
Approximability of total weighted completion

time with resource consuming jobs

Tamás Kis

September 8, 2015

Abstract

In this paper we study an extension of the single machine scheduling
problem with the total weighted completion time objective, where there
is a single non-renewable resource consumed by the jobs, having an initial
stock and some additional replenishments over time. We prove that this
problem is NP-hard in the strong sense, and provide an FPTAS for a
special case with two supply dates.
Keywords Scheduling, approximation algorithms, non-renewable resource

1 Introduction

We will study single machine scheduling problems with resource consuming jobs
and the total weighted completion time objective. In these problems, beside the
machine and the jobs, there is a non-renewable resource (like raw material,
energy, or money), consumed by some of the jobs. The non-renewable resource
has an initial stock, which is replenished at a-priori known moments of time and
in known quantities.

More formally, there is a single machine, a set of n jobs J , and a non-
renewable resource consumed by the jobs. The machine can process only one
job at a time, and preemption of processing is not allowed. Each job Jj , j ∈ J ,
has a processing time pj ∈ Z≥1, a weight wj ∈ Z≥0, and a resource requirement
aj ∈ Z≥0. The resource is supplied in q different moments in time, 0 = u1 <

u2 < . . . < uq; the scalar b̃` ∈ Z≥1, for ` = 1, . . . , q, represents the quantity
supplied at u`. A schedule σ specifies a starting time Sj ∈ Z≥0 for each job
j ∈ J , and it is feasible if (i) the jobs do not overlap in time and if (ii) at any
time point t the total supply from the resource is at least the total request of
those jobs starting not later than t, i.e.,

∑
(b̃` | ` ∈ {1, . . . , q} : u` ≤ t) ≥∑

(aj | j ∈ J : Sj ≤ t). The objective is to minimize the total weighted
completion time

∑
j wjCj , where Cj = Sj + pj , Sj being the starting time of

job Jj , j ∈ J , in some feasible schedule.
We have assumed that pj ≥ 1 for all j ∈ J , which is a slight restriction,

but this helps to keep the presentation simple. In contrast, job j having zero
resource requirement, i.e. aj = 0, is possible.

1

Assumption 1.
∑q
`=1 b̃` =

∑
j∈J aj, holds without loss of generality.

Assumption 1 implies that there must exist a feasible solution (if every job
starts not before uq, the last supply date) and at least one job must start not
before uq (since all the supplies are positive).

The difficulty of this problem stems from the fact that distinct jobs may
have different processing times and resource requirements, and sometimes jobs
have to be delayed until a sufficient amount of the resource is supplied in order
to start them.

The above problem is a generalization of the single machine scheduling prob-
lem with the total weighted job completion time objective, 1||

∑
wjCj , the latter

being a very well understood and widely studied problem of scheduling theory.
In fact, an optimal schedule can here be obtained by Smith’s ratio rule [15],
i.e., by scheduling the jobs in non-increasing wj/pj order. The structure of
the polyhedron of feasible job completion times is also known [16]. More on
the use of 1||

∑
wjCj in scheduling theory can be found in [1, 4]. As even a

single non-renewable resource constraint renders the problem intractable, see
below, gaining more insight is a challenging research direction. As a practical
application, consider a production line which processes a set of jobs, and the
jobs require some raw materials that arrive over time. Finding a good ordering
of the jobs with different material requirements, or processing times such that
the weighted completion time of the jobs is minimized can be modelled by the
scheduling problem described above.

1.1 Previous work

Scheduling problems with resource consuming jobs were introduced by Carlier
[5], and Carlier and Rinnooy Kan [6]. Further results can be found in e.g., [10],
[2, 3], [8], [11, 12]. In particular, Grigoriev et al. [10] studied the complexity of
several variants and developed some constant ratio approximation algorithms.
Briskorn et al. [2], and [3] studied scheduling problems with an initial inventory
only, where some of the jobs produce, and other jobs consume the resources,
the objective being the minimization of the inventory levels. In [11] a PTAS for
scheduling resource consuming jobs with a single non-renewable resource and a
constant number of supply dates was developed. Also, an FPTAS was devised
for the special case with q = 2 supply dates. In contrast, if two resources are
given, and q = 2, no FPTAS exists [12]. To our best knowledge, the only paper
dealing with machine scheduling with a non-renewable resource and a min-sum
type criterion (the average completion time) is by Gafarov et al. [8], who proved
that minimizing the average completion time of the jobs (1|nr = 1|

∑
j Cj)

is NP-hard in the ordinary sense when the number of supply dates is not a
constant.

1.2 Results of the paper

We will prove by a reduction from the single machine scheduling problem with
release dates and the average completion time objective that our problem is NP-

2

hard in the ordinary sense even if there is only one machine, one non-renewable
resource, and among the jobs there is only one which requires a positive amount
from the single resource. Moreover, our scheduling problem is NP-hard in the
strong sense if the number of supply dates is part of the input (not fixed), and
there are as many jobs requesting one unit each from the resource as the number
of supply dates. These complexity results sharpen that of Gafarov et al. [8].

Our second result is a fully polynomial time approximation scheme (FPTAS)
if the number of supply dates is q = 2, and there is only one non-renewable
resource. The algorithm borrows ideas from the FPTAS described in [7, 12] and
from results for the makespan minimization problem on parallel machines [14].
Since the scheduling problem is NP-hard in the strong sense if q is part of the
input, there is no FPTAS in this general case, unless P=NP.

2 The NP-hardness proofs

We reduce the single machine scheduling problem with release dates and the
average completion time objective (1|rj |

∑
j Cj) to our scheduling problem. In

this problem, jobs have release dates specifying their earliest possible start times.
We will consider the subset of instances in which exactly one job has a positive
release date, and all other jobs have a release date equal to 0. Rinnooy Kan [13]
has shown that minimizing the total completion time in this subclass is already
NP-hard. We use his result to establish the following theorem:

Theorem 1. Minimizing the average completion time on a single machine with
resource consuming jobs and one resource with q = 2 supply periods is NP-hard
(1|nr = 1, q = 2|

∑
j Cj).

Proof. We provide a transformation from the subclass of 1|rj |
∑
j Cj in which

there is precisely one job with a positive release date, while all other jobs have
release date equal to 0, to our scheduling problem. Take any instance I in
this subclass, the corresponding instance I ′ of our scheduling problem has one
machine, one non-renewable resource, and the same set of jobs as I. Suppose Jk
is the job with a positive release date in I. Then in I ′, the second supply date
is u2 = rk, when an amount of one unit is supplied from the single resource,
the first supply date is u1 = 0 with an initial stock level 0. In I ′, all jobs have
release date 0, but job Jk has a requirement of 1 unit from the non-renewable
resource. Clearly, since the initial supply from the non-renewable resource is 0,
Jk cannot start earlier than u2 = rk in I ′. Hence, the instances I and I ′ are
equivalent in the sense that all jobs except Jk can start at time 0, and job Jk
can start at rk or later. Consequently, I has a solution with objective function
value not greater than a given constant D if and only if I ′ has a solution with
objective function value at most D.

Rinnooy Kan also claims that the 3-PARTITION problem can be reduced to
1|rj |

∑
j Cj by adapting the strong NP-hardness proof of Garey et al. [9] of the

two-machine flow-shop scheduling problem with the average completion time
objective (F2||

∑
j Cj). Recall that an instance of 3-PARTITION consists of 3q

3

items each having a non-negative integer size, and a bound B such that each
item size is between B/4 and B/2, and the question is whether the items can
be grouped into q 3-element groups of total item size B each. By inspecting
the latter proof, one can observe that in the claimed strong NP-hardness proof
of 1|rj |

∑
j Cj there are q jobs with q distinct release dates, and all other jobs

have release dates 0. We can easily adapt the proof of Theorem 1 to this case.
By this, we obtain the following result.

Theorem 2. Minimizing the average completion time on a single machine with
resource consuming jobs and one resource is NP-hard in the strong sense (1|nr =
1|
∑
j Cj).

3 An FPTAS for 1|nr = 1, q = 2|
∑

j wjCj

In this section we describe a fully polynomial time approximation scheme for
the special case in which there is a single resource having an initial stock, and
one additional supply at date u2 > 0. Recall that an FPTAS for an optimization
problem is a class of algorithms, which, for each 0 < ε < 1, has an algorithm Aε
which runs in polynomial time in the size of the input and in 1/ε, and produces
a feasible solution of cost at most (1+ε) times the cost of an optimal solution in
case of minimization problems, and at least (1− ε) times the cost of an optimal
solution in case of maximization problems [14]. Our algorithm has a very simple
structure and uses standard techniques, see [14]. The only interesting part is the
transformation of the scheduling problem 1|nr = 1, q = 2|

∑
j wjCj to finding

a shortest path in an appropriately defined graph, but the twist is that the
shortest path computation is needed for finding a resource feasible solution,
instead of computing the cost of the solution.

In order to get more insight into our scheduling problem, consider any in-
stance in the subclass studied in this section, and any feasible solution to that
instance. Since there are only two supply dates, u1 and u2, with u1 = 0 with
corresponding supply b̃1, and u2 > 0 with corresponding supply b̃2, we know
that the set of jobs is partitioned into J 1 and J 2, where the jobs in J 1 use only
the initial supply available at u1, while the remaining jobs use that arriving at
u2 and the supply from b̃1 left by the jobs in J 1. Moreover, the jobs in J 2

are scheduled after all the jobs in J 1. Now we prove that there is an optimal
solution with a special structure, and this will serve as a basis for our FPTAS.

Proposition 1. The problem 1|nr = 1, q = 2|
∑
j wjCj always admits an opti-

mal solution of the following structure:

i) The set of jobs is partitioned into subsets J 1 and J 2, the jobs in J 1 use
only the initial supply and are scheduled consecutively from time u1 on,
while the jobs in J 2 use the supply left from b̃1 and also the supply b̃2, and
are scheduled consecutively from the time point max{u2,

∑
j∈J 1 pj}.

4

ii) The jobs in both of J 1 and J 2 are scheduled in non-increasing wj/pj order,
and there is at most one job in J 1 which finishes after u2, and if such a
job exists, it starts before u2.

Proof. Take any optimal solution, and let J 1 consist of those jobs starting before
u2, and J 2 contain the remaining jobs. Then, part i) holds, as one may easily
verify. Moreover, there is at most one job in J 1 which finishes after u2, and
this job must start before u2 by definition. Further on, the jobs in J 2 must be
scheduled in non-increasing wj/pj order, otherwise the schedule is not optimal
as a simple job-exchange argument shows (notice that after u2, the resource is
completely supplied, and there is nothing which could prevent such an ordering
of the jobs in J 2). Finally, suppose that the jobs in J 1 are not scheduled in
non-increasing wj/pj order, then again, a simple exchange argument shows that
the schedule is not optimal, a contradiction, which proves part ii).

In light of Proposition 1, we can express the objective function value of a
schedule with a given partitioning J 1 and J 2 of the jobs (assuming that the
jobs are indexed such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn), as follows:

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

max

{
u2,

∑
k∈J 1

pk

}
+

∑
k∈J 2,k≤j

pk

 . (1)

Notice that the first half of this expression calculates the weighted completion
time of the jobs in J 1 when scheduled in non-increasing wj/pj order, and the
second half does the same for the jobs in J 2.

In the following, denote, for any subset H of jobs, p(H) :=
∑
j∈H pj , and

w(H) :=
∑
j∈H wj .

In the approximation algorithm for some 0 < ε < 1, we will round some
partial sums of the problem data, and guess the value of max

{
u2, p(J 1)

}
. We

define a rounding function f(s) which assigns to any nonnegative number s ≥ 0
a number from a discrete set as follows. Let ∆ := 1 + ε/4n. Then, we define

f(s) :=

{
0, s = 0
∆dlog∆ se, s > 0

,

where dxe is the smallest integer z ≥ x for any x ∈ R. Notice that s ≤ f(s) ≤
s · ∆ holds for any s ≥ 0, since ∆ > 1. We will round iteratively sums of
numbers, i.e., the iterative rounding of a sum of the form x1 + x2 + · · ·+ xk is
defined with the formula gt := f(xt + gt−1) for t = 1, . . . , k, where g0 := 0.

Proposition 2. If xt ≥ 0 for all t = 1, . . . , k, then

i) x1 + · · ·+ xt ≤ gt, for t = 1, . . . , k.

ii) gt ≤ ∆t(x1 + · · ·+ xt), for t = 1, . . . , k.

5

Proof. For showing i), it is enough to note that the rounding function f(·)
rounds up any value s ≥ 1 to the least value ∆k ≥ s, with k ∈ Z≥0.

The set of inequalities ii) is verified by induction on t. For t = 1, we have
g1 = f(x1) ≤ ∆x1, by using the definition of f(·). So assume that the inequality
is proved for t − 1, and we verify it for t: gt = f(xt + gt−1) ≤ (xt + gt−1)∆ ≤
(xt + ∆t−1(

∑t−1
i=1 xi))∆ ≤ ∆t(x1 + · · · + xt), where the first inequality follows

from the definition of f(·), the second from the induction hypothesis, and the
third from ∆ > 1.

This rounding scheme has been used e.g., in [14] (Section 0.5.1: Makespan
on two identical machines).

We will guess the value of max
{
u2, p(J 1)

}
by picking a member from the

set G := {u2∆z : z = 0, . . . , dlog∆((u2 + p(J))/u2)e}. Notice that the largest
value in G is bounded by (u2 + p(J))∆.

With this data, we build a directed graph Dδ for each δ ∈ G. Firstly, we
re-index the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn. The nodes of Dδ

represent all the distinct partitioning of the first t jobs, for all t ∈ {1, . . . , n},
noting that the same node for a given t may represent several distinct partition-
ings of the first t jobs. We associate a vector with each node, that is, a node
with the first t jobs has a vector (t, P ′1, PW

′
1, P

′
2, PW

′
2), where P ′1 is the iterative

rounding of the total processing times of those jobs assigned to the time period
[u1, δ] out of the first t jobs, and PW ′1 is the iterative rounding of the total
weighted completion times of these jobs. Likewise, P ′2, and PW ′2 are the itera-
tively rounded total processing times, and the iteratively rounded total weighted
completion times, respectively, of those jobs assigned to the time period [δ,∞),
i.e., these jobs start at time δ. The unique source node (with zero in-degree)
represents the empty schedule, when no job is chosen (t = 0). Then we grad-
ually assign the jobs to time periods, and add more nodes to the graph, until
all the jobs are assigned. Consider a node with vector (t, P ′1, PW

′
1, P

′
2, PW

′
2). It

has two successor nodes, giving rise to two directed arcs. One of the successors
corresponds to assigning job Jt+1 to the time period [u1, δ], and the other suc-
cessor to assigning Jt+1 to the time period [δ,∞). The vectors associated with
these two nodes can be easily computed from (t, P ′1, PW

′
1, P

′
2, PW

′
2): if Jt+1 is

assigned to the time period [u1, δ], then the associated vector is (t + 1, f(P ′1 +
pt+1), f(PW ′1 + wt+1(P ′1 + pt+1)), P ′2, PW

′
2), and the vector of the other node

can be computed as (t+1, P ′1, PW
′
1, f(P ′2+pt+1), f(PW ′2+wt+1(δ+P ′2+pt+1))).

Clearly, the same node can be the successor of several other nodes. The arcs
representing the assignment of job Jt+1 to the time period [u1, δ] have weight
at+1, while all other arcs have weight 0, for all t = 0, . . . , n− 1. The nodes that
contain a partitioning of all the n jobs are called terminal nodes. A terminal
node with vector (n, P ′1, PW

′
1, P

′
2, PW

′
2) is feasible if it satisfies both of the fol-

lowing conditions: (i) P ′1 ≤ δ, and (ii) the shortest path from the source node
to this node has total arc length at most b̃1. We say that Dδ gives rise to a
feasible solution if and only if Dδ admits a feasible terminal node. The value
of a feasible terminal node with vector (n, P ′1, PW

′
1, P

′
2, PW

′
2) is PW ′1 + PW ′2.

After these preliminaries, the complete FPTAS is as follows.

6

1. Determine the set G.

2. For each δ ∈ G, compute the graph Dδ, and determine if Dδ gives rise to a
feasible solution.

3. Choose Dδ∗ which gives rise to a feasible solution with the smallest value
overall.

4. Recover a schedule by following a shortest path in Dδ∗ from the unique source
node to a feasible terminal node of smallest rounded objective function value,
and forming the sets J 1

∗ and J 2
∗ such that a job Jj is put in J 1

∗ if and only
if Jj is assigned to time period [u1, δ

∗], and put into J 2
∗ otherwise.

Theorem 3. The algorithm is an FPTAS for 1|nr = 1, q = 2|
∑
j wjCj.

Proof. Take any instance I of 1|nr = 1, q = 2|
∑
j wjCj , and consider an optimal

solution with the structure specified in Proposition 1. In particular, let J 1 be
the set of jobs starting before u2. Let δ be the largest member of G with
δ < ∆n+1 max{u2, p(J 1)} (since u2 ∈ G, such a member exists). Since ∆n ≤
1 + ε/2 (using the fact that (1 + x/n)n ≤ 1 + 2x for 0 ≤ x ≤ 1, see [14]), we
derive δ < ∆n+1 max{u2, p(J 1)} ≤ (1 + ε) max{u2, p(J 1)}. Notice that since
δ = u2∆k for some k ∈ Z≥0, δ ≥ ∆np(J 1) follows.

In Dδ consider a terminal node with associated vector (n, P ′1, PW
′
1, P

′
2, PW

′
2)

which corresponds to the partitioning of jobs J 1,J 2 in the optimal solution.
Then this must be a feasible terminal node of Dδ, since we started out from a
feasible schedule, and δ ≥ ∆np(J 1) ≥ P ′1 ≥ p(J 1), where the first inequality is
from the preceding paragraph, while the second and third follow from Proposi-
tion 2. The value of this node is PW ′1 +PW ′2. How much bigger is PW ′1 +PW ′2
than the objective function value (1)? We compute

PW ′1 + PW ′2 < ∆n

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

δ +
∑

k∈J 2,k≤j

pk

 <

∆n

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

(1 + ε) max{u2, p(J 1)}+
∑

k∈J 2,k≤j

pk

≤ ∆n(1 + ε)

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

max
{
u2, p(J 1)

}
+

∑
k∈J 2,k≤j

pk

≤ (1 + 2ε)

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

max
{
u2, p(J 1)

}
+

∑
k∈J 2,k≤j

pk

 ,

where the first inequality follows from the properties of iterative rounding (Propo-
sition 2), the second from the inequality δ < (1 + ε) max{u2, p(J 1)} shown in
the first paragraph of this proof, and the rest from the inequalities ∆n ≤ 1+ε/2
and (1 + ε)(1 + ε/2) ≤ 1 + 2ε for 0 ≤ ε ≤ 1. Since the algorithm chooses a

7

feasible terminal node with smallest rounded value, we know that the value of
the best solution found is also at most (1 + 2ε) times the optimum.

The time complexity of the algorithm is determined by the cardinality of G,
and the size of the graphs Dδ. The former set has dlog∆((p(J) + u2)/u2)e =
dln((p(J) + u2)/u2)/ ln ∆e elements, which is bounded by CG := d(ln((p(J) +
u2)/u2))(1 + 4n)/εe, a polynomial in the size of the input and in 1/ε, since
ln(1 + ε/4n) ≥ ε/(ε+ 4n) ≥ ε/(1 + 4n), and ln z ≥ (z − 1)/z, see [14]. On the
other hand, the number of nodes of Dδ is bounded by the number of distinct
(t, P ′1, PW

′
1, P

′
2, PW

′
2) vectors. Since both of P ′1 and P ′2 take values from the set

{0} ∪ {∆z : z ∈ {0, . . . , n + dlog∆ p(J)e}}, and both of PW ′1 and PW ′2 take
values from the set {0} ∪ {∆z : z ∈ {0, . . . , n+ dlog∆ w(J)(u2 + p(J))e}}, we
deduce that both of P ′1 and P ′2 may take at most CP := n+dln p(J)e(1+4n)/ε
distinct values, and that both of PW ′1 and PW ′2 may take at most CPW :=
n + dlnw(J)(u2 + p(J))e(1 + 4n)/ε distinct values. Therefore, the number of
nodes is bounded by a polynomial in the size of the input, and in 1/ε. Since
the out-degree of each non-terminal node is 2, we know that the size of Dδ is
also polynomial in the size of the input and in 1/ε, and thus the shortest path
to all the terminal nodes can be computed in polynomial time in the size of the
input (in linear time in the size of the graph, since Dδ is acyclic), and in 1/ε.
Therefore, we have an FPTAS with running time O(CG ·n ·CP 2 ·CPW 2).

4 Final remarks

It is tempting to extend the FPTAS for a fixed number of supply dates q ≥ 2.
However, a major obstacle is how to check the resource-feasibility of the solution.

Acknowledgments

The author is grateful for a referee for careful reading and several comments that
helped to improve the paper. The research of Tamás Kis has been supported
by the János Bolyai research grant BO/00412/12/3 of the Hungarian Academy
of Sciences, and by the OTKA grant K112881.

References

[1] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Handbook on
Scheduling, From Theory to Applications, Springer-Verlag Berlin Heidel-
berg, 2007. ISBN: 978-3-540-28046-0.

[2] D. Briskorn, B.-C. Choi, K. Lee, J. Leung, M. Pinedo, Complexity of single
machine scheduling subject to nonnegative inventory constraints, European
Journal of Operational Research, 207 (2010) 605–619.

[3] D. Briskorn, F. Jaehn, E. Pesch, Exact algorithms for inventory constrained
scheduling on a single machine, Journal of Scheduling, 16 (2013) 105–115.

8

[4] P. Brucker, Scheduling Algorithms, Springer-Verlag Berlin Heidelberg,
2007, ISBN: 978-3-540-69515-8.

[5] J. Carlier, Problèmes d’ordonnancements à contraintes de ressources: al-
gorithmes et complexité, Thèse d’état, University Paris 6, 1984.

[6] J. Carlier, A. H. G. Rinnooy Kan, Scheduling subject to nonrenewable
resource constraints, Operational Research Letters, 1 (1982) 52–55.

[7] M. Drótos, T. Kis, Scheduling of inventory releasing jobs to minimize a reg-
ular objective function of delivery times, Journal of Scheduling, 16 (2013)
337–346.

[8] E. R. Gafarov, A. A. Lazarev, F. Werner, Single machine scheduling prob-
lems with financial resource constraints: Some complexity results and prop-
erties, Mathematical Social Sciences, 62 (2011) 7–13.

[9] M.R. Garey, D.S. Johnson, Ravi Sethi, The complexity of flowshop and
jobshop scheduling, Mathematics of Operations Research, 2 (1976) 117–
129.

[10] A. Grigoriev, M. Holthuijsen, J. van de Klundert, Basic scheduling prob-
lems with raw material constraints, Naval Research of Logistics, 52 (2005)
527–553.

[11] P. Györgyi, T. Kis, Approximation schemes for single machine scheduling
with non-renewable resource constraints, Journal of Scheduling, 17 (2014)
135–144.

[12] P. Györgyi, T. Kis, Reductions between scheduling problems with non-
renewable resources and knapsack problems, Theoretical Computer Sci-
ence, 565 (2015) 63–76.

[13] A.H.G. Rinnooy Kan, Machine scheduling problems : classification, com-
plexity and computations, Martinus Nijhoff, The Hague, 1976.

[14] P. Schuurman, G. Woeginger, Approximation schemes-a tuto-
rial, In: R. Moehring, C. Potts, A. Schulz, G. Woeginger,
L.A. Wolsey. (eds.) Lectures on Scheduling. Forthcoming. (url:
www.win.tue.nl/ gwoegi/papers/ptas.pdf)

[15] W.E. Smith, Various optimizers for single-stage production, Naval Res. Lo-
gist. Quart., 3 (1956) 59–66.

[16] M. Queyranne, Structure of a simple scheduling polyhedron, Mathematical
Programming, 58 (1993) 263–285.

9

