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The symmetric four-strategy games are decomposed into a linear combination of 16 basis games represented
by orthogonal matrices. Among these basis games four classes can be distinguished as it is already found for the
three-strategy games. The games with self-dependent (cross-dependent) payoffs are characterized by matrices
consisting of uniform rows (columns). Six of 16 basis games describe coordination-type interactions among the
strategy pairs and three basis games span the parameter space of the cyclic components that are analogous to the
rock-paper-scissors games. In the absence of cyclic components the game is a potential game and the potential
matrix is evaluated. The main features of the four classes of games are discussed separately and we illustrate
some characteristic strategy distributions on a square lattice in the low noise limit if logit rule controls the strategy
evolution. Analysis of the general properties indicates similar types of interactions at larger number of strategies
for the symmetric matrix games.
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I. INTRODUCTION

In evolutionary games n × n payoff matrices are used to
define the interactions among (equivalent) players following
one of their n strategies against their coplayers defined by
a connectivity network [1–3]. The systematic analysis of the
games [4] and the classification of the resultant behavior are
prevented by the large number of parameters (n2) charac-
terizing the interaction itself, particularly if n > 3. The first
classification of the 2 × 2 games was suggested by Rapoport
and Guyer [5] who considered the cases where the payoffs are
characterized by their rank (1, 2, 3, and 4). Using this notation
Liebrand [6] discussed the social dilemmas. The introduction
of replicator dynamics [7] initiated a different classification
based on the evolutionarily stable strategies [8–11] and phase
portrait [12,13]. Very recently the games have been analyzed
by distinguishing intragroup and intergroup interactions within
the framework of population dynamics [14].

In recent literature of evolutionary game theory the two-
strategy games are frequently characterized by four payoffs
(P , R, S, and T ) referring to punishment, rewards for
mutual cooperation, sucker’s payoff, and temptation to choose
defection when the two strategies are named as defection and
cooperation in the terminology of social dilemma [15,16]. In
that case, however, the interaction can be well described by
only two parameters (T and S) without loss of generality when
the dynamics is controlled by payoff differences and if we use
a suitable payoff unit by choosing P = 0 and R = 1 [17]. In
the two-dimensional S − T parameter space four quadrants are
distinguished characterizing the harmony (T < 1 and S > 0),
hawk-dove (T > 1 and S > 0), prisoner’s dilemma (T > 1 and
S < 0), and stag hunt (T < 1 and S < 0) games. These four
types of games can be identified by the corresponding Nash
equilibria. For example, in the region of prisoner’s dilemma
the game has only one Nash equilibrium dictating the choice
of defection for both selfish players.

The existence of potential games [18,19] has raised the
demand of finding another classification that allows us to
distinguish clearly the potential games within the set of
matrix (or normal) games. In a previous paper [20] we
have shown that all the symmetric matrix games for n = 2
and 3 can be decomposed into the linear combinations of
elementary games represented by orthogonal basis matrices.
More precisely, the payoff matrices are built up from their
two-dimensional Fourier components for both n = 2 and 3.
Due to the general features of the Fourier series expansion
the strength of each component can be evaluated straightfor-
wardly. For the symmetric two-strategy games (n = 2) the
first Fourier component can be interpreted as an irrelevant
game where the equivalent payoffs eliminate the essence
of games. The linear combinations of the first and second
components represent games with self-dependent payoffs
where the player’s income is independent of the opponent’s
strategy. Similarly, the linear combinations of the first and third
components describe games with cross-dependent payoffs
when the player’s income depends only on the coplayer’s
strategy. The direct interactions between the players are
quantified by the fourth term resembling the coordination-type
(or anticoordination-type) interactions on the analogy of the
ferromagnetic (or antiferromagnetic) Ising model [21] with
spins oriented upward or downward. In fact, these are the
reasons why the multiagent games can be mapped onto an
Ising-type model if the interactions among the players are
described by symmetric two-strategy games. All these games
are potential games that evolve into the Boltzmann distribution
[19] if the strategy reversals are controlled by the so-called
logit rule resembling the Glauber dynamics for the kinetic
Ising model [22].

Similar concepts of decomposition were suggested previ-
ously in Refs. [23,24] without the introduction of a concrete
set of basis games. The introduction of a suitable set of the or-
thogonal basis games, however, gives us a more sophisticated
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knowledge on the anatomy of matrix games. For example, the
games with self- and cross-dependent payoffs are represented
by the linear combinations of three orthogonal basis games
characterized by matrices with uniform elements in columns
and rows for n = 3. Evidently, the basis game with uniform
matrix elements belongs to both types of the latter classes.
For n = 3, the subset of the self- and cross-dependent games
can be defined as the linear combination of (2n − 1) = 5
basis matrices. Additionally, three of the nine components
describe games with symmetric payoff matrices that are the
linear combination of coordination-type (or anticoordination-
type) interactions for the three possible strategy pairs. The
ninth orthogonal component corresponds to the traditional
rock-paper-scissors game, which is a zero-sum game with
an antisymmetric payoff matrix, and the presence of this
component prevents the existence of potential.

Now we show that the above-mentioned general features
are inherited for the symmetric n-strategy games and the
“dimension” of the four classes of elementary games increases
with the number of strategies. Because many relevant questions
are related to the existence of potential, the next section is
addressed to quantify the necessary conditions. In Sec. III we
show how the payoff matrix can be built up as the linear com-
bination of orthogonal basis matrices representing elementary
games for n = 4. The application of the Walsh-Hadamard
matrices [25] simplifies the calculations and invokes the theory
of directed graphs for the graphical illustration of the inherent
structure of symmetric matrix games. The general properties of
the four classes of elementary games are discussed separately
for the level of pair interactions and also for the spatial version
of multiagent evolutionary games in the consecutive sections.
The summary of this analysis implies discussions of those
features that may remain valid for larger number of strategies
for the symmetric games.

II. EXISTENCE OF POTENTIAL IN SYMMETRIC
FOUR-STRATEGY GAMES

The symmetric matrix games are used to describe quanti-
tatively the pair interactions between two equivalent players
(x and y) who have four options to choose independently of
each other. In the mathematical notation of game theory these
(pure) strategies are denoted by the traditional unit vectors of
a four-dimensional vector space as

sx = sy =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠,

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠,

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠. (1)

The payoffs for both players depend on the strategies they
choose and are expressed by products as

ux = sx · Asy and uy = sy · Asx, (2)

where the element Aij of the payoff matrix A defines the payoff
for the first player if she chooses her ith strategy, whereas the
coplayer selected the j th strategy (i,j = 1,2,3,4).

The present symmetric two-person game is a potential game
[18,19] if we can introduce a symmetric 4 × 4 potential matrix

A11,A11 A12,A21 A13,A31 A14,A41

A21,A12 A22,A22 A23,A32 A24,A42

A31,A13 A32,A23 A33,A33 A34,A43

A41,A14 A42,A24 A43,A34 A44,A44

V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44

FIG. 1. (Color online) Dynamical graph with the independent
and relevant loops indicated by dashed (red), dotted (blue), and
dashed-dotted (green) circles. Along the main diagonal the solid
(yellow) circles refer to symmetric 2 × 2 games.

V that satisfies the following conditions:

Vkj − Vij = Akj − Aij , (3)

that is, for unilateral strategy modification the potential
variation is equivalent to the payoff variation of the active
player. The above equation expresses the case when the
first player modifies her strategy from the ith to the kth
while the second player uses her j th strategy. Similar re-
quirements should be satisfied when only the second player
changes her strategy. However, for the symmetric two-player
games the latter condition is satisfied if the potential matrix V
is symmetric (Vij = Vji).

The potential V exists if the sum of the mentioned payoff
variations of the active player is zero along all the closed
trajectories in the space of strategy profiles where only
unilateral changes are allowed. The large number of possible
loops is illustrated in Fig. 1, which shows the dynamical graph
for the present four-strategy game [26]. In this dynamical
graph the nodes represent strategy profiles (microscopic states)
and the edges connect those strategy profiles that can be
transformed into each other if only one of the players modifies
her strategy.

In Fig. 1 the nodes are arranged in the same order as they
appear within the payoff and potential matrices. Here the nodes
are denoted by large boxes allowing as to give the payoffs
(upper row) for both players and also the value of potential
(lower row) for all the strategy profiles. This arrangement
of nodes reflects the relevant symmetries. Notice that each
subgraph, consisting of nodes within a single row or column,
is complete and within these subgraphs the condition of the
existence of potential is satisfied because here only one player
changes her strategy.
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According to the Kirchhoff laws [27] we can distinguish
nine independent loops (see Fig. 1) if we apply the methods
used in the analysis of electric circuits [20,28]. Three of the
nine loops are located along the main diagonal and each one
represents a symmetric 2 × 2 subgame where the potential
always exists. In the present system the dashed-dotted (green)
circles represent an antisymmetric pair of loops that give the
same condition for the existence of the potential, namely,

A41 − A31 + A24 − A14 + A32 − A42 + A13 − A23 = 0.

(4)
Two additional conditions can be derived from the other two

pairs of antisymmetric loops. Namely, the conditions along the
(blue) dotted circles in Fig. 1 correspond to

A42 − A32 + A34 − A24 + A33 − A43 + A23 − A33 = 0,

(5)
which can be simplified as

A23 − A32 + A34 − A43 + A42 − A24 = 0. (6)

Similarly, the third condition is related to the four-edge loops
indicated by dashed (red) circles in Fig. 1:

A31 − A21 + A23 − A13 + A22 − A32 + A12 − A22 = 0,

(7)
which obeys the following form after some algebraic manipu-
lation:

A12 − A21 + A23 − A32 + A31 − A13 = 0. (8)

In sum, the potential exists if the matrix components Aij

satisfy the above three conditions defined by Eqs. (4)–(7).
It is emphasized that in the deduction of these three criteria
we have exploited the symmetries and the interdependence of
four-edge loops within the dynamical graphs.

This method predicts (n − 1)(n − 2)/2 independent and
relevant pairs of four-edge loops that should be taken into
consideration when deriving similar conditions for the exis-
tence of potential when n > 3. Monderer and Shapley [18]
and Hofbauer and Sigmund [12] have proved the existence of
potential if similar conditions are satisfied for all the four-edge
loops or the equivalent 2 × 2 subgames.

The potential matrix V can be evaluated as detailed below
and the actual value of the potential matrix for a given strategy
pair (sx,sy) can be expressed as sx · Vsy .

Up to now we have studied symmetric two-player games.
Due to the linear relationship between the payoff and potential
matrices we can introduce multiagent potential games with N

players if the interactions between the players are composed
of equivalent two-player potential games. In these systems the
microscopic state (strategy profile) is defined by the set of in-
dividual strategies, S = (s1,s2, . . . ,sN ) and the corresponding
potential value is obtained as

U (S) =
∑
〈x,y〉

sx · Vsy, (9)

where the summation runs over the interacting players x

and y.
For the illustration of the effect of some types of interactions

on the macroscopic behavior in multiagent systems, we will
consider models with nearest-neighbor interactions between
the players distributed on a square lattice. If the evolution

of the strategy profile S is defined by random sequential
application of the logit rule, then these systems will evolve
into the Boltzmann distribution [19]. For an elementary step
of this evolutionary process we choose a player (e.g., x) at
random and this player is allowed to select another strategy
s′
x favoring exponentially her higher individual payoff. For

the potential games this preference can be quantified by
the potential variation for unilateral strategy changes. More
precisely, the probability of choosing strategy s′

x is expressed
as

w(s′
x) = eU (S′)/K∑

S′′ eU (S′′)/K , (10)

where in the microscopic states S′ and S′′ the player at site x

chooses sx = s′
x and sx = s′′

x , respectively, and s′′
x runs over all

the possible strategies while the strategies are fixed for all the
other players. For the logit rule, K quantifies the strength of
the stochastic noises. In the limit K → 0, the players choose
their best strategy and the system develops into one of the pure
Nash equilibria characterized by the maximum value of U (S).

In order to demonstrate the richness in the stationary
states and also the close analogy to physical systems when
the interaction belongs to the coordination-type games, the
mentioned system will be investigated by Monte Carlo (MC)
simulations on a square lattice with L × L sites under
periodic boundary conditions. During these simulations we
have determined the average values of strategy frequencies (�k ,
k = 1, . . . ,4) in the stationary states. The linear system size
is varied from L = 400 to 1400, the relaxation and sampling
times are chosen between tr = ts = 104 and 106 MCS (during
the time unit 1 MCS each player has a chance to modify her
own strategy once on average). The larger system sizes and
longer run times are selected when approaching the critical
transition point in order to increase the statistical accuracy.

III. DECOMPOSITION OF THE SYMMETRIC
FOUR-STRATEGY MATRIX GAMES

The idea of the matrix decomposition is based on the
fact that a matrix A of rank n can be considered as a
traditional vector of dimension n2 if the components Aij

are arranged into a column. The two-dimensional Fourier
decomposition worked efficiently for three strategies (n = 3).
Here we suggest a different approach. On the analogy to the
traditional vector calculus now the payoff matrices are built up
as a linear combination of basis matrices that are created from
a set of four-dimensional orthogonal basis vectors. For later
convenience we choose the following four orthogonal vectors
composed of +1 and −1 as:

e(1) =

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠, e(2) =

⎛
⎜⎝

1
1

−1
−1

⎞
⎟⎠,

(11)

e(3) =

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠, e(4) =

⎛
⎜⎝

1
−1
−1

1

⎞
⎟⎠,
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and the dyadic (or tensor) products of these vectors,

g(m) = e(k) ⊗ e(l), (12)

with elements gij (m) = e
(k)
i e

(l)
j for k,l = 1, . . . ,4, serve as

basis matrices (or elementary games) with labels (m =
1,2, . . . ,16) specified below. These basis matrices satisfy the
conditions of orthogonality,

∑
i,j

gij (m)gij (m′) =
{

0, if m �= m′,
C(m), if m = m′, (13)

where C(m) = 16 as |gij | = 1 in the present case. In general,
the payoff matrix can be expressed [25] as

A =
16∑

m=1

α(m)

C(m)
g(m), (14)

where the coefficients α(m) are given by the scalar product of
the matrices A and g(m),

α(m) = A · g(m) =
∑
i,j

Aijgij (m), (15)

which is defined on the analogy of the scalar product of two
linear vectors.

IV. GAMES WITH SELF- AND CROSS-DEPENDENT
PAYOFFS

Following our previous notation [20] the first basis matrix
(labeled with m = 1) is defined as

g(1) = e(1) ⊗ e(1), (16)

with elements gij (1) = 1. This all-ones matrix represents the
irrelevant component of payoffs for all cases when the decision
or dynamics are controlled by payoff differences. There are
three additional basis matrices, namely,

g(2) = e(1) ⊗ e(2), (17)

g(3) = e(1) ⊗ e(3), (18)

g(4) = e(1) ⊗ e(4), (19)

which consist of columns with uniform values. The latter
property is conserved for the following linear combinations:

A(cross) =
4∑

m=1

α′(m)g(m), (20)

representing the subset of games with cross-dependent payoffs.
For this set of games the players cannot modify their own
payoffs by choosing another strategy. Consequently, the games
with cross-dependent payoffs do not give contributions to
the potential matrix. If this type of games defines the pair
interactions in a multiagent model for a logit rule then the
players choose their strategy at random.

In opposition to the cross-dependent payoffs we can dis-
tinguish games with self-dependent payoffs when the payoff
matrices are composed of uniform rows. The corresponding

elementary games are defined as

g(5) = e(2) ⊗ e(1), (21)

g(6) = e(3) ⊗ e(1), (22)

g(7) = e(4) ⊗ e(1), (23)

and the subset of games with self-dependent payoff can be
given as

A(self) = α′(1)g(1) +
7∑

m=5

α′(m)g(m). (24)

The reader can easily check that the following potential matrix,

V(self) =
7∑

m=5

α′(m)[g(m) + gT (m)], (25)

satisfies the condition Eq. (3) for the games with self-
dependent payoffs.

Notice that g(m) = gT (m + 3) (if m = 2,3,4) and this
feature can be exploited by introducing another set of basis
matrices (g′(m), with m = 2,3, . . . ,6) when we distinguish
symmetric and antisymmetric basis matrices as

g′(m = r) = 1
2 [e(r) ⊗ e(1) + e(1) ⊗ e(r)], (26)

g′(m = 3 + r) = 1
2 [e(r) ⊗ e(1) − e(1) ⊗ e(r)], (27)

where r = 2,3, and 4. Evidently, the above basis matrices
preserve the conditions of orthogonality. Accordingly, the
games with self- and cross-dependent payoffs are spanned
by the linear combinations of four symmetric and three
antisymmetric basis matrices.

The relevant properties of the above antisymmetric basis
matrices can be illustrated by

g′(5) =

⎛
⎜⎝

0 0 1 1
0 0 1 1

−1 −1 0 0
−1 −1 0 0

⎞
⎟⎠, (28)

which possesses two pairs of identical columns and rows. The
mentioned symmetries characterize g′(6) and g′(7), as well.

V. COORDINATION GAMES

Among the 16 dyadic products of the vector Eqs. (11)
there are three symmetric matrices that we use to define the
following three basis matrices as

g(8) = e(2) ⊗ e(2), (29)

g(9) = e(3) ⊗ e(3), (30)

g(10) = e(4) ⊗ e(4). (31)

Notice that these three basis games are composed of only +1s
and −1s in a way ensuring their orthogonality to g(m) for
m = 1, . . . ,7 as the sum of payoffs is zero within each row
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and column. For example,

g(8) =

⎛
⎜⎝

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎞
⎟⎠. (32)

From the rest of nonsymmetric dyadic products we can
derive three additional symmetric basis vectors as

g(11) = 1
2 [e(2) ⊗ e(3) + e(3) ⊗ e(2)], (33)

g(12) = 1
2 [e(3) ⊗ e(4) + e(4) ⊗ e(3)], (34)

g(13) = 1
2 [e(4) ⊗ e(2) + e(2) ⊗ e(4)], (35)

because (e(k) ⊗ e(l))T = e(l) ⊗ e(k). As all these basis matrices
are symmetric, the contribution of their arbitrary linear
combinations,

A(coord) =
13∑

m=8

α(m)g(m), (36)

to the potential matrix is V(coord) = A(coord). This six-
dimensional subspace of matrices is closed under transfor-
mations when exchanging the same two rows and columns
subsequently. The latter transformations realize the exchange
of labels simultaneously without introducing fundamentally
new behaviors.

The knowledge of the potential matrix V can be utilized
to determine the preferred Nash equilibrium for both the
two-player games and the spatial multiagent evolutionary
games. For example, if max (Vij ) = Vkk then the strategy pair
(k,k) is a Nash equilibrium for the two-player game and the
homogeneous distribution of the kth strategy is a stable state
of the evolutionary games (introduced in Sec. II) in the limit
K → 0. In such systems the K-dependence of the strategy
frequencies have a typical behavior plotted in Fig. 2. The
plotted MC data are obtained for a system where β(m) = 1/m

if 8 � m � 12 and β(m) = 0 otherwise. In this model the

 0
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FIG. 2. Typical K-dependence of strategy frequencies for evolu-
tionary games on the square lattice where the pair interactions are
composed of f(pq) with strength chosen at random. The MC data
are denoted by open squares, diamonds, circles, and pluses for the
strategies 1, 2, 3, and 4, respectively.

homogeneous distribution of strategy 1 dominates the system
behavior in the low noise limit.

As V is a symmetric matrix, its maximum values can occur
in pair, e.g., max (Vij ) = Vkl = Vlk . In the latter cases the
two-player game has two equivalent pure Nash equilibria,
namely the strategy pairs (k,l) and (l,k). For the multiagent
evolutionary games the system has two equivalent ordered
strategy arrangements in the low noise limit on a square lattice
that can be divided into two sublattices (denoted as X and Y ) on
the analogy of the white and black boxes of the checkerboard.
For the zero noise limit, the players choose strategy k in one of
the sublattices while they follow strategy l within the opposite
sublattice. This situation resembles the antiferromagnetic spin
arrangements for the Ising-type models [21].

It is noteworthy that if the players in one of the two sublat-
tices exchange their strategy labels l and k (this transformation
is realized by exchanging the corresponding two columns
or rows in the payoff matrix), then the resultant system has
two equivalent homogeneous ordered states as it occurs in
the ferromagnetic Ising model in the absence of external
magnetic field. The mentioned transformations can be used to
justify similar K-dependence (including phase transition(s),
thermodynamic derivatives, responses to perturbations, etc.)
in a group of systems satisfying some symmetries. Similar
phenomena are illustrated in the three-strategy potential games
[20] and are expected to be present in systems of larger number
of strategies.

Within this six-dimensional subspace of matrix games one
can find directions realizing clearly the coordination type 2 × 2
subgames with payoff matrices f(pq) (p < q = 2,3, and 4) if
both players are constrained to choose either their pth or qth
strategies. The components of matrices f(pq) with attractive
Ising type (or coordination type) interactions between the
strategy pair (p,q) can be defined as

f
(pq)
ij =

⎧⎪⎨
⎪⎩

−1, if i = p and j = q, or i = q and j = p,

0, if i,j �= p,q,

1, if i = j = p or i = j = q.

(37)

These matrices contain two rows and columns composed of 0s
and each one can be obtained from

f(12) =

⎛
⎜⎝

1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠ (38)

by exchanging the same two rows and columns subsequently.
The above six matrices f(pq) are not orthogonal to each other
in the sense defined by Eq. (13). At the same time these com-
ponents span the whole subspace of coordination-type games.
In fact, each f(pq) can be expressed as a linear combination of
three of six g(m) (m = 8, . . . ,13) basis matrices. For example,

f(12) = 1
4 [g(9) + g(10) + g(13)]. (39)

In light of the above feature the coordination type in-
teractions can be considered as the linear combinations
of symmetric two-strategy subgames where the strength of
coordination is defined for each symmetric strategy pair. This
set of games includes cases when some of the f(pq) basis
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FIG. 3. (Color online) Two snapshots illustrate strategy distri-
butions during the domain growing process on a square lattice at
K � Kc/2 if the interaction is described by the four-state Potts model
(left) and by one of its relatives (right) obtained by exchanging the
third and fourth rows of the payoff matrix.

games can be present with negative weight factors that refer
to anticoordination-type interactions. The anticoordination
interactions enforce sublattice ordering when the players on
sublattice X follow the first strategy and they choose the
opposite one within the sublattice Y . There exists an other
equivalent sublattice ordered state where the strategies are
exchanged.

In the literature of physics the most frequently investigated
system within this subset of games is the four-state Potts model
(for a survey see [29]) that represents a universality class of
critical phase transitions [30]. The Potts models [31] were
introduced to study systems with n equivalent (homogeneous)
ordered states that are transformed to a disordered strategy dis-
tribution above a critical noise level (K > Kc). The resultant
order-disorder transition is continuous and the frequency �i

of states i converges algebraically to 1/4 when approaching
the critical point Kc. More precisely, |�i − 1/4| ∝ (Kc − K)β

where β = 1/12 and (Kc − K) → +0. In the present notations
the four-state Potts model is composed of all the f(pq) matrices
with equal weight factors.

For the two-state magnetic Ising model the equivalence
between the ferromagnetic and antiferromagnetic ordering
phenomena on the square lattice is related to the fact that the
spin reversal on one of the sublattices transforms the attractive
interactions into repulsive ones. Here f12 is transformed into
−f12 if strategy labels 1 and 2 are exchanged on one of the
sublattices. Evidently, a similar exchange of a strategy pair on
one of the sublattices for the four-state Potts model creates an
additional set of models exhibiting equivalent order-disorder
phase transitions. The analogous behavior of these models is
illustrated in Fig. 3 that draws a parallel between the snapshots
obtained during the domain growing for the four-state Potts
model and for one of its relatives. Similar equivalence between
the three-state Potts model and its relatives was reported and
discussed in detail for the evolutionary three-strategy spatial
games [20].

The above-mentioned family members of the four-state
Potts model are located along disjunct directions (half-lines)
within the six-dimensional subspace of the coordination-type
games. Within this subset of games, however, there exist
many other combinations of elementary coordination games
that exhibit different symmetries and order-disorder phase

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1.0  1.5

st
ra

te
gy

 f
re

qu
en

cy

K

FIG. 4. Strategy frequencies as a function of noise K for
evolutionary games with pair interactions f(12) on the square lattice.
The MC data are denoted by the same symbols used in Fig. 2.

transitions. For example, the game represented by the matrices
f(12) perform an Ising-type order-disorder phase transition
as it is shown in Fig. 4. The numerical results show an
Ising-type order-disorder critical transition for the strategy
frequencies �1 and �2, whereas �3 = �4 vary smoothly from 0
to 1/4 when K is increased. Our numerical data are consistent
with the theoretical expectation predicting (�1 − �2) � (Kc −
K)β with β = 1/8 if (Kc − K) → +0 for Kc = 1.4077(1).
Evidently, similar K-dependence of the strategy frequencies
occur within the sublattices X and Y when the pair interactions
are given by −f(12).

On the analogy of the above model, Fig. 5 shows another
universal critical transition occurring when the pair interaction
is defined by the matrix A = f(12) + f(23) + f(13). In that case
the corresponding potential matrix has three equivalent max-
imal values (V11 = V22 = V33) that prescribes the existence
of three (equivalent) homogeneous ordered states in the limit
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FIG. 5. Monte Carlo data for the strategy frequencies versus noise
on the square lattice when the pair interaction is defined as A =
f(12) + f(23) + f(13). Symbols agree with those used in Fig. 2 (here the
circles and diamonds coincide).
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K → 0 on the square lattice. The MC results show that �4

increases smoothly with K from 0 to 1/4 and �2 = �3 if
�1 → 1 in the limit K → 0.

The preliminary MC simulations indicate more complex
behavior for a payoff matrix A = f(12) + f(34) that ensures four
equivalent ordered strategy arrangements in the zero-noise
limit. Evidently, the latter system is equivalent to those defined,
for example, by A = f(13) + f(24). Similar richness in the
behavior and phase diagrams is reported for the Ashkin-
Teller model [32] and for other systems exhibiting fourfold
degenerated ground states [33].

VI. CYCLIC GAMES

In this section we discuss the last three basis games
characterized by the following antisymmetric matrices:

g(14) = 1
2 [e(2) ⊗ e(3) − e(3) ⊗ e(2)], (40)

g(15) = 1
2 [e(3) ⊗ e(4) − e(4) ⊗ e(3)], (41)

g(16) = 1
2 [e(4) ⊗ e(2) − e(2) ⊗ e(4)], (42)

where, for example,

g(16) =

⎛
⎜⎝

0 1 0 −1
−1 0 1 0

0 −1 0 1
1 0 −1 0

⎞
⎟⎠ (43)

illustrates their general properties. First we emphasize that
g(16) can be interpreted as a straightforward extension of the
rock-paper-scissors game. Here the four strategies cyclically
dominate each other, which can be illustrated by the directed
graph c in Fig. 6 because its adjacency matrix is identical to
g(16). In graph theory [34], the simple directed graphs with
n nodes are characterized by an n × n adjacency matrix C
where Cij = 0 if the nodes i and j are not connected and
Cij = −Cji = 1 if there exists a directed edge from node i

to j . Figure 6 shows three directed graphs representing
Hamilton cycles (directed loops including all edges). In fact,
there exist three additional Hamilton cycles that can be
obtained by reversing all edge directions simultaneously and
are described by the matrices −g(m) for m = 14,15, and 16.
Notice that the eight linear combinations of the cyclic basis
games, namely,

e = ±g(14) ± g(15) ± g(16), (44)

define rock-paper-scissors-type three-strategy subgames when
the use of one of the four strategies is prohibited. The
corresponding directed graphs are given by the eight (possible)
directed three-edge loops with one isolated nodes.

1

2

3

4

c1

2

3

4

a 1

2

3

4

b

FIG. 6. The three cyclic basis games, Eqs. (40)–(42), are defined
by adjacency matrices of the directed graphs a, b, and c, respectively.

Notice that all antisymmetric n × n matrices can be
described as combinations of the adjacency matrices of the
possible directed graphs of n nodes with only a single directed
edge. Within this subset of matrices the cyclic games are
orthogonal to both the self- and cross-dependent matrices
that restrict the analysis to those directed graphs where the
numbers of outgoing and ingoing edges are equivalent for each
node. The latter requirements are satisfied for graphs with a
directed loop and also for those that are composed of directed
loops without common edges. The above mentioned three- and
four-edge directed loops represent graphically some inherent
properties of the cyclic basis games for n = 4.

The presence of cyclic basis games [β(14),β(15),β(16) �=
0] in a payoff matrix A prevents the existence of potential
because for each cyclic component there exist closed trajec-
tories in the space of strategy profiles where the preferred
directions form directed loops, therefore the Kirchhoff laws
cannot be satisfied. Conversely, potential exists if β(14) =
β(15) = β(16) = 0. The latter condition coincides with the
criteria given by Eqs. (4), (5), and (7). More precisely, the
criterium Eq. (4) is equivalent to the orthogonality condition
β(16) = A · g(16) = 0 as defined by Eq. (15). Additionally,
the condition of β(16) = 0 can be interpreted as the vanishing
of the sum of payoff variations of the active player along the
four-state loops (1,3) → (1,4) → (2,4) → (2,3) → (1,3) or
(3,1) → (3,2) → (4,2) → (4,1) → (2,1) within the dynami-
cal graph. Similar relationships can be deduced for the other
two terms dictating (β(14) = β(15) = 0).

In fact, for the symmetric four-strategy games we can
distinguish three pairs of four-state loops where the first player
uses either strategy i or j , whereas the second player can select
one of the other two strategies, namely, either strategy k or l

(for the above discussed situation i = 1, j = 2, k = 3, and
l = 4). In these cases the two players use two different pairs
of strategies.

Among the four-state loops of the dynamical graph (see
Fig. 1) we can distinguish two additional classes. The first class
includes those loops where both players are constrained to use
the same strategy pair. Three of the possible six symmetric
2 × 2 subgames are indicated by solid (yellow) circles in Fig. 1.
Along these loops the symmetry of the game ensures that
the sum of payoff variations vanishes as it happens to the
symmetric two-strategy games [20].

Within the second class of loops the players have one
common strategy and the second ones are distinct. The
investigation of these cases can be mapped onto the analysis
of three-strategy games where potential can exist in the
absence of the corresponding rock-paper-scissors component
that can be built up as a suitable linear combination of the
three four-state cyclic basis games mentioned above. More
precisely, Eq. (6) is equivalent to the orthogonality condi-
tion A · [g(14) + g(15) + g(16)] = 0 where the second term
describes rock-paper-scissors-type cyclic dominance between
the strategies 2, 3, and 4.

The three cyclic basis games [g(14), g(15), and g(16)]
can be mapped onto each other by relabeling the strategies.
This is the reason why the corresponding games exhibit
similar behaviors resembling those observed for the rock-
paper-scissors games on square lattice at different evolutionary
rules. Due to the “cyclic” symmetries for all the three basis
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games the four strategies are present with the same frequency
[35–39]. The strategy frequencies can be tuned by varying the
strength of these components [40–42]. In the spatial systems
the small domains invades each other cyclically along irregular
interfaces. The size of domains can be enhanced by introducing
additional coordination-type interactions [43].

VII. GENERALIZATION FOR SYMMETRIC
n-STRATEGY GAMES

Most of the above features remain valid for all symmetric
matrix games with n > 4 strategies. Namely, the all-ones
matrix as well as the basis games with self- and cross-
dependent payoffs exhibit similar properties to those described
in Sec. IV. Within this [(2n − 1)-dimensional] parameter space
of games there is no direct interactions between the players.
The potential is determined by the self-dependent components
on the analogy of Eq. (25) and we can distinguish (n − 1)
antisymmetric basis matrices.

The parameter space of the coordination-type interactions
is spanned by n(n − 1)/2 symmetric f(pq) matrices defined
on the analogy of Eq. (37) for p < q = 2, . . . ,n. The space
of the whole symmetric n × n matrices is spanned by the
linear combination of the coordination-type games and by
the n symmetric matrices derived from the self- and cross-
dependent components as it happened for n = 4. The rest of the
(n − 1)(n − 2)/2-dimensional subspace of the antisymmetric
matrices involves the linear combination of the four-strategy
cyclic subgames. The latter cyclic components can be derived
from g(16) by adding all-zeros column(s) and row(s), as
represented by the matrix

e(c−1234) =

⎛
⎜⎜⎜⎝

0 1 0 −1 0
−1 0 1 0 0

0 −1 0 1 0
1 0 −1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠ (45)

for n = 5, which is the adjacency matrix of a directed graph
with one directed four-edge loop (through the strategies 1,
2, 3, and 4) and one isolated node (representing strategy
5). On the analogy to e(c−1234) we can introduce many other
cyclic games (e.g., e(c−1234)) for four of n strategies that are
orthogonal to all f(pq) as well as to A(self) and A(cross). The
relevance of the basis matrices e(c−ijkl) is justified by the fact
that the scalar products A · e(c−1234) = 0 is equivalent to the
general conditions required for the existence of potential (see
Refs. [12,18,20,24]). More precisely, the condition A ·
e(c−ijkl) = 0 ensures that the Kirchhoff law is satisfied along
the four-edge loop (i,j ) → (k,j ) → (k,l) → (i,l) → (i,j ) in
the space of pure strategy profiles.

Among the general properties of the n × n symmetric
matrix games we have to underline the importance of the
symmetric components of the payoff matrix A. Collaborating
players can agree to share the accumulated payoff equally
as it happens between fraternal players, friends, or family
members [1,17,44–46]. In that case the effective payoff matrix
A(eff) = (A + AT )/2 does not contain the contribution of the
antisymmetric components. In other words, the decision of
the collaborating players is affected by neither the cyclic

nor antisymmetric portion of the self- and cross-dependent
components. Evidently, A(eff) is a potential game that always
has at least one pure Nash equilibrium and the preferred one
provides the maximal value of the potential when V(eff) =
A(eff). The resultant payoff can serve as a reference when
considering the additional effect of social dilemmas or cyclic
dominance.

VIII. SUMMARY

We have studied the decomposition of the symmetric
4 × 4 matrix games into the linear combination of elementary
games defined by diadic products of the column vectors of
the Walsh-Hadamard matrices. For n = 2k (k is an integer)
these matrices are composed of elements of +1 or −1 and
have indicated clearly the inherent properties of matrices
representing possible pair interactions in evolutionary games.
Using this formalism we could distinguish four classes of
elementary interactions from which any symmetric matrix
games can be built up. The first class of interactions involves
games with self-dependent payoffs that are defined by matrices
with identical elements within each row. The direct interaction
between the players is also missing for the second class of
interactions called games with cross-dependent payoffs as
here the player’s income depends only on the decision of her
coplayer and the payoff matrix contains columns of identical
values. The third class of interactions defines the strength of
coordination for each the possible strategy pair that may be
either positive (attractive) or negative (repulsive). The fourth
class of games summarize the effects of cyclic dominance
and it can be considered as the extension of the traditional
rock-paper-scissors game.

The research of the decomposition was originally motivated
by the identification of potential games and by developing a
method for the evaluation of potential if it exists. It is found
that the potential exists in the absence of the cyclic components
and the potential matrix itself can be expressed by a simple
formula in the knowledge of the first three components.

One of the main advantages of the potential games is the
fact that in multiagent evolutionary games the maximal value
of the potential is achieved by a strategy profile that resembles
the ground state in physical systems. In several cases, the
four-strategy games are constructed from a two-strategy game
by adding a new option (punishment, reward, reputation, etc.)
and payoffs to each strategy via the introduction of a few
parameters [47–49]. These latter models become potential
games if the set of payoff parameters satisfy only one equation.

For n = 4 the application of the present diadic products
has highlighted some hidden feature of interactions described
by payoff matrices. It turned out that the most relevant cyclic
basis games can be illustrated graphically by directed graphs
with a single directed loop. This picture supports the extension
of the above-described properties for symmetric games with
n > 4 strategies.

The systematic analysis of spatial evolutionary games for
logit rules goes beyond the scope of the present work. Now our
investigations are restricted to some particular combinations
of a few basis games within the subset of coordination-type
interactions. The Monte Carlo simulations have indicated a
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richness in the stationary behaviors. More curious behaviors
are expected when considering more complex evolutionary
games, including the other three classes of interactions
and modifying the dynamical rule and/or the connectivity
structure.
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[41] G. Szabó and A. Szolnoki, Phys. Rev. E 77, 011906 (2008).
[42] S. O. Case, C. H. Durney, M. Pleimling, and R. Zia, Europhys.

Lett. 92, 58003 (2010).
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