial
time computable invariant treelike decomposition mapping for C over A (of adhesion a).

Remark 8.5. The decomposition schemes of [10] yield polynomial time computable invariant
decomposition mappings. ⌟

The main result of the section is the following:

Theorem 8.6 (Invariant Decomposition Theorem). For every graph H there are constants
a, b, c, d, e ∈ N and a polynomial time computable invariant treelike decomposition mapping ∆ of
adhesion at most a for the class of graphs G with H /⪯T G such that for every G from this class
with ∆G =∶ (D,σ,α) and every t ∈ V (D) one of the following three conditions is satisfied:

(i) ∣β(s)∣ ≤ b

(ii) At most c vertices of τ(t) have degree greater than d.

(iii) Ke /⪯ τ(t).

Proof. We let k ∶= ∣H ∣. We choose c = c∗(k), d = d∗(k), ` = `∗(k), and m = m∗(k) according to
Lemma 4.10 and e = e∗(`,m) according to Lemma 4.9. We let a ∶= 3m − 3 and b ∶= 4m − 3..
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Let G be a graph with H /⪯T G. We shall define a decomposition ∆G = (D,σ,α) of G of adhesion
at most a such that every node t satisfies one of (i)–(iii). Then we will argue that the decomposition
G↦∆G is polynomial time computable and invariant.

There will be three kinds of nodes in V (D): b-nodes (“bounded nodes”), d-nodes (“bounded
degree nodes”), and e-nodes (“excluded minor nodes”). All nodes are triples t = (At,Xt, Yt) satis-
fying the following conditions:

(A) At is a connected induced subgraph of G with ∣NG(At)∣ ≤ a. To simplify the notation, in the
following we let Ct ∶= G[NG[At]].

(B) Xt ⊆ V (Ct) such that NG(At) ⊂Xt and ∣Xt∣ = min{a + 1, ∣Ct∣}.

(C) Yt ⊆ V (Ct) such that ∣Yt∣ <m. (Actually, Yt will be empty for d-nodes and e-nodes.)

Let us call such triples “nodes” and let U be the set of all nodes (the actual nodes of D will form
a subset of U). For every node t ∈ U we let α(t) ∶= V (At), σ(t) ∶= N

G(At), and γ(t) ∶= V (Ct).

(D) A b-node is a node t ∈ U such that for every connected component A of Ct ∖ Yt it holds that
∣(V (A) ∩Xt) ∪ Yt∣ < ∣Xt∣.

Let Vb be the set of all b-nodes. Let Ub be the set of all nodes t ∈ U for which there exists a
Y ⊆ V (Ct) of size ∣Y ∣ < m such that for every connected component of A of Ct ∖ Y it holds that
∣(V (A) ∩ Xt) ∪ Y ∣ < ∣Xt∣. Note that Vb ⊆ Ub and that that for every t ∈ U ∖ Ub the set Xt is
m-unbreakable in Ct.

(E) An e-node is a node t ∈ U ∖Ub such that Yt = ∅ and the algorithm of Lemma 4.9 on Ct, `, m,
and Xt returns star decomposition Σt ∶= ΣXt of Ct ∪K[Xt].

(F) A d-node is a node t ∈ U ∖Ub such that Yt = ∅ and the algorithm of Lemma 4.9 on Ct, `, m,
and Xt returns an image I of K` in Ct that is m-attached to Xt. In this case, the algorithm
of Lemma 4.10 applied to Ct, k, the set Xt, and the image I computes a star decomposition
Σt ∶= ΣXt of Ct ∪K[Xt] (since Kk /⪯T Ct by assumption).

Let Vd and Ve be the sets of d-nodes and e-nodes, respectively. Note that the three sets Vb, Vd, Ve
are mutually disjoint. We let V (D) ∶= Vb ∪ Vd ∪ Ve.

Claim 1. Let A be a (nonempty) connected induced subgraph of G with ∣NG(A)∣ ≤ a. Then there
is a node t ∈ V (D) such that At = A.

Proof. Let C ∶= G[NG[A]], and choose an arbitrary X ⊆ V (C) such that NG(A) ⊂ X and

∣X ∣ = min{a + 1, ∣C ∣}. Clearly, such a set X exists, because A ≠ ∅ and ∣NG(A)∣ ≤ a.
If there is a set Y ⊆ V (G) such that ∣Y ∣ <m and for every connected component A′ of C ∖ Y it

holds that ∣(V (A′) ∩X) ∪ Y ∣ < ∣X ∣, then (A,X,Y ) ∈ Vb.
Suppose there is no such set Y . Then (A,X,∅) /∈ Ub and thus (A,X,∅) ∈ Ve ∪ Vd. ⌟

By (E) and (F), for all t ∈ Ve ∪ Vd we have a star decomposition Σt =∶ (Tt, σt, αt). Let st be the
center of Tt. To define the edge relation E(D), for every node t ∈ V (D) we define the set ND

+
(t) of

its children in D.

(G) For t ∈ Vb, we let ND
+
(t) be the set of all u ∈ V (D) such that Au is a connected component of

Ct ∖ (Xt ∪ Yt).

(H) For t ∈ Vd∪Ve, we let ND
+
(t) be the set of all u ∈ V (D) such that Au is a connected component

of Ct ∖ βt(st).
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This completes the definition of the decomposition ∆G = (D,σ,α).

Claim 2. ∆G is a treelike decomposition of G.

Proof. It follows immediately from the definitions of σ and α that ∆G satisfies (TL.2).
To verify (TL.3), let tu ∈ E(D). We have Xt ⊆ βt(st) (either by (G) or by the statements of

Lemmas 4.9 and 4.10). Therefore, by (G) and (H) we have

α(u) = V (Au) ⊆ V (Ct) ∖ βt(st) ⊆ V (Ct) ∖Xt ⊂ V (Ct) ∖N
G
(At) = α(t). (8.1)

Moreover, if t ∈ Vb, then we have NCt(Au) ⊆ Xt ∪ Yt. Since every vertex of Ct with a neighbor
outside Ct is in NG(At) ⊆ Xt and we have V (Au) ∩Xt = ∅, this implies NG(Au) ⊆ Xt ∪ Yt. Hence
γ(u) = V (Au)∪N

G(Au) ⊆ V (Ct) = γ(t). If t ∈ Ve∪Vb then we have NCt(Au) ⊆ βt(st). Again, every
vertex of Ct with a neighbor outside Ct is in NG(At) ⊆Xt ⊆ βt(st) and V (Au) ∩ βt(st) = ∅. Hence
γ(u) = V (Au) ∪N

G(Au) ⊆ V (Ct) = γ(t).
Note that in (8.1) we proved that for all edges tu ∈ E(D) the inclusion α(u) ⊂ α(t) is strict.

This implies that D is acyclic, that is, (TL.1).
To verify (TL.4), let t ∈ V (D) and u1, u2 ∈ N

D
+
(t). For i = 1,2, we let Ci ∶= Cui and Xi ∶= Xui

and Ai ∶= A
t
ui .

Case 1: t ∈ Vb.
Then by (G), both A1 and A2 are connected components of Ct ∖ (Xt ∪ Yt). Hence either
A1 = A2 or A1 ∩ A2 = ∅. If A1 = A2 then α(u1) = V (A1) = V (A2) = α(u2) and σ(u1) =

NG(A1) = N
G(A2) = σ(u2) and thus u1 � u2. Suppose that A1 ∩A2 = ∅. Note that we also

have V (A1) ∩N
G(A2) ⊆ V (A1) ∩ (Xt ∪ Yt) = ∅ and, symmetrically, V (A2) ∩N

G(A1) = ∅.
This implies γ(u1) ∩ γ(u2) = V (C1) ∩ V (C2) = N

G(A1) ∩N
G(A2) = σ(u1) ∩ σ(u2).

Case 2: t ∈ Ve ∪ Vd.
Then both A1 and A2 are connected components of Ct∖βt(st), and we can argue as in Case 1.

To verify (TL.5), let A be a connected component of G. Then NG(A) = ∅, and by Claim 1 there
is a t ∈ V (D) such that Ct = A. For each such t, we have σ(t) = NG(A) = ∅ and α(t) = V (A). ⌟

Claim 3. Let t ∈ V (D).

(1) If t ∈ Vb then β(t) =Xt ∪ Yt.

(2) If t ∈ Ve ∪ Vd then β(t) = βt(st) and τ(t) ⊆ τt(st).

Proof. Recall that β(t) = γ(t) ∖ ⋃u∈ND+ (t) α(u) = V (Ct) ∖ ⋃u∈ND+ (t) V (Au).

To prove (1), suppose that t ∈ Vb. It follows from (G) that for all u ∈ ND
+
(t) we have V (Au) ⊆

V (Ct) ∖ (Xt ∪ Yt). Hence (Xt ∪ Yt) ⊆ β(t). To prove the converse inclusion, we shall prove that for
every connected component A of Ct∖(Xt∪Yt) there is a u ∈ ND

+
(t) with Au = A. By (G) and Claim 1,

it suffices to prove that ∣NG(A)∣ ≤ a. To see this, observe first that NG(A) = NCt(A), because
A ⊆ Ct ∖Xt ⊆ At and thus NG(A) ⊆ NG[At] = V (Ct). Now let A′ be the connected component of
Ct ∖Yt with A ⊆ A′. Then NCt(A) ⊆ (V (A′)∩Xt)∪Yt. By (D), we have ∣(V (A′)∩Xt)∪Yt∣ < ∣Xt∣ =

a + 1. Thus ∣NG(A)∣ = ∣NCt(A)∣ ≤ a.
To prove (2), let t ∈ Ve ∪ Vd. By (H), for all u ∈ ND

+
(t) we have V (Au) ⊆ V (Ct) ∖ βt(st). Hence

βt(st) ⊆ β(t). For the converse inclusion, let A be a connected component of Ct ∖ βt(st). Then
there is a tip x of Tt such that A is a connected component of Ct[αt(x)] = G[αt(x)]. We have
NG(A) ⊆ σt(x), and as the adhesion of Σt is < ∣Xt∣, we have ∣NG(A)∣ ≤ ∣σt(x)∣ < ∣Xt∣ = a + 1. Thus
by Claim 1 and (H), there is a u ∈ ND

+
(t) with Au = A.

36



It remains to prove that τ(t) ⊆ τt(st). First, note that for all u ∈ ND
+
(t) there is an x ∈ NTt

+ (st)
such that σ(u) ⊆ σt(x). Furthermore, Σt is a decomposition of Ct ∪K[Xt], thus σ(t) ⊆ Xt is a
clique in τt(st). Let us remark that τt(st) ⊆ τ(t) is not necessarily true: Xt is a proper superset of
σ(t), thus Xt is a clique τt(st), but it is not necessarily a clique in τ(t). ⌟

It follows from (A) that the adhesion of ∆G is at most a. By Claim 3(1), every t ∈ Vb satisfies
(i). By Claim 3(2) and Lemmas 4.10 and 4.9, every t ∈ Vd satisfies (ii) and every t ∈ Ve satisfies (iii).

It it easy to see that the decomposition mapping ∆ is polynomial time computable. Indeed, note
first that the set U has size O(na+1+3m−2+m−1) (here we use na+1 as an upper bound for the number
of connected induced subgraphs A of G with NG(A)∣ ≤ a) and that the set is polynomial time
computable. Remember that the parameters a,m et cetera are all treated as constants depending
only on H. The subset Ub is also polynomial time computable, because to decide whether t ∈ Ub
we can go through all subsets Y ⊆ V (Ct) of size less than m and see if the condition is satisfied.
Now it follows from Lemmas 4.9 and 4.10 that the sets Ve and Vd are polynomial time computable.
Hence V (D) is polynomial time computable. Since for nodes t ∈ Ve ∪ Vd the star decomposition
Σt is polynomial time computable (again by Lemmas 4.9 and 4.10), the edge relation E(D) is
polynomial time computable as well. Since the mappings σ and α are almost trivially polynomial
time computable, this shows that ∆ is polynomial time computable.

It remains to prove that ∆ is invariant. To prove this, we take isomorphic graphs G,G′ with
H /⪯ G,G′ and let f be an isomorphism from G to G′. Let ∆G = (D,σ,α) and ∆G′ = (D′, σ′, α′). We
define the sets U,Ub, Vb, Ve, Vd for G as above and let U ′, U ′

b, V
′

b , V
′

e , V
′

d be the corresponding sets for

G′. We denote the constituents of a node t′ ∈ U ′ by (A′

t′ ,X
′

t′ , Y
′

t′) and let C ′

t′ ∶= G
′[NG′

[A′

t]]. For
t′ ∈ Ve∪Vd we denote the star decomposition of C ′

t′ (obtained as above) by Σ′

t′ . The isomorphism f
has a natural extension to subsets of V (G), tuples of subsets, and similar objects defined in terms
of V (G). We denote this extension by f∗. As f is an isomorphism, we obviously have f∗(U) = U ′,
f∗(Ub) = U

′

b, and f∗(Vb) = V
′

b . Moreover, for every t ∈ U we have f∗(At) = A
′

f∗(t), f
∗(Ct) = C

′

f∗(t),

et cetera. It follows from the invariance conditions of Lemmas 4.9 and 4.10 that f∗(Ve) = V
′

e and
f∗(Vd) = V ′

d and that for every t ∈ Ve ∪ Vd there is an isomorphism gt from Tt to T ′t such that
f∗(σt(x)) = σf∗(t)(gt(x)) and f∗(αt(x)) = αf∗(t)(gt(x)) for all x ∈ V (Tt). But this implies that

ND
+
(f∗(t)) = {f∗(u) ∣ u ∈ ND

+
(t)}. As f∗(Ct) = C

′

f∗(t) and f∗(Xt) = X
′

f∗(t) and f∗(Yt) = Y
′

f∗(t), we

also have ND
+
(f∗(t)) = {f∗(u) ∣ u ∈ ND

+
(t)} for all t ∈ Vb. Hence the restriction of f∗ to V (D) is an

isomorphism from D to D′. As f∗(At) = A
′

f∗(t) for all t ∈ V (D), we have f(α(t)) = α′(f∗(t)) and

thus f(σ(t)) = f(NG(α(t))) = NG′
(f(α(t))) = NG′

(α′(f∗(t))) = σ′(f∗(t)). This proves that ∆ is
invariant.

9 Canonization

A canonisation mapping c for a class C of graphs is a mapping that associates with each graph
G ∈ C a graph c(G) ≅ G such that for all G,H ∈ C we have G ≅ H ⇐⇒ c(G) = c(H). That
is, c(G) and c(H) are not only isomorphic, but they are actually the same graph on the same
set of vertices. Thus the isomorphism of G and H can be tested simply by comparing c(G) and
c(H). A canonisation algorithm computes a canonisation mapping. Without loss of generality
we may always assume a canonisation mapping c to map graphs G to graphs c(G) with vertex set
V (c(G)) = [n], where n ∶= ∣G∣. We say that a class C of graphs admits polynomial time canonisation
if there is a polynomial time algorithm that computes a canonisation mapping for C.

Fact 9.1 (Babai and Luks [2]). For every d ∈ N the class of all graphs of maximum degree at
most d admits polynomial time canonisation.
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Fact 9.2 (Ponomarenko [27]). For every graph H the class of all graphs excluding H as a minor
admits polynomial time canonisation.

An alternative proof of Fact 9.2 can be found in [10].
Our goal in this section is to prove a “Lifting Lemma” that allows us to lift a canonisation

from the torsos of a treelike decomposition of a graph to the whole graph. To be able to prove
such a lemma, we need to work with more general structures than graphs and a stronger notion of
canonisation.

We often denote tuples (v1, . . . , vk) by v̄. For v̄ = (v1, . . . , vk), by ṽ we denote the set {v1, . . . , vk}.
A vocabulary is a finite set of relation symbols, each of which has a prescribed arity in N. (Note
that we admit 0-ary relation symbols. For every set S the set S0 just consists of the empty tuple.)
Let λ be a vocabulary. A weighted λ-structure A consists of a universe (or vertex set) V (A)

and for each k-ary relation symbol R ∈ λ a mapping RA ∶ V (A)k → N. A (plain) λ-structure is
a weighted λ-structure A with range(RA) ⊆ {0,1} for all R ∈ λ. We usually identify a function
RA ∶ V (A)k → {0,1} with the relation R(A) ∶= {v̄ ∈ V (A)k ∣ RA(v̄) = 1} and view a plain structure
as a finite set (the universe) together with a collection of relations on this universe. For example,
graphs and digraphs may be viewed as plain {E}-structures, where E is a binary relation symbol.
Graphs with multiple edges may be viewed as weighted {E}-structures.

Let λ,µ be vocabularies with λ ⊆ µ, and let A be a weighted λ-structure and B a weighted
µ-structure. Then A is the λ-restriction of B if V (A) = V (B) and RA = RB for all symbols R ∈ λ.
Conversely, B is a µ-expansion of A if A is the λ-restriction of B. For every W ⊆ V (A), we define the
induced substructure A[W ] to be the weighted λ-structure with universe V (A[W ]) ∶=W , relations
RA[W ] ∶= RA ↾Wk for all k-ary R ∈ λ. We let A ∖W ∶= A[V (A) ∖W ]. If f is an injective mapping
with domain V (A), we let f(A) be the weighted λ-structure with universe V (f(A)) ∶= f(V (A))

and mappings Rf(A) defined by Rf(A)(f(ā)) ∶= RA(ā). If A and B are weighted λ-structures such
that for all k-ary R ∈ λ and all v̄ ∈ V (A)k ∩ V (B)k we have RA(v̄) = RB(v̄), then we define the
union A ∪B to be the weighted λ-structure with V (A ∪B) ∶= V (A) ∪ V (B) and

RA∪B(ā) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

RA(ā) if ā ∈ V (A)k,

RB(ā) if ā ∈ V (B)k,

0 otherwise.

for all k-ary relation symbols R ∈ λ and ā ∈ V (A ∪B)k.
The Gaifman graph of a weighted λ-structure A is the graph GA with vertex set V (GA) ∶= V (A)

and edge set

E(GA) ∶= {vw ∈ (
V (A)

2
) ∣ ∃k-ary R ∈ λ, v̄ ∈ V (A)

k with RA(v̄) > 0 and v,w ∈ ṽ}.

An isomorphism from a weighted λ-structure A to a weighted λ-structure B is a bijective mapping
f ∶ V (A) → V (B) such that for all k-ary R ∈ λ and all v̄ ∈ V (A)k we have RA(v̄) = RB(f(v̄)).
Canonisation mappings and algorithms for weighted structures are defined in the obvious way. We
say that a class C of graphs admits polynomial time strong canonisation if for every vocabulary
λ there is a polynomial time computable canonisation mapping for the class of all weighted λ-
structures with Gaifman graph in C.

Lemma 9.3. For all d ∈ N the class of all graphs of maximum degree at most d admits polynomial
time strong canonisation.
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Figure 9.1. The auxiliary graph Mm
n in the proof of Lemma 9.3.

Proof. We derive this from Fact 9.1 by a simple gadget construction.
We first define auxiliary graphs Nn for all n ∈ N: Let b`−1 . . . b0 be the binary representation of

n = ∑
`−1
i=0 bi2

i. Then Nn has vertices v0, . . . , v`−1 and a vertex wi for every i ∈ [0, ` − 1] such that
bi = 1. It has edges between vi−1 and vi for all i ∈ [` − 1] and between vi and wi for all i ∈ [0, ` − 1]
such that bi = 1. We call v0 the “anchor” of Nn.

Next, we define further auxiliary graphs Mm
n for all m,n ∈ N (see Figure 9.1): We take a

copy of Nm, a copy of Nn, a triangle T with vertex set x, y, z and vertices w1,w2,w3,w4. We add
edges between x and the anchor of Nm, between y and the anchor of Nn, and additional edges
yw1, zw2, zw3, zw4. We call z the anchor of Mm

n . Note that z is the only vertex of degree ≥ 5 in
Mm
n , and y is the only vertex of degree 4 and x is the only vertex of degree 3 that is contained in a

triangle. Thus whenever we have an isomorphism f between a copy of Mm
n and a copy of Mm′

n′ , we
must have m =m′ and n = n′, and f maps the anchor of the first copy to the anchor of the second
copy.

For some d ∈ N, let Dd be the class of all graphs of maximum degree at most d. Let λ =

{R1, . . . ,Rm} be a vocabulary, where Ri is ki-ary. Let A be a weighted λ-structure with GA ∈ Dd.
We define a graph HA as follows: We start by taking the graph with vertex set V (A) and no

edges. For every i ∈ [m] and for every tuple v̄ = (v1, . . . , vki) ∈ V (A)ki with r ∶= RAi (v̄) > 0, we add
a fresh copy Mi,v̄ of M i

r and for 1 ≤ j ≤ ki a path of length j + 1 from the anchor of Mi,v̄ to vj .
Clearly, for every vertex x ∈ V (HA)∖V (A) the degree of x in HA is at most max{ki+5 ∣ i ∈ [m]}.

Observe that for every v ∈ V (A), and every i ∈ [m] there are at most (d + 1)ki tuples v̄ ∈ V (A)ki

with RAi (v̄) > 0 and v ∈ ṽ. This means that the degree of v in HA is at most ∑i∈[m]
(d + 1)ki . Thus

we have proved:

(A) The maximum degree of HA is at most k ∶= max{ki + 5,∑i∈[m]
(d + 1)ki}.
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Now let A,B be weighted λ-structures. Observe that the only triangles in HA and HB appear
within the gadgets Nm

n . Hence every isomorphism from HA to HB must map V (A) to V (B), and
it must map gadgets with matching parameters onto one another. It follows that:

(B) For all weighted λ-structures A,B we have A ≅ B ⇐⇒ HA ≅HB.

Finally, it is easy to verify the following two algorithmic claims:

(i) There is a polynomial time computable mapping a from the class of weighted λ-structures to
the class of graphs such that a(A) ≅HA for every weighted λ-structure A.

(ii) There is a polynomial time computable mapping b from the class of graphs to the class of
weighted λ-structures such that b(HA) ≅ A for every weighted λ-structure A.

Now let c be a polynomial time computable canonisation mapping for the class of all graphs of
maximum degree at most k. Then b ○ c ○ a is a polynomial time computable canonisation mapping
for the class of all all weighted λ-structures A with GA ∈ Dd.

Lemma 9.4. For every graph H, the class of graphs G with H /⪯ G admits polynomial time strong
canonisation.

Proof. It suffices to prove that this is true for every H =Kk with k ≥ 4. This follows from Fact 9.2
using the same gadget construction as the proof of Lemma 9.3, observing that for every weighted
structure A and every k ≥ 4 we have Kk−1 /⪯ GA Ô⇒ Kk /⪯ HA. To see this last implication,
suppose that there is a Kk-minor image in HA. Clearly, it has to be contained in the 2-connected
component of HA not containing any of Mm

n gadgets. It is easy to see that at most one branch
set of the Kk-minor image can be disjoint from V (A); let us consider the Kk−1-minor image where
every branch set intersects V (A). Now it can be verified that if two branch sets touch, then they
have to contain vertices of V (A) that are adjacent in GA.

We define the lexicographical order ≤λlex on weighted λ-structures A with V (A) ⊆ N. Let λ =

{R1, . . . ,Rm}, where Ri is ki-ary. The order ≤λlex actually not only depends on the set λ, but on the
order in which the relations are listed. Hence we fix this order. We first review the lexicographical
order on tuples and sets of integers:

• For tuples x̄ = (x1, . . . , xk) ∈ Nk, ȳ = (y1, . . . , y`) ∈ N` we let x̄ <lex ȳ if and only if either there
exists an i ≤ min{k, `} such that xi < yi and xj = yj for 1 ≤ j < i or k < ` and xi = yi for all
i ≤ k.

• For sets X,Y ⊆ N we let X <lex Y if and only if there exists an i ∈ Y ∖X such that for all j < i
it holds that j ∈X ⇐⇒ j ∈ Y .

Now let A,B be weighted λ-structures with V (A), V (B) ⊆ N. Then we let A <λlex B if one of the
following conditions is satisfied:

• V (A) <lex V (B). Note that if both V (A) and V (B) are initial segments of the positive
integers then this just means ∣A∣ < ∣B∣.

• V (A) = V (B) =∶ V and there is an i ∈ [m] and a tuple ā ∈ V ki such that RAj = RBj for 1 ≤ j < i,

and RAi (ā) < R
B
i (ā), and RAi (b̄) = R

B
i (b̄) for all b̄ ∈ V ki with b̄ <lex ā.
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We let A ≤λlex B if A <λlex B or A = B. Note that ≤λlex is indeed a linear order on the class of weighted
λ-structures whose universe is a set of natural numbers and that given A,B, it can be decided in
polynomial time whether A ≤λlex B.

We want to prove that not only the class of bounded-degree graphs admits polynomial-time
strong canonization, but also the more general class containing those graphs that can be made
bounded-degree by the removal of k vertices. We deduce this from a more general statement about
enlarging graphs by k additional vertices. For every class C of graphs and every k ∈ N, we let

Nk(C) ∶= {G ∣ ∃X ⊆ V (G) ∶ ∣X ∣ ≤ k and G ∖X ∈ C}.

We call the graphs in Nk(C) k-enlargements of the graphs in C.

Lemma 9.5. Let C be a class of graphs that is decidable in polynomial time and admits polynomial
time strong canonisation. Then for every k ∈ N the class Nk(C) admits polynomial time strong
canonisation.

Proof. It suffices to prove that N1(C) is polynomial time decidable and admits polynomial time
strong canonisation. The full assertion follows by induction.

We first observe that N1(C) is polynomial time decidable. To prove that it admits polynomial
time strong canonisation, let λ be a vocabulary. For every k-ary relation symbol R ∈ λ and every
set S ⊂ [k] we introduce a fresh (k−∣S∣)-ary relation symbol RS , and we let λ∗ be the extension of λ
by all these new relation symbols. For every weighted λ-structure A and every x ∈ V (A) we let Ax
be the λ∗-expansion of A ∖ {x} defined as follows: For every k-ary R ∈ λ and S = {i1, . . . , i`} ⊆ [k],
where i1 < . . . < i`, we let

RAx
S (v1, . . . , vk−`) ∶= R

A
(v1, . . . , vi1−1, x, vi1 , . . . , vi2−2, x, vi2−1, . . . , vi`−`, x, vi`+1−`, . . . , vk−`).

Then clearly for all weighted λ-structures B and all y ∈ V (B), there is an isomorphism f from A to
B with f(x) = y if and only if Ax and By are isomorphic. Furthermore, we can compute Ax from
A and x and conversely A from Ax and x in polynomial time.

Now let c∗ be a polynomial time computable canonisation mapping for the class of all weighted
λ∗-structuresA∗ withGA∗ ∈ C. We shall define a polynomial time computable canonisation mapping
c for the class of all weighted λ-structures with Gaifman graph in N1(C). Let A be a weighted
λ-structure with GA ∈ N1(C). If GA ∈ C, we simply let c(A) by the λ-restriction of c∗(A∗), where
A∗ is the λ∗-expansion of A with RA

∗
S ≡ 0 for all RS ∈ λ

∗ ∖ λ.
In the following, we assume that GA /∈ C. Let X be the set of all x ∈ V (A) such that GA∖{x} ∈ C.

Note that X is nonempty, because GA ∈ N1(C) ∖ C, and polynomial time computable, because C is
polynomial time decidable. As usual, we assume that c∗ maps every structure A∗ to a structure
whose universe is an initial segment of the positive integers. For every x ∈ X, we let Cx ∶= c∗(Ax).
Let C∗ be lexicographically minimal among all Cx for x ∈ X. Let n ∶= ∣A∣; then V (C∗) = [n − 1].
We let c(A) be the structure C with universe [n] such that Cn = C

∗.
It is easy to see that the mapping c has the desired properties.

Corollary 9.6. For all c, d ∈ N the class of all graphs G such that at most c vertices of G have
degree greater than d admits polynomial time strong canonisation.

The main result of the section is the following lemma:

Lemma 9.7 (Lifting Lemma). Let A,C be two classes of graphs and a ∈ N. Suppose that A
admits polynomial time strong canonisation and that C admits polynomial time computable invariant
treelike decompositions over A of adhesion a.

Then C admits polynomial time strong canonisation.
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Proof. We shall describe a polynomial time computable a canonisation mapping c for the class of
all weighted λ-structures with Gaifman graph in C. As another small piece of terminology used in
the proof, we say that a tuple (x1, . . . , xk) is an enumeration of a finite set S (or enumerates S) if
k = ∣S∣ and S = {x1, . . . , xk}.

Let P1, . . . , Pa,Q1, . . . ,Qa /∈ λ be fresh relation symbols, where Pi and Qi are i-ary for all i ∈ [a].
Let µ ∶= λ∪{P1, . . . , Pa,Q1, . . . ,Qa}. Let a be a polynomial time computable canonisation mapping
on the class of all weighted µ-structures whose Gaifman graph is in A. Such a mapping a exists by
the assumption that A admits polynomial time strong canonisation. Let ∆ be a polynomial time
computable invariant treelike decomposition mapping for C over A of adhesion at most a.

To explain our canonisation mapping c, let us fix a λ-structure C with Gaifman graph GC ∈ C.
Without loss of generality we may assume that GC is connected. Let ∆GC

= (D,σ,α). For every
t ∈ V (D) we let Ct ∶= C[γ(t)] and st ∶= ∣σ(t)∣. Note that 0 ≤ st ≤ a. By induction on D, starting
from the leaves, for every node t ∈ V (D) and every enumeration x̄ of σ(t) we define a copy C∗

t,x̄ of
Ct and a mapping gt,x̄ ∶ σ(t) → V (C∗

t,x̄) with the following properties:

(A) V (C∗

t,x̄) is an initial segment of the positive integers.

(B) There is an isomorphism f from Ct to C∗

t,x̄ such that gt,x̄ ⊆ f .

Let t ∈ V (D), and let x̄ = (x1, . . . , xst) be an enumeration of σ(t). Let u1, . . . , um be the children
of t in D. For every i ∈ [m], let Ci ∶= Cui and ni ∶= ∣α(ui)∣ and si ∶= sui . Note that ∣Ci∣ = ni + si.
Recall from Section 8 that t �∆ u means that σ(t) = σ(u) and α(t) = α(u) hold in the treelike
decomposition ∆. For all i, j ∈ [m], let i � j ∶⇔ ui �

∆GC uj . For every i ∈ [m] and every tuple ȳ
that enumerates σ(ui), let C∗

i,ȳ ∶= C
∗

ui,ȳ and gi,ȳ ∶= gui,ȳ. Then C∗

i,ȳ and gi,ȳ satisfy (A) and (B).
Let Y be the set of all ȳ ∈ β(t)≤a that enumerate σ(ui) for some i ∈ [m]. For each ȳ ∈ Y, let Mȳ

be the set of all i ∈ [m] with σ(ui) = ỹ. Let ⪯ȳ be a linear order on Mȳ such that for all i, j ∈Mȳ:

(C) If C∗

i,ȳ <
λ
lex C

∗

j,ȳ then i ≺ȳ j.

(D) If C∗

i,ȳ = C
∗

j,ȳ and gi,ȳ(ȳ) <lex gj,ȳ(ȳ) then i ≺ȳ j.

Note that conditions (C) and (D) do not determine a linear order on Mȳ, since there may be distinct
i, j ∈ Mȳ such that C∗

i,ȳ = C
∗

j,ȳ and gi,ȳ(ȳ) = gj,ȳ(ȳ). If this is the case, decide arbitrarily whether
i ≺ȳ j or j ≺ȳ i. No matter how we decide, the resulting structure Ct,x̄ and mapping gt,x̄ will be the
same.

Note that for every �-equivalence class K, either K ∩Mȳ = ∅ or K ⊆Mȳ. Let Nȳ be the system
of representatives for the �-equivalence classes in Mȳ that contains the ⪯ȳ-smallest element of each
class. Let i0 be the minimal element of Nȳ. We define D∗

ȳ to be the structure obtained in the
following three steps:

(E) For each i ∈ Nȳ, we take a copy C∗∗

i,ȳ of C∗

i,ȳ and shift the universes of these copies in such a
way that they are disjoint intervals of nonnegative integers arranged in the order given by ⪯ȳ.

(F) We take the union of all the C∗∗

i,ȳ . Then for each i ∈ Nȳ we identify the tuple gi,ȳ(ȳ) with the
tuple gi0,ȳ(ȳ).

(G) We shrink the universe so that it becomes an initial segment of the positive integers.

Then D∗

ȳ is an isomorphic copy of the union Dȳ of all structures Ci,ȳ for i ∈ Nȳ. Let ȳ∗ ∶= gi0,ȳ(ȳ).
Observe that D∗

ȳ and ȳ∗ indeed do not depend on the order ⪯ȳ, as long as it satisfies (C) and (D).
Let ρ be the unique mapping from Y to an initial segment of the positive integers such that

ρ(ȳ) ≤ ρ(z̄) if and only if one of the following two conditions is satisfied:
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(H) D∗

ȳ <
λ
lex D

∗

z̄ .

(I) D∗

ȳ =D
∗

z̄ and ȳ∗ ≤lex z̄
∗.

Then ρ(ȳ) = ρ(z̄) if and only if D∗

ȳ =D
∗

z̄ and ȳ∗ = z̄∗. Let r ∶= max{ρ(ȳ) ∣ ȳ ∈ Y}.
We let At,x̄ be the µ-expansion of C[β(t)] defined as follows:

(J) For all i ∈ [a] we define Pi(At,x̄) by

P
At,x̄

i (ȳ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if i = st and ȳ = x̄,

0 otherwise,

for all ȳ ∈ β(t)i.

(K) For all i ∈ [a] we define Qi(At,x̄) by

Q
At,x̄

i (ȳ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ρ(ȳ) if ȳ ∈ Y,
0 otherwise,

for all ȳ ∈ β(t)i.

Observe that the Gaifman graph of At,x̄ is τ(t), because the sets x̃ = σ(t) and ỹ = σ(ui) for all ȳ ∈ Y
are cliques in τ(t). Hence the canonisation mapping a is applicable to At,x̄. Let A∗

t,x̄ ∶= a(At,x̄).
We define the structure C∗

t,x̄ as follows: We take the disjoint union of A∗

t,x̄ with copies of the
structures D∗

ȳ for ȳ ∈ Y. These copies are chosen such that their universes are consecutive intervals

of positive integers and such that D∗

ȳ comes before D∗

z̄ if ρ(ȳ) < ρ(z̄). Let C1 be the resulting

structure. Then for each tuple z̄ ∈ V (A∗

t,x̄) with q ∶= Q
A∗t,x̄
∣z̄∣

(z̄) ∈ [1, r] we choose a tuple ȳ ∈ Y with

ρ(ȳ) = q and identify the copy of ȳ∗ in the copy of D∗

ȳ in C1 with z̄. Of course there may be several z̄

with Q
A∗t,x̄
∣z̄∣

(z̄) = q, say, z̄1 <lex z̄2 <lex . . . <lex z̄`. Then there are ȳ1, . . . , ȳ` ∈ Y with ρ(ȳj) = q. For all

these, the structures D∗

ȳj are isomorphic and their copies appear consecutively in C1. We identify z̄j
with the copy of ȳ∗j in the copy of D∗

ȳj . After doing all these identifications, we shrink the universe

of the structure so that it is an initial segment of the positive integers. Let C2 be the resulting
µ-structure, and let C∗

t,x̄ be the λ-restriction of C2. If st = 0 (and thus x̄ is the empty tuple) we let
gt,x̄ be the empty mapping. Otherwise, there is a unique tuple x̄∗ = (x∗1 , . . . , x

∗

st) ∈ Pst(A
∗

t,x̄). We
define gt,x̄ by letting gt,x̄(xi) ∶= x

∗

i for all all i ∈ [st].
To define the canonical copy c(C) of C, we let M ⊆ V (D) be the set of all nodes t with σ(t) = ∅

and γ(t) = V (C). Such nodes exist by (TL.5), because GC is connected. We look at the set M
of all structures C∗

t for nodes t ∈ T . (Here we write C∗

t instead of C∗

t,(), omitting the empty tuple

enumerating σ(t) = ∅.) By (B), all structures in M are isomorphic to C. We let c(C) be the
≤λlex-minimal structure in M.

It is important to note that our construction is “invariant”, that is, completely determined by
the structure C and the decomposition ∆GC

. The only freedom we have during the construction
is in the exact order of the children u1, . . . , um of t, but we have already noted that conditions (C)
and (D) restrict the choices we can make in such a way that they do no longer matter because the
resulting structures will be isomorphic. The invariance of ∆ implies that if f is an isomorphism from
C to a λ-structure C ′ then, letting ∆G′

C
= (D′, σ′, α′), there is an isomorphism g from D to D′ such

that for all t ∈ V (D) and all enumerations x̄ of σ(t) the restriction of f to γ(t) is an isomorphism
from Ct,x̄ to Cg(t),f(x̄). By the invariance of our construction, it follows that C∗

t,x̄ = C
′∗

g(t),f(x̄) and
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gt,x̄(x̄) = gg(t),f(x̄)(f(x̄)). This implies that M =M′, where M′ is defined from C ′ and ∆G′
C

in the
same way as M is defined from C and ∆GC

, and thus c(C) = c(C ′).
As the decomposition mapping ∆ is polynomial time computable, the canonization mapping c

is polynomial time computable as well.

Now we are ready to prove the main algorithmic result of the paper (which proves Theorem 1.3
in the introduction):

Theorem 9.8. For every graph H, the class of graphs excluding H as topological subgraph admits
polynomial time strong canonisation.

Proof. Choose the constants a, b, c, d, e as in the Invariant Decomposition Theorem 8.6. Let A1 be
the class of all graphs G with ∣V (G)∣ ≤ b, and let A2 be the class of all graphs G with Ke /⪯ G, and
let A3 be the class of all graphs G such that at most c vertices of G have degree higher than d. The
class A1 trivially admits polynomial time strong canonisation. The class A2 admits polynomial
time strong canonisation by Lemma 9.4. The class A3 admits polynomial time strong canonisation
by Corollary 9.6. As A1 and A3 are polynomial time decidable (A2 is as well, but we do not need
this), it follows that the class A ∶= A1 ∪A2 ∪A2 admits polynomial time strong canonisation as
well. That is, the canonization algorithm for A uses the algorithm for A1 if ∣V (G)∣ ≤ b; otherwise
it uses the algorithm for A3 if there are at most c vertices having degree higher than d; otherwise
it uses the algorithm for A2.

By the Invariant Decomposition Theorem 8.6 the class of H-topological subgraph free graphs
admits polynomial time invariant treelike decompositions over A of adhesion a. Hence by the
Lifting Lemma 9.7, the class of graphs excluding H as topological subgraph admits polynomial
time strong canonisation.

10 Conclusions

Our first main result is a structure theorem for graphs with excluded topological subgraphs, stating
that they have tree decompositions into torsos with excluded minors and torsos were all but a
bounded number of vertices have bounded degree. This is, in some sense, the best one can expect,
because all classes of graphs with excluded minors and all classes of bounded degree (even bounded
degree up to a bounded number of exceptional vertices) exclude topological subgraphs. Our proof of
this theorem is self-contained, and it does not involve any enourmous hidden constants (something
we feel is worth mentioning in the context of graph structure theory). The algorithmic version of
the theorem, though, does depend on a minor test, which can be carried out in cubic time, but
only with astronomical constant factors which make the algorithms completely impractical. It is an
interesting open question whether minor tests can be avoided in the algorithms for computing our
decompositions. Just like Robertson and Seymour’s structure theorem for graphs with excluded
minors, we expect our structure theorem to have many algorithmic applications. As a case in point,
we show that the Partial Dominating Set problem is fixed-parameter tractable on graph classes
with excluded topological subgraphs.

Our second main result is a polynomial time isomorphism test for graph classes with excluded
topological subgraphs. Such classes form a natural common generalisation of classes of bounded
degree and classes with excluded minors, both of which were known to have polynomial isomorphism
tests. To prove this result, we need a generalisation of our structure theorem which gives invariant
treelike decompositions instead of tree decompositions. Treelike decompositions were introduced
in [12] in the context of descriptive complexity theory as a logically definable substitute for tree
decompositions. Here we show them to be useful in a purely algorithmic context as well. We
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develop a new, fairly generic machinery that, starting from the “local structure lemmas,”, which
form the core of our structure theorem, first yields the “global” invariant structure theorem and
then, by a generic “lifting lemma”, allows us to lift canonisation algorithms from the torsos of the
decomposed graphs to the whole graphs. The same machinery could be applied to even richer classes
of graphs, provided it can be proved that they have a “local structure” that admits polynomial
time canonisation.

Let us remark that it is unlikely that our isomorphism test could be generalized to all classes
of graphs with bounded expansion, as the isomorphism problem on such a class can be as hard as
on general graphs. To see this, consider two graphs G1 and G2 on n-vertices and let us obtain G′

1

and G′

2 by subdividing each edge with n new vertices. Now G′

1 and G′

2 have bounded expansion
and they are isomorphic if and only if G1 and G2 are.

Let us point out that the exponent of the running time of our isomorphism test for graphs
excluding H as a topological subgraph depends on the graph H. It is an obvious question whether
this can be improved to f(H) ⋅ nO(1), i.e., the problem is fixed-parameter tractable parameterized
by the excluded graph H. However, it is a significant open question already for graphs of maximum
degree k if the known nO(k) time algorithms for graph isomorphism can be improved to f(k) ⋅nO(1)

time. On the othe hand, very recently Lokshtanov et al. [21] presented an f(k)⋅nO(1) time algorithm
for graphs of treewidth at most k, giving some hope for fixed-parameter tractability results for more
general classes.
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