
Noname manuscript No.
(will be inserted by the editor)

Approximability of scheduling problems with resource
consuming jobs

Péter Györgyi · Tamás Kis

Received: date / Accepted: date

Abstract The paper presents new approximability results for single machine
scheduling problems with jobs requiring some non-renewable resources (like raw
materials, energy, or money) beside the machine. Each resource has an initial stock
and additional supplies over time. A feasible schedule specifies a starting time for
each job such that no two jobs overlap in time, and when a job is started, enough
resources are available to cover its requirements. The goal is to find a feasible
schedule of minimum makespan. This problem is strongly NP-hard.

Recently, the authors of this paper have proposed a PTAS for the special case
with a single non-renewable resource and with a constant number of supply dates,
as well as an FPTAS for the special case with two supply dates and one resource
only. In this paper we prove APX-hardness of the problem when the number of
resources is part of the input, and new polynomial time approximation schemes
are devised for some variants, including (1) job release dates, and more than one,
but constant number of resources and resource supply dates, and (2) only one
resource, arbitrary number of supply dates and job release dates, but with resource
requirements proportional to job processing times.

Keywords Single machine scheduling, non-renewable resources, approximation
schemes, vertex cover problem

1 Introduction

In this paper we study scheduling problems with resource consuming jobs. In these
problems there are non-renewable resources (like raw materials, energy, or money)
consumed by the jobs. Each non-renewable resource has an initial stock, which
is replenished at a-priori known moments of time and in known quantities. We
will consider only single-machine problems, i.e., all the jobs have to be sequenced
on the same machine. The sole optimization objective will be the schedule length

P. Györgyi · T. Kis
Institute for Computer Science and Control, H1111 Budapest, Kende str. 13–17, Hungary
Tel.: +36 1 2796156; Fax: +36 1 4667503
E-mail: gyorgyi.peter@sztaki.mta.hu, kis.tamas@sztaki.mta.hu

P. Györgyi
Eötvos Loránd University, Pázmány Péter Sétány 1/C, Budapest, Hungary, H1117

2 Péter Györgyi, Tamás Kis

(makespan). Our analysis relies on connections with variants of the knapsack prob-
lem, and with the vertex cover problem in graphs.

More formally, there is a single machine, a finite set of jobs J , and a finite set of
non-renewable resources R consumed by the jobs. The machine can perform only
one job at a time, and preemption is not allowed. Each job Jj has a processing
time pj ∈ Z+, a release date rj , and resource requirements aij ∈ Z+ from the
resources i ∈ R. The resources are supplied in q different moments in time, 0 =

u1 < u2 < . . . < uq; the vector b̃` ∈ Z|R|+ represents the quantities supplied at
u`. A schedule σ specifies the starting time Sj of each job and it is feasible if (i)
the jobs do not overlap in time, (ii) Sj ≥ rj for all j ∈ J , and if (iii) at any time
point t the total material supply from every resource is at least the total request of
those jobs starting not later than t, i.e.,

∑
(` : u`≤t) b̃`i ≥

∑
(j : Sj≤t) aij , ∀i ∈ R.

The objective is to minimize the makespan, i.e., the completion time of the job
finished last.

Assumption 1
∑q
`=1 b̃`i =

∑
j∈J aij , ∀i ∈ R, holds without loss of generality.

Assumption 1 implies that there must exist a feasible solution (if every job
starts not before uq, the last supply date) and at least one job must start not
before uq (thus the optimal makespan C∗max is greater than uq).

1.1 Previous work

Scheduling problems with resource consuming jobs were introduced by Carlier
(1984), and Carlier and Rinnooy Kan (1982). Further results can be found in
e.g., Slowinski (1984), Toker et al. (1991), Neumann and Schwindt (2002), La-
borie (2003), Grigoriev et al. (2005), Briskorn et al. (2010, 2013), Gafarov et al.
(2011), Györgyi and Kis (2014, 2015), Morsy and Pesch (2015). In particular, in
Grigoriev et al. (2005) and Gafarov et al. (2011) the complexity of several variants
was studied and some constant ratio approximation algorithms were developed in
Grigoriev et al. (2005). Briskorn et al. (2010), Briskorn et al. (2013) and Morsy and
Pesch (2015) examined scheduling problems where there is an initial inventory, and
no more supplies, but some of the jobs produce resources, while other jobs consume
the resources. In Briskorn et al. (2010) and Briskorn et al. (2013) problems with
the objective of minimizing the inventory levels were studied. Morsy and Pesch
(2015) designed approximation algorithms to minimize the total weighted comple-
tion time. In Györgyi and Kis (2014) a PTAS for scheduling resource consuming
jobs with a single non-renewable resource and a constant number of supply dates
was developed, and also an FPTAS was devised for the special case with q = 2
supply dates and one non-renewable resource only. In Györgyi and Kis (2015)
it was shown, among other results, that there is no FPTAS for the problem of
scheduling jobs on a single machine with two non-renewable resources and q = 2
supply dates, unless P = NP , which is in strong contrast with the existence of an
FPTAS for the special case with one non-renewable resource only (Györgyi and
Kis, 2014). In Györgyi and Kis (2015) and Györgyi and Kis (2014), variants of the
knapsack problem are solved as a subproblem using combinatorial techniques like
enumeration of feasible packings. However, an important and very fruitful algo-
rithmic technique for solving packing type problems is linear programming based
rounding, see e.g., Fleischer et al. (2011), that will be used in this paper as well.

Approximability of scheduling problems with resource consuming jobs 3

While there are some algorithmic results for the more general resource con-
strained project scheduling problem (RCPSP) with non-renewable resources, see
e.g., Neumann and Schwindt (2002), Laborie (2003), but, to our best knowledge,
the hardness of approximation has only been studied for RCPSP without any
non-renewable resources, see Gafarov et al. (2014).

1.2 Results of the paper

Our positive and negative results are presented in the following two subsections.

1.2.1 Non-approximability results

If the number of non-renewable resources is constant and the number of supply
dates is 2, then the problem 1|rm = const., q = 2|Cmax admits a PTAS (Györgyi
and Kis, 2015). In contrast, if the number of resources is part of the input, we can
prove the following result.

Theorem 1 Unless P = NP , there is some constant ε > 0 such that it is NP-
hard to approximate the problem 1|rm, q = 2|Cmax better than 1 + ε if the number
of resources is part of the input.

Since the problem 1|rm|Cmax admits a 2-approximation algorithm (Grigoriev
et al., 2005), and 1|rm, q = 2|Cmax is just a special case, we can deduce the
following:

Corollary 1 1|rm, q = 2|Cmax is APX-complete.

It is also known that if the number of resources is constant and at least 2, then
there is no FPTAS for 1|rm = const., q = 2|Cmax.

1.2.2 Approximation schemes

Our new approximation schemes can solve more general problems than 1|rm =
1, q = const|Cmax, for which a PTAS has been developed in Györgyi and Kis
(2014). On the one hand, we allow more than one, but a constant number of
resources, and on the other hand, we consider job release dates as well.

Theorem 2 There is a PTAS for the problem 1|rm = const., q = const.,#{rj :
rj < uq} = const.|Cmax.

The condition #{rj : rj < uq} = const. reads that the number of distinct
job release dates before uq is bounded by a constant. The new PTAS inherits
some of the components from the earlier result, like scheduling small and big
jobs separately, but in this paper we use linear programming based rounding to
schedule the small jobs, and in the analysis we prove only that the rounding is just
good enough to get the desired approximation for the original scheduling problem,
instead of the stronger result proved in Györgyi and Kis (2014) showing that the
scheduling of the small jobs is a good approximation for a subproblem similar to
the multiple knapsack problem. The following result dispenses with the condition
on the number of distinct job release dates.

4 Péter Györgyi, Tamás Kis

Theorem 3 There is a PTAS for the problem 1|rm = const., q = const.|Cmax.

The proof of this results uses a rounding argument, and relies on the PTAS
developed for proving Theorem 2. Finally, we can get rid of the constant bound
on the number of resource supplies at the expense of considering one resource only
and restricting the resource requirements to be proportional to the job processing
times, i.e., there exists a positive constant λ such that aj = λpj for all j ∈ J .
The constant λ of course depends on the problem instance. This assumption may
be quite reasonable in some practical applications. Since we can get an equivalent
problem by dividing all the supplies, and all the resource requirements of a prob-
lem instance by the (instance specific) constant λ, from now on we consider the
case aj = pj only. Notice that in the above transformation, the b̃` may become
fractional after dividing by λ. However, this does not create any difficulty for the
approximation algorithms proposed below.

Theorem 4 There is a PTAS for the problem 1|rm = 1, aj = pj |Cmax.

One can generalize this result by enabling job specific release dates as well.

Theorem 5 There is a PTAS for the problem 1|rm = 1, pj = aj , rj |Cmax.

In Table 1 we summarize the results of the paper, and for the sake of com-
pleteness, we also mention previous results for this class of problems.

#Supplies #Resources Release PTAS FPTAS
q rm dates rj
2 1 no yes (Györgyi and Kis, 2014) yes (Györgyi and Kis, 2014, 2015)
2 1 yes yes (Sect. 5) ?
2 const. ≥ 2 no yes (Györgyi and Kis, 2014) noa (Györgyi and Kis, 2015)
2 const. ≥ 2 yes yes (Sect. 5) noa (Györgyi and Kis, 2015)
2 arbitrary yes/no noa (Sect. 3) noa (Sect. 3)
const. ≥ 3 1 yes/no yes (Sect. 5) ?
const. ≥ 3 const. ≥ 2 yes/no yes (Sect. 5) noa (Györgyi and Kis, 2015)

arbitrary 1 no yesb (Sect. 6) noa (Grigoriev et al., 2005)

arbitrary 1 yes yesb (Sect. 7) noa (Grigoriev et al., 2005)

a if P 6= NP
b under the condition aj = pj

Table 1 Known approximability results for scheduling problems with resource consuming
jobs. In the column of release dates ”yes / no” means that the result is valid in both cases.
The question mark ”?” indicates that we are not aware of any definitive answer.

1.3 Structure of the paper

In Section 2 we provide a problem formulation in terms of a mathematical program
which will be used throughout the paper. In Sections 3, 4, 5, 6, and 7 we prove
Theorems 1, 2, 3, 4 and 5, respectively. Some final remarks and open questions
are collected in Section 8.

Approximability of scheduling problems with resource consuming jobs 5

1.4 Terminology and definitions

An optimization problem Π consists of a set of instances, where each instance has
a set of feasible solutions, and each solution has a cost. In a minimization problem
a feasible solution of minimum cost is sought, while in a maximization problem one
of maximum cost. The value of the best (or optimal) solution of instance x of Π
is denoted by opt(x). An ε-approximation algorithm for an optimization problem
Π delivers in polynomial time for each instance of Π a solution whose objective
function value is at most (1 + ε) times the optimum value in case of minimization
problems, and at least (1−ε) times the optimum in case of maximization problems.
For an optimization problem Π, a family of approximation algorithms {Aε}ε>0,
where each Aε is an ε-approximation algorithm for Π is called a Polynomial Time
Approximation Scheme (PTAS) for Π. If, in addition, each Aε in the family is of
polynomial time in 1/ε as well, then {Aε}ε>0, is called a Fully Polynomial Time
Approximation Scheme (FPTAS) for Π. The class PTAS / class FPTAS consists
of those optimization problems which admit a polynomial time approximation
scheme / fully polynomial time approximation scheme. The above definitions are
mainly from the book of Garey and Johnson (1979).

The class APX consists of those optimization problems that can be approx-
imated within some constant factor in polynomial time in the size of the input.
Clearly, the class PTAS is a subset of the class APX. The class APX-complete
comprises those problems from APX which do not belong to PTAS, unless P=NP.
Let Π1 and Π2 be two optimization problems. We say that Π1 L-reduces to Π2 if
there exist two polynomial time algorithms f and g, and two constants α, β > 0,
such that for every instance x of Π1:

i) optΠ2
(f(x)) ≤ α · optΠ1

(x),
ii) for any solution of f(x) with cost c2, g provides a solution of x with cost c1

such that |c1 − optΠ1
(x)| ≤ β · |c2 − optΠ2

(f(x))|.

The two most important properties of L-reductions are that they compose, and
if Π1 L-reduces to Π2, and there is an ε-approximation algorithm for Π2, then,
through the reduction, we get an αβε-approximation algorithm for Π1. See the
original paper by Papadimitriou and Yannakakis (1991) for more details.

2 Problem formulation

We can model our scheduling problem by means of a mathematical program. To
this end, firstly we construct a set of time points T consisting of all the distinct
values from the set of time moments u`, ` = 1, . . . , q, (when some non-renewable
resource is supplied), and the set of release dates of the jobs rj , j ∈ J . Suppose
T has τ elements, denoted by v1 through vτ , with v1 = 0. We define the values
b`i :=

∑
k : uk≤v` b̃ki for i ∈ R, that is, b`i equals the total amount supplied from

resource i up to time point v`.

We introduce τ · |J | binary decision variables xj`, (j ∈ J , ` = 1, . . . , τ) such
that xj` = 1 if and only if job j is assigned to the time point v`, which means that
the requirements of job j must be satisfied by the resource supplies up to time

6 Péter Györgyi, Tamás Kis

point v`. The mathematical program is

C∗max = min max
v`∈T

v` +
∑
j∈J

τ∑
ν=`

pjxjν

 (1)

s.t.∑
j∈J

∑̀
ν=1

aijxjν ≤ b`i, v` ∈ T , i ∈ R (2)

τ∑
`=1

xj` = 1, j ∈ J (3)

xj` = 0, j ∈ J , v` ∈ T such that rj > v` (4)

xj` ∈ {0, 1}, j ∈ J , v` ∈ T . (5)

The objective function expresses the completion time of the job finished last using
the observation that there is a time point, either a release date of some job, or when
some resource is supplied, from which the machine processes the jobs without idle
times. Constraints (2) ensure that the jobs assigned to time points v1 through v`
use only the resources supplied up to time v`. Equations (3) ensure that all jobs
are assigned to some time point. Finally, no job may be assigned to a time point
before its release date by (4). Any feasible job assignment x̄ gives rise to a set of
schedules which differ only in the ordering of jobs assigned to the same time point
v`.

Notice that in a feasible solution x̂ of (1)-(5) there can be more than one jobs
assigned to the same time point v`. We obtain a schedule of the jobs by putting
them on the machine in the order of their assignment to the time points in T .
That is, first we schedule in any order without idle times the jobs with x̂j1 = 1
from time v1 on. Let C1 be the completion time of these jobs. In a general step
` ≥ 2, we schedule the jobs with x̂j` = 1 in any order after max{C`−1, v`}, and
we denote by C` the completion time of the job finished last in this group. The
schedule obtained in this way is feasible, and its makespan is the completion time
of the job finished last, which is necessarily equal to the objective function value
of solution x̂. Let Cmax(x̂) denote this value.

3 Non-approximability of 1|rm|Cmax

In this section we will prove Theorem 1. To this end, we will reduce the APX-
complete Vertex Cover Problem in Bounded-degree graphs (VERTEX-COVER-B)
to 1|rm|Cmax. In VERTEX-COVER-B, given a connected graph and a constant
B, such that the degree of any vertex is bounded by B. One has to find a subset
U of vertices of minimum cardinality such that each edge of the graph is adja-
cent to some vertex in U . The following result was shown by Papadimitriou and
Yannakakis (1991):

Theorem 6 For any constant B ≥ 4, there is a constant δ > 0, such that it is
NP-hard to approximate VERTEX-COVER-B better than 1 + δ.

Approximability of scheduling problems with resource consuming jobs 7

The above statement was strengthened by Alimonti and Kann (2000) showing
APX-completeness for B = 3.

We can state the following well-known observation.

Proposition 1 In a connected graph on n vertices in which the maximum degree
of any vertex is B, the size of the minimum vertex cover is at least d(n− 1)/Be.

Now we are ready to prove the main result of this section.

Proof of Theorem 1. We will transform instances of VERTEX-COVER-B to in-
stances of 1|rm, q = 2|Cmax and show that if the latter problem admits a polyno-
mial time (1+ε)-approximation algorithm for any ε > 0, then VERTEX-COVER-
B has a (1 + (B + 1)ε)-approximation algorithm for any ε > 0, which contradicts
Theorem 6.

In the course of the transformation, we map a connected graph G = (V,E)
of maximum degree B with n = |V | vertices and m = |E| edges to a scheduling
problem instance with n jobs and r = m non-renewable resources, and q = 2
supply dates. For each vertex v ∈ V of the graph, we define one job, denoted
by Jv, of processing time 1, and for each edge e ∈ E we define one resource Re.
The resource requirements of job Jv are determined by the edges adjacent to the
corresponding vertex v, that is, if edge e is adjacent to v, then job Jv requires one
unit of the resource Re. Let u1 = 0, u2 = n − 1, b̃1,e = 1, and b̃2,e = 1 for each
resource Re, i.e., from each resource one unit is supplied at time 0, and one more
unit at time u2.

What does a schedule of minimum length represent in the graph? Observe that
in any feasible schedule, in the time interval u1 and u2 no two jobs requiring the
same resource may be scheduled, since the initial supply from each resource is 1
unit. Let I be the set of vertices indexing those jobs scheduled between u1 and
u2. Since no two jobs Jv and Jw with v 6= w ∈ I may require the same resource
(since b̃1,e = 1 for each resource Re), nodes v and w are not adjacent in the graph.
Hence, I is an independent set in G. But then the vertices of G indexing those
jobs scheduled after u2 constitute a vertex cover of G (since the complement of
an independent set is a vertex cover in any graph). Since u2 = (n − 1), and the
graph is connected, in a schedule of minimum length, the vertices of G indexing
those jobs scheduled after u2 constitute an optimal vertex cover of G. Let vc∗

denote the size of a minimum vertex cover of G. Then, the optimum makespan is
C∗max = u2 + vc∗.

Now we claim that if there is an (1 +ε)-approximation algorithm for 1|rm, q =
2|Cmax, then there is a (1 + (B + 1)ε)-approximation algorithm for VERTEX-
COVER-B. So suppose we have an (1 + ε)-approximation algorithm for 1|rm, q =
2|Cmax. The schedule supplied by this algorithm on the set of instances constructed
above satisfies the following:

Cmax = (n− 1) + k ≤ ((n− 1) + vc∗)(1 + ε),

where k is the number of jobs scheduled after u2 = (n − 1). Notice that k is the
size of the vertex cover in G determined by the jobs scheduled after u2. After
rearranging terms we get

k ≤ (n− 1)ε+ vc∗(1 + ε).

8 Péter Györgyi, Tamás Kis

Finally, using Proposition 1 we obtain

k ≤ (n− 1)

B
(εB) + vc∗(1 + ε) ≤ vc∗(1 + (B + 1)ε).

That is, the schedule determines a vertex cover of size at most vc∗(1 + (B + 1)ε).

Notice that in the above proof we have provided an L-reduction from VERTEX-
COVER-B to 1|rm|Cmax with parameters α = (B + 1), and β = 1.

Notice that the vertex-cover problem appears in completely different scheduling
problems, see e.g. Ambühl et al. (2011).

4 PTAS for fixed number of supply dates, resources and release dates

In this section we describe a polynomial time approximation scheme for schedul-
ing resource consuming jobs on a single machine and with a constant number
of non-renewable resources such that the number of supply dates and also the
number of distinct job release dates before uq are bounded by constants, and the
objective is to minimize the makespan, shortly for the problem 1|rm = const., q =
const.,#{rj : rj < uq} = const.|Cmax. We will reuse some of the ideas from
Györgyi and Kis (2014). That is, we will divide the set of jobs into big and small
ones, and schedule them separately starting with the big ones.

Let psum :=
∑
j∈J pj denote the sum of the processing times of all the jobs. For

a fixed ε > 0, let B := {j ∈ J | pj ≥ εpsum} be the set of big jobs, and S := J \B
the set of small jobs. We divide further the set of small jobs according to their
release dates, that is, we define the sets Sb := {j ∈ S | rj < uq}, and Sa := S \Sb.
Let T b := {v` ∈ T | v` < uq} be the set of time points v` before uq. The following
observation reduces the number of solutions of (1)-(5) to be examined.

Proposition 2 From any feasible solution x̂ of (1)-(5), we can obtain a solution
x̃ with Cmax(x̃) ≤ Cmax(x̂) such that each job Jj is assigned to some time point
v` (x̃j` = 1), satisfying either v` < uq, or v` = max{uq, rj}.

Proof Let J a(x̂) be the subset of jobs with x̂j` = 1 for some v` > uq. We define
a new solution x̃ in which those jobs in J a(x̂) are reassigned to new time points
and show that Cmax(x̃) ≤ Cmax(x̂). Let x̃ ∈ {0, 1}J×T be a binary vector which
agrees with x̂ for those jobs in J \ J a(x̂). For each j ∈ J a(x̂), let x̃j` = 1 for
v` = max{uq, rj}, and 0 otherwise. We claim that x̃ is a feasible solution of (1)-(5),
and that Cmax(x̃) ≤ Cmax(x̂). Feasibility of x̃ follows from the fact that uq is the
last time point when some resource is supplied, and that no job is assigned to some
time point before its release date. As for the second claim, consider the objective
function (1). We will verify that for each ` = 1, . . . , τ ,

v` +
∑
j∈J

τ∑
ν=`

pj x̃jν ≤ v` +
∑
j∈J

τ∑
ν=`

pj x̂jν , (6)

from which the claim follows. If v` ≤ uq, the left and the right-hand sides in (6)
are equal. Now consider any ` with v` > uq. Since no job in J a(x̂) is assigned to
a later time point in x̃ than in x̂, the inequality (6) is verified again.

Approximability of scheduling problems with resource consuming jobs 9

Notice that Proposition 2 also follows form a results of Lawler (1973) which
implies that if we have a single machine and a set of jobs with release dates, and
the objective is the minimum makespan, then it is optimal to sequence the jobs in
non-decreasing release date order.

An assignment of big jobs to the time points v1 through vτ is given by a partial
solution xbig ∈ {0, 1}B×T which assigns each big job to some time point v`. An
assignment xbig of big jobs is feasible if the vector x = (xbig , 0) ∈ {0, 1}J×T
satisfies (2), (4) and also (3) for the big jobs. Consider any feasible assignment
xbig of big jobs. If we fix the assignment of the big jobs in (2)-(4) to xbig , then the
supply from any resource i up to time point v` is decreased by the requirements of
those big jobs assigned to time points v1 through v`. Hence, we define the residual

resource supply up to time point v` as b̄`i := b`i−
∑
j∈B aij

(∑`
µ=1 x

big
jµ

)
. Further

on, let C̄B` := maxµ=1,...,`(vµ +
∑`
κ=µ

∑
j∈B pjx

big
jκ) denote the earliest time point

when the big jobs assigned to v1 through v` may finish.

In order to assign approximately the small jobs, we will solve a linear program
and round its solution. Our linear programming formulation relies on the following
result.

Proposition 3 There exists an optimal solution (x̂big , x̂small) of (1)-(5) such that
for each v` ∈ T b:

∑
j∈Sb

pj x̂
small
j` ≤ max{0, v`+1 − C̄B` }+ εpsum. (7)

Proof Suppose (x̂big , x̂small) is an optimal solution which does not meet the prop-
erty claimed. Without loss of generality, we may assume that in the optimal sched-
ule corresponding to (x̂big , x̂small), for each vk ∈ T , small jobs assigned to vk follow
the big ones assigned to vk. Let v` ∈ T b be the smallest time point for which (7)
is violated. Then some small jobs assigned to v` necessarily start after v`+1 in any
schedule corresponding to (x̂big , x̂small). Since all small jobs are of processing time
less than εpsum, we can reassign some of the small jobs from time point v` to v`+1

until (7) is satisfied for v`. Clearly, such a reassignment of small jobs does not
increase the length of the schedule. Then we proceed with the next time point in
T until we get a schedule meeting (7).

10 Péter Györgyi, Tamás Kis

Now, the linear program is defined with respect to any feasible assignment xbig

of the big jobs:

max
∑
v`∈T b

∑
j∈Sb

pjx
small
j` (8)

s.t.∑
j∈Sb

∑̀
ν=1

aijx
small
jν ≤ b̄`i, v` ∈ T b, i ∈ R (9)

∑
j∈Sb

pjx
small
j` ≤ max{0, v`+1 − C̄B` }+ εpsum, v` ∈ T b (10)

∑
v`∈T b∪{uq}

xsmall
j` = 1, j ∈ Sb (11)

xsmall
j` = 0, j ∈ Sb, v` ∈ T such that v` < rj , or v` > uq (12)

xsmall
j` ≥ 0, j ∈ Sb, v` ∈ T . (13)

The objective function (8) maximizes the total processing time of those small
jobs assigned to some time point v` before uq. Constraints (9) make sure that no
resource is overused taking into account the fixed assignment of big jobs as well.
Inequalities (10) ensure that the small jobs assigned to v` fit into the interval
[C̄B` , v`+1 + εpsum). Due to (11), small jobs are assigned to some time point in
T b ∪ {uq}. The release dates of those jobs in Sb, and Proposition 2 are taken care
of by (12). Finally, we require that the values xsmall

j` be non-negative.

Notice that this linear program always has a finite optimum provided that
xbig is a feasible assignment of the big jobs. Let x̄small be any feasible solution
of the linear program. Job j ∈ Sb is integral in x̄small if there exists v` ∈ T with
x̄small
j` = 1, otherwise it is fractional. After all these preliminaries, the PTAS is as

follows.

Algorithm A

1. Assign the big jobs to time points v1 through vτ in all possible ways which
satisfies Proposition 2, and for each feasible assignment xbig do steps 2-5:

2. Define and solve linear program (8)-(13), and let x̄small be an optimal basic
solution.

3. Round each fractional value in x̄small down to 0, and let xsmall := bx̄smallc be
the resulting partial assignment of small jobs, and U ⊂ Sb the set of fractional
jobs in x̄small .

4. Finally, each j ∈ U is assigned to time point uq ∈ T by letting xsmall
j` := 1 for

all j ∈ U where v` = uq, and all jobs in Sa are assigned to their release dates
by setting xsmall

j` := 1 for all j ∈ Sa, where v` = rj (recall that the release
dates of jobs belong to set T).

5. If the value of the complete assignment (xbig , xsmall) of all the jobs is bet-
ter than the best solution found so far, then update the best solution to
(xbig , xsmall).

6. After examining each feasible assignment of big jobs, output the best complete
solution found.

Approximability of scheduling problems with resource consuming jobs 11

We have to verify that the solution found by the above algorithm is feasible
for (1)-(5), its value is not too far from the optimum, and that the algorithm runs
in polynomial time in the size of the input. We introduce some terminology to
facilitate the following discussion. A 0/1-vector (xbig , xsmall) satisfying constraints
(2) and (4) constitutes a complete solution if every job is assigned to some time
point v`, i.e., it satisfies also the equations (3), otherwise it is a partial solution.

Lemma 1 Every complete solution (xbig , xsmall) constructed by the algorithm is
feasible for (1)-(5).

Proof Since the algorithm examines only feasible assignments of big jobs, (xbig , 0)
satisfies (2), (4), (5), and also (3) for all jobs in B by definition. The binary vector
(xbig , bx̄smallc, 0) consists of the assignment of big jobs, and of those small jobs
in Sb which are integral in the optimal solution x̄small of the linear program.
Notice that the fractional jobs in x̄small , and all jobs in Sa are unassigned. The
partial solution (xbig , bx̄smallc, 0) satisfies (2), (4), (5), and also (3) for all jobs in
B ∪ {j ∈ Sb | j is integral in x̄small}, since x̄small is a feasible solution of (8)-(13).
Finally, since uq is the last time point when some resource is supplied and all job in
Sa∪U are assigned to some time points not before uq, the 0/1-vector (xbig , xsmall)
is feasible for (1)-(5).

We will need the following result:

Proposition 4 In any basic solution of the linear program (8)-(13), there are at
most (|R|+ 1) · |T b| fractional jobs.

Proof Let x̄small be a basic solution of the linear program in which f jobs of Sb are
assigned fractionally, and e = |Sb|−f jobs integrally. Clearly, each integral job gives
rise to precisely one positive value, and each fractionally assigned job to at least
two. This program has |Sb| · |T b| decision variables, and m = |Sb|+ (|R|+ 1) · |T b|
constraints. Therefore, in x̄small there are at most m positive values, as no variable
may be nonbasic with a positive value. Hence,

e+ 2f ≤ |Sb|+ (|R|+ 1) · |T b| = e+ f + (|R|+ 1) · |T b|.

This implies

f ≤ (|R|+ 1) · |T b|

as claimed.

Lemma 2 The algorithm constructs at least one complete assignment (xbig , xsmall)
whose value is at most (1 +O(ε)) times the optimum makespan C∗max.

Proof Consider an optimal solution (x̂big , x̂small) of (1)-(5), consisting of the as-
signment of big jobs and that of the small jobs. We can suppose that this solution
satisfies the condition of Proposition 2. The algorithm will examine x̂big , being a
feasible assignment of the big jobs. Let xa ∈ {0, 1}S

a×T be an assignment of the
small jobs in Sa with xaj` = 1 if and only if rj = v`. Let Cmax((x̂big , 0, xa)) be the

value of the partial assignment (x̂big , 0, xa) in which no job in Sb is assigned to
any time point. Clearly, Cmax((x̂big , 0, xa)) ≤ Cmax((x̂big , x̂small)) = C∗max. Now,

12 Péter Györgyi, Tamás Kis

let us consider the assignment of the small jobs in Sb constructed by the algo-

rithm. Let bx̄smallc ∈ {0, 1}S
b×(T b∪{uq}) be the assignment of the small jobs in

Sb assigned by Algorithm A integrally. Let Cmax((x̂big , bx̄smallc, xa)) be the value
of the partial assignment (x̂big , bx̄smallc, xa).

Since x̄small is a feasible solution of (8)-(13), the partial solution (x̂big , bx̄smallc, xa)
may assign small jobs of total processing time at most max{0, v`+1 − C̄B` } +
εpsum to each v` ∈ T b (in addition to the big jobs assigned by xbig). Hence,
the jobs assigned to time points vk ≥ uq may be pushed to the right by at most
|T b|εpsum by the small jobs assigned to time points in T b. Since the linear program
maximizes

∑
v`∈T b

∑
j∈Sb pjxj`, thus

∑
j∈Sb,v`=uq

pj x̄j` ≤
∑
j∈Sb,v`=uq

pj x̂j` ,

therefore Cmax((x̂big , bx̄smallc, xa)) ≤ Cmax((x̂big , x̂small)) + |T b|εpsum = C∗max +
|T b|εpsum.

Finally, we bound the total processing time of those jobs in set U . By Propo-
sition 4, the size of U is at most (|R| + 1) · |T b|. But then, the total processing
time of those small jobs from Sb that are moved to the end of the schedule is at
most (|R|+ 1) · |T b| · εpsum. To summarize, we have

Cmax((x̂big , xsmall)) ≤ Cmax((x̂big , bx̄smallc, xa)) + (|R|+ 1) · |T b| · εpsum

≤ C∗max + (|R|+ 2) · |T b| · εpsum ≤ (1 +O(ε))C∗max,

where the first and the second inequality follows from the above discussion, and the
last from the fact that both |R| and |T b| are bounded by constants by assumption
and from the observation that psum ≤ C∗max.

Lemma 3 For any fixed ε > 0, the running time of the algorithm is polynomial
in the size of the input.

Proof Since the processing time of each big job is at least εpsum, the number of
big jobs is at most b1/εc, a constant, since ε is constant by assumption. Since
the number of time points in T is also constant by assumption, the total number
of assignments of big jobs to time point in T is also constant. For each feasible
assignment, a linear program of polynomial size in the input must be solved. This
can be accomplished by the Ellipsoid method in polynomial time (Gács and Lovász,
1981). Rounding the solution takes linear time in the number of small jobs. Hence,
the entire running time is polynomial in the size of the input, as claimed.

Proof of Theorem 2. We show that Algorithm A is a PTAS for 1|rm = const., q =
const.,#{j : rj < uq} = const.|Cmax. The polynomial time complexity of the
algorithm in the size of the input was shown in Lemma 3. In Lemma 2 it was
shown that the performance ratio is (1+O(ε)), where the constant factor c in O(·)
does not depend on the input. Hence, to reach a desired performance ratio δ, we
let ε := δ/c, and perform the computations with this choice of ε.

5 Arbitrary release dates

In this section we prove Theorem 3. We will reduce the problem 1|rj , rm =
const, q = const.|Cmax to the one with a constant number of release dates be-
fore uq. To this end, for a fixed δ > 0, we modify some of the job release dates to

Approximability of scheduling problems with resource consuming jobs 13

define a new problem instance in which there are at most 1/δ different job release
dates before uq. That is,

r′j :=

{
rj if rj ≥ uq
g(rj) · δuq if rj < uq

where g : Z+ → Z+, and g(rj) equals the smallest non-negative integer z such
that z · δuq ≥ rj . Let Crmax(x) denote the value of some solution x of the modified
problem instance, and Cr

∗

max the optimum makespan.

Lemma 4 Cr
∗

max ≤ C∗max + δuq.

Proof Consider an optimal schedule of the original problem, and let S∗j denote the
starting time of job j ∈ J . Let S′j = S∗j + δuq for each j ∈ J . We claim that S′

is a feasible schedule for the modified problem with makespan C∗max + δuq. Both
claims follow from the following easy observation:

r′j ≤ rj + δuq ≤ S∗j + δuq = S′j , ∀j ∈ J .

Apply the PTAS of Section 4 with error parameter δ to the modified prob-
lem instance to obtain a δ-approximate solution x̂r. We show that x̂r is a 3δ-
approximate solution for the original problem instance.

Proof of Theorem 3. We will show that for any 0 < δ ≤ 1, Cmax(x̂r) ≤ (1 +
3δ)C∗max, and thus the above algorithm for 1|rj , rm = const., q = const.|Cmax is
a PTAS.

We have

Cmax(x̂r) ≤ Crmax(x̂r) ≤ (1 + δ)Cr
∗

max ≤ (1 + δ)(C∗max + δuq) ≤ (1 + 3δ)C∗max,

where the first inequality follows from rj ≤ r′j , the second from the fact that we
have applied a PTAS with error parameter δ to the modified problem instance,
the third form Lemma 4, and the last one from uq < C∗max (by Assumption 1),
and from elementary calculations.

6 PTAS for the special case with pj = aj

In this section we prove Theorem 4. Notice that in the problem 1|rm = 1, pj =
aj |Cmax, the number of supply dates is part of the input, there is only a sin-
gle resource, and the resource requirements of the jobs are proportional to their
processing times.

Our algorithm is similar to that of Section 4, that is, we will divide the set of
jobs into big and small ones, B and S, and schedule the two subsets separately.
Let ε > 0 be fixed. The set of big and small jobs are defined in the same ways
as in Section 4. Let T = {u1, . . . , uq}. We assign the big jobs to time points in T
in all possible ways. Notice that since the size of B is bounded by 1/ε, which is a
constant because ε > 0 is fixed, the number of big job assignments is polynomial
in the size of the input. We will consider only feasible assignments, i.e., a binary
vector xbig ∈ {0, 1}B×T is feasible if and only if it satisfies conditions (2), and (3)
for j ∈ B. (Notice that the condition (4) is void, since all job release dates are 0.)

14 Péter Györgyi, Tamás Kis

t

t

t

u1 = 0

ū1

u1 = 0

u2

u2

u3

u3

u4

u4

u5

u5

u6

u6

ū2 ū3 ū4 = ū5 = ū6

C̄B1 C̄B2 C̄B3 C̄B4 C̄B5 = C̄B6

J

S

B
J1 J2 J3 J4 J5 J6 J7

J1 J2 J3 J4 J5 J6 J7

Fig. 1 Illustration of the algorithm

For each feasible assignment of big jobs, we assign the small jobs to time points in a
suboptimal way. Finally, we choose the best complete assignment constructed. We
will prove that the best solution found has a makespan of no more than (1+ε)C∗max,
and that the algorithm has a polynomial time complexity.

For each feasible assignment xbig of the big jobs, we define an integer program
for the remaining problem: let C̄B` be the earliest completion time of the big jobs
assigned to the first ` time points u1 through u`, that is, C̄B1 :=

∑
j∈B pjx

big
j1 ,

and for each ` ∈ {2, . . . , q}, C̄B` := max{C̄B`−1, u`} +
∑
j∈B pjx

big
j` . Moreover,

let ū` denote the total idle time until time point C̄B` in the schedule of the
big jobs, that is, ū` = C̄B` −

∑`
ν=1

∑
j∈B pjx

big
jν , ` = 1, . . . , q. Recall that b̄` =

b` −
∑
j∈B aj

(∑`
ν=1 x

big
jν

)
≥ 0 is the residual resource supply. For a fixed feasible

assignment of the big jobs, we define the following integer program.

C̄∗max = min max
`=1,...,q

ū` +

q∑
ν=`

∑
j∈S

pjx
small
jν

 (14)

s.t.∑
j∈S

pj

(∑̀
ν=1

xsmall
jν

)
≤ b̄`, ` = 1, . . . , q (15)

q∑
`=1

xsmall
j` = 1, j ∈ S (16)

xsmall
j` ∈ {0, 1}, ` = 1, . . . , q, j ∈ S. (17)

The value of a feasible solution xsmall will be denoted by C̄max(xsmall). After
we have found a suboptimal solution of (14)-(17), we assign the small jobs to the u`
according to this solution. See Figure 1 for an illustration of the whole algorithm.

The next statement follows from the definitions.

Approximability of scheduling problems with resource consuming jobs 15

Proposition 5 If xbig is a feasible assignment of the big jobs, then xsmall is a
feasible solution of (14)-(17) if and only if the complete solution (xbig , xsmall) is a
feasible solution of (1)-(5).

For the sake of simpler presentation, we also define ū0 := 0 and C̄B0 := 0.

Proposition 6 If xbig is a feasible assignment of the big jobs, then

1. if ` > 1 and ū`−1 < ū`, then ū` = ū`−1 + u` − C̄B`−1.

2.
∑`−1
ν=1

∑
j∈B pjx

big
jν ≥ u` − ū`, ` = 1, . . . , q.

Proof Both claims follow from the definitions of ū` and C̄B` .

Proposition 7 Consider the assignment x = (xbig , xsmall), where xbig is an ar-
bitrary feasible assignment of the big jobs, and xsmall is an arbitrary assignment
of the small jobs. Let `0 be the smallest index such that C̄max(xsmall) = ū`0 +∑q
ν=`0

∑
j∈S pjx

small
jν . In this case Cmax(x) = u`0 +

∑q
ν=`0

∑
j∈J pjxjν .

Proof Since `0 is the smallest index with C̄max(xsmall) = ū`0+
∑q
ν=`0

∑
j∈S pjx

small
jν ,

either `0 > 1 and ū`0−1 < ū`0 , or `0 = 1. In both cases ū`0 = ū`0−1 +u`0 − C̄
B
`0−1.

By contradiction, suppose that there is an index ` 6= `0 such that

u`0 +

q∑
ν=`0

∑
j∈J

pjxjν < u` +

q∑
ν=`

∑
j∈J

pjxjν = Cmax(x). (18)

Choose the smallest index `1 among such indices. Suppose that `1 < `0 (the case
`1 > `0 is similar). Rearranging (18) yields

u`0 − u`1 <
`0−1∑
ν=`1

∑
j∈J

pjxjν . (19)

Observe that ū`0 +
∑q
ν=`0

∑
j∈S pjx

small
jν > ū`1 +

∑q
ν=`1

∑
j∈S pjx

small
jν follows

from the condition of the proposition, hence, ū`0 − ū`1 >
∑`0−1
ν=`1

∑
j∈S pjx

small
jν .

Subtract it from (19) to get u`0 − u`1 − ū`0 + ū`1 <
∑`0−1
ν=`1

∑
j∈B pjx

big
jν . Since

ū`0 = ū`0−1 + u`0 − C̄
B
`0−1 = u`0 −

∑`0−1
ν=1

∑
j∈B pjx

big
jν (by the definition of ū`),

thus u`1 − ū`1 >
∑`1−1
ν=1

∑
j∈B pjx

big
jν which contradicts Proposition 6, and the

claim follows.

Proposition 8 Consider a fixed assignment xbig of the big jobs, and two feasible
solutions, xsmall and x̃small , of (14)-(17) such that C̄max(xsmall) = C̄max(x̃small)+
K for some K ≥ 0. Then Cmax((xbig , xsmall)) = Cmax((xbig , x̃small)) +K.

Proof Let ` be the smallest index such that ū`+
∑q
ν=`

∑
j∈S pjx

small
jν = C̄max(xsmall).

Since ū` > ū`−1 or ` = 1, we have ū` = ū`−1+u`−C̄B`−1. Using this and the defini-

tion of ū`−1, we get C̄max(xsmall) = u`−
∑`−1
ν=1

∑
j∈B pjx

big
jν +

∑q
ν=`

∑
j∈S pjx

small
jν .

Define ˜̀ analogously for x̃small , use the same transformation and plug in these for-
mulas in the condition of the proposition:

u` −
`−1∑
ν=1

∑
j∈B

pjx
big
jν +

q∑
ν=`

∑
j∈S

pjx
small
jν = u˜̀−

˜̀−1∑
ν=1

∑
j∈B

pjx
big
jν +

q∑
ν=˜̀

∑
j∈S

pj x̃
small
jν +K.

Add
∑
j∈B pj to both sides and the proposition follows from Proposition 7.

16 Péter Györgyi, Tamás Kis

t

v1 = ū1 v2 = ū4 v3 = ū5 = ū6

ū2 ū3 ū7 = ūq

b̃′1 b̃′2 b̃′3 b̃′4 b̃′5 b̃′6 b̃′7
w1 w2 w3 = ws

Fig. 2 Dividing the time horizon into intervals

We present a method to obtain a suboptimal solution of (14)-(17). Let b̃′1 := b̄1
and b̃′` := b̄` − b̄`−1, ` = 2, . . . , q be the amount of the resource that becomes
available for small jobs scheduled after ū`. Note that the problem of assigning small
jobs to time points is equivalent to the problem instance of 1|rm = 1, pj = aj |Cmax

in which b̃′` amount of resource is supplied at ū`, ` = 1, . . . , q.
Since pj = aj , passing of time, and resource utilization is interchangeable,

which motivates the following construction. We divide the time horizon into inter-
vals [v`, w`] in which the material supply is contiguous:

1. The first interval starts at time v1 := ū1, and let ` := 1.
2. For k = 2, . . . , q repeat the following step:
3. If ūk > v` +

∑
z:v`≤ūz<ūk

b̃′z, then the end of the `th interval is w` := v` +∑
z:v`≤ūz<ūk

b̃′z, i.e., v` plus the amount supplied after v` and before uk. Let
v`+1 := ūk, ` := `+ 1. Otherwise, proceed with the next k.

4. Let s := `, and ws := vs +
∑
z:vs≤ūz

b̃′z.

Notice that at the end of the algorithm, 1 ≤ s ≤ q, each v` is equal to one
of the ūk values, and the interval [v`, w`] contains all the ūk values such that
ūk ≤ v` +

∑
z:v`≤ūz<ūk

b̃′z, for ` = 1, . . . , s, that is, in each interval [v`, w`], the
next supply arrives before the previous supplies could be fully consumed, if the
rate of consumption were constant 1. See Figure 2 for an illustration.

Proposition 9 The optimal makespan of problem (14)-(17) is at least ws.

Proof The total resource supply before vs is

∑
z:ūz<vs

b̃′z =

q∑
`=1

b̃′` −
∑

z:vs≤ūz

b̃′z =
∑
j∈S

aj −
∑

z:vs≤ūz

b̃′z =
∑
j∈S

pj −
∑

z:vs≤ūz

b̃′z,

thus the total amount of work scheduled before vs is at most
∑
j∈S pj−

∑
z:vs≤ūz

b̃′z.

Therefore every feasible schedule has to process at least
∑
z:vs≤ūz

b̃′z amount of
total work after vs, and the proposition follows.

We will schedule the jobs to start in some interval, or after the end of [vs, ws],
when already all the materials are supplied. Let I :=

⋃s
`=1[v`, w`]. We define the

function F : Z+ → Z+ which provides for any µ ∈ Z+ the earliest time point t ∈ I
such that the measure of the set [v1, t]∩I is µ, i.e.,

∫
x∈[v1,t]∩I

1dx = µ. If µ is too

big, i.e., larger than the total size of the intervals, we let F (µ) :=∞. Notice that
F is monotone non-decreasing and piecewise linear. Let pSmax := maxj∈S pj .

Algorithm B

1) Take an arbitrary order of the small jobs (J1, . . . , J|S|).

Approximability of scheduling problems with resource consuming jobs 17

2) For j = 1, . . . , |S| repeat the following two steps:
3) Let t := F (

∑j−1
j′=1 pj′ + pSmax).

4) If t <∞, then schedule job Jj at time t. Otherwise schedule Jj at max{Sj−1 +
pj−1, ws} if j ≥ 2, or at ws if j = 1.

Proposition 10 The schedule constructed by Algorithm B is feasible, and it fin-
ishes at most pSmax time units after ws.

Proof To verify feasibility, we have to check that (i) no job Jj starts before the
previous job, if any, is finished, and that (ii) there is enough resource available
to cover its demand. Property (i) follows from the monotonicity and piecewise
linearity of F . As for (ii), if t is finite in step 3) of the algorithm, then by the
definition of function F , the total supply in the intervals up to time t minus the
total demand of the first j − 1 jobs is at least pSmax. But, pj ≤ pSmax, and aj = pj ,
hence, there is enough resource available to start the job. If t is infinite, then
already all the supplies from the resource arrived, and the job can certainly be
started.

Finally, to see that the last job finishes at most pSmax time units after ws,
observe that by the definition of F and by the construction of the schedule, the
total resource available at time ws is at most pSmax. Since pj = aj for all jobs, and
the total request of the small jobs equals F (ws), the total size of unscheduled jobs
is at most pSmax.

The following algorithm creates a complete assignment of the jobs:

Algorithm C:

1. Assign the big jobs to time points u1 through uq in all possible ways, and for
each feasible assignment xbig do steps 2-4.

2. Define the scheduling problem instance of 1|rm = 1, pj = aj |Cmax in which b̃′`
amount of the resource is supplied at ū`.

3. Construct a schedule according to Algorithm B, and let xsmall
j` := 1 if and only

if the starting time Sj of job Jj ∈ S satisfies ū` ≤ Sj < ū`+1, ` = 1, . . . , q,
where ūq+1 :=∞.

4. If the value of the assignment x = (xbig , xsmall) is better than the best solution
found so far, then update the best solution to x.

5. Output the best solution found, denoted by xC .

The next lemma follow from Propositions 9 and 10.

Lemma 5 For every feasible assignment of the big jobs, the algorithm provides a
small job assignment xsmall such that C̄max(xsmall) ≤ C̄∗max + pSmax.

Lemma 6 The algorithm examines at least one feasible assignment (xbig , xsmall)
whose value is at most pSmax ≤ εpsum more than the optimum of (1)-(5).

Proof Consider an optimal solution (x̂big , x̂small) of (1)-(5) and consider the case
when xbig = x̂big . According to Proposition 10 and Proposition 5, the assignment
(xbig , xsmall) is feasible. The statement about the value of (xbig , xsmall) follows
from Lemma 5 and Proposition 8.

18 Péter Györgyi, Tamás Kis

Proof of Theorem 4. Lemma 6 shows that the value of the solution xC provided
by Algorithm C is at most εpsum more than the optimum makespan C∗max. Since
psum ≤ C∗max, it follows that Cmax(xC) ≤ (1 + ε)C∗max. The running time is
determined by the number of ways in which the big jobs can be assigned to the
time points in T , and for each such assignment the time needed to schedule the
small jobs. The latter is clearly polynomial in the size of the problem instance
with the small jobs. Since the number of big jobs is bounded by 1/ε, which is
a constant for any fixed ε > 0, we have shown that Algorithm C is a PTAS for
1|rm = 1, pj = aj |Cmax.

7 A PTAS for the special case with pj = aj and with arbitrary job
release dates

In this section we sketch the proof of Theorem 5. Algorithm C can be easily
extended to the case when the jobs have arbitrary release dates. We have to make
the following modifications:

– Define T = {u`}q`=1 ∪ {rj}j∈J = {v1, . . . , vτ}, like in Section 4.
– The feasible big job assignments have to satisfy (2), and (4).
– Determine the values v̄1 through v̄τ similarly as the values ū1 through ūq in

Section 6.
– In step 1 of Algorithm B, we have to process the small jobs in non-decreasing

release date order.
– For each small job j ∈ S, define r̄j = v̄`, where v` ∈ T equals the release date
rj .

– In step 3 of Algorithm B, let t := max{F (
∑j−1
j′=1 pj′ + pSmax),maxj0≤j{r̄j0 +∑j−1

j′=j0
pj′}}, where the first part of the maximum ensures that there is enough

resource available to start job j, while the second part ensures that the starting
time of the job is not before its adjusted release date r̄j , and that the jobs do
not overlap in time.

According to the new definition of the schedule it is easy to see the feasibility of
the assignment. Again, we can prove that the obtained schedule has a makespan
at most pSmax greater than the optimal makespan, thus a statement analogous to
Lemma 6 follows.

Finally, the running time is still polynomial in the size of the input, because
the number of big job assignments is O(τ1/ε), which is polynomial in the size of
the input, and the small jobs can also be scheduled by Algorithm B in polynomial
time. This proves that Algorithm C with the above modifications is a PTAS for
1|rm = 1, pj = aj , rj |Cmax, thus Theorem 5 follows.

8 Conclusion

In this paper we have given new negative and positive results on the approxima-
bility of single machine scheduling with resource consuming jobs. One of the main
open questions is whether the problem with q = 3 supply dates and a single non-
renewable resource only admits a fully polynomial time approximation scheme.

Approximability of scheduling problems with resource consuming jobs 19

Acknowledgments

The authors are indebted to a referee for careful reading and pointing out several
errors in an earlier version of the paper. This work has been supported by the
OTKA grant K112881. The research of Tamás Kis has been supported by the János
Bolyai research grant BO/00412/12/3 of the Hungarian Academy of Sciences.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Alimonti P., Kann V. (2000): Some APX-completeness results for cubic graphs,
Theoretical Computer Science, 237, 123–134.

Ambühl C.,Mastrolilli M., Mutsanas N., Svensson O. (2011): On the approxima-
bility of single-machine scheduling with precedence constraints, Mathematics of
Operations Research, 36, 653–669.

Briskorn D., Choi B.-C., Lee K., Leung J., Pinedo M. (2010): Complexity of sin-
gle machine scheduling subject to nonnegative inventory constraints, European
Journal of Operational Research, 207, 605–619.

Briskorn D., Jaehn F., Pesch E. (2013): Exact algorithms for inventory constrained
scheduling on a single machine, Journal of Scheduling, 16, 105–115.

Carlier J. (1984): Problèmes d’ordonnancements à contraintes de ressources: algo-
rithmes et complexité, Thèse d’état

Carlier J., Rinnooy Kan A.H.G. (1982): Scheduling subject to nonrenewable re-
source constraints, Operational Research Letters, 1, 52–55.

Fleischer L., Goemans M.X., Mirrokni V.S., and Sviridenko M. (2011): Tight Ap-
proximation Algorithms for Maximum Separable Assignment Problems. Math-
ematics of Operations Research 36, 416–431.

Gács P., Lovász L. (1981): Khachiyan’s algorithm for linear programming, Math-
ematical Programming Studies, 14, 61–68.

Gafarov E.R., Lazarev A.A., Werner F. (2011): Single machine scheduling prob-
lems with financial resource constraints: Some complexity results and properties,
Mathematical Social Sciences, 62, 7–13.

Gafarov E.R., Lazarev A.A., Werner F. (2014): Approximability results for the
resource-constrained project scheduling problem with a single type of resources,
Annals of Operations Research, 213, Issue 1, 115–130.

Garey M.R., Johnson D.S. (1979): Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco

Grigoriev A., Holthuijsen M., van de Klundert J. (2005): Basic scheduling problems
with raw material constraints, Naval Research of Logistics, 52, 527–553.

Györgyi P., Kis T. (2014): Approximation schemes for single machine scheduling
with non-renewable resource constraints, Journal of Scheduling, 17, 135–144.

Györgyi P., Kis T. (2015): Reductions between scheduling problems with non-
renewable resources and knapsack problems, Theoretical Computer Science, 565,
63–76.

20 Péter Györgyi, Tamás Kis

P. Laborie (2003): Algorithms for propagating resource constraints in AI planning
and scheduling: Existing approaches and new results, Artificial Intelligence 143,
151–188.

Lawler E.L. (1973): Optimal sequencing of a single machine subject to precedence
constraints, Management Sci. 19, 544–546.

Morsy E., Pesch E. (2015): Approximation algorithms for inventory constrained
scheduling on a single machine on the same problem, Journal of Scheduling, to
appear

Neumann K., Schwindt C. (2002): Project scheduling with inventory constraints,
Mathematical Methods of Operations Research, 56, 513–533.

Papadimitriou C., Yannakakis M. (1991): Optimization, Approximation, and Com-
plexity Classes, Journal of Computer and System Sciences, 43, 425–440.

Slowinski R. (1984): Preemptive scheduling of independent jobs on parallel ma-
chines subject to financial constraints, European Journal of Operational Re-
search, 15, 366–373.

Toker A., Kondakci S., Erkip N. (1991): Scheduling under a non-renewable resource
constraint, Journal of the Operational Research Society, 42, 811–814.

