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A new semiempirical formula is developed for the hardness determination of the
materials from depth sensing indentation tests. The indentation works measured both
during loading and unloading periods are used in the evaluation. The values of the M
hardness calculated in this way agree well with those obtained by conventional optica
observation, where this latter is possible. While the new hardness formula characteriz
well the behavior of the conventional hardness number even for the ideally elastic
material, the mean contact pressure generally used in hardness determination differs
significantly from the conventional hardness number when the ideally elastic limiting
case is being approached.
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Hardness testing with sharp indenters is genera
considered as a simple method for characterizing
mechanical strength of materials. Recently the de
sensing indentation (DSI) test became a widely us
method of hardness determination.1–8 In the DSI tests
the applied load is registered as a function of indentat
depth both during loading and unloading. A schema
load versus penetration depth curve is shown in Fig
The most frequently used DSI method was developed
Oliver and Pharr3 by which the hardness number can b
determined without optical observation. In this meth
the mean contact pressure at the maximum depth is u
to characterize the plastic properties of materials.
however, a considerable part of the deformation dur
the indentation is elastic, this pressure deviates sig
icantly from the conventional hardness number whi
is determined by optical observation of the indentati
trace. For example, in the limiting case of the idea
elastic material, the conventional hardness number te
to infinity while the mean contact pressure gives fin
value since an elastic contact surface is develop
between the indenter tip and the ideally elastic materi2

The paper is a continuation of a recently pu
lished work9 in which a new semiempirical formula
has been developed for the determination of the Me
hardness10 of materials. With the formula proposed, eve
the limiting case of the ideally elastic materials can
correctly described. The main results of our recent pa
are briefly summarized below to give a basis for t
subsequent comparison with another evaluation meth3

Hardness measurements were carried out on
ferent materials by the DSI method using a comput
controlled hydraulic mechanical testing machine with
Vickers indenter. During the loading period the Vicke
pyramid penetrates the sample at constant velocity,
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the same velocity is applied in the unloading perio
when the pyramid moves backwards. In the course
the test, the load is registered as a function of t
penetration depth. The measurements were carried
in the macrohardness region (Pm ø 100N ) on the fol-
lowing materials: metals (99.99% pure Al and Cu), sod
lime silica glass, sodium chloride, polypropylene, an
Si3N4 ceramics of two compositions sintered to differen
densities. Compositions and densities of ceramic samp
shown in Table I.

The conventional definition of the Meyer hardnes
for any sharp indenter geometry is the following10:

H ­
P
A

, (1)

where P is the applied load andA is the residual
projected area of the hardness impression after unlo
ing. The hardness measurement was originally dev
oped for testing metals in which the deformation
mostly plastic (syyE is small wheresy is the flow
stress andE is Young’s modulus); therefore, there is
practically no elastic recovery under unloading, an
the projected area at the maximum depth equals
residual projected area after unloading. Consequen
the mean contact pressure at the maximum penetrat
depth (defined as the indentation load divided by th
projected contact area) equals the conventional hardn
number (H) determined after unloading. This is also
the case when the elastic portion of the deformatio
during the indentation is negligible and the projected ar
before unloading agrees well with that measured af
unloading, because—although the elastic recovery m
be significant for the indentation depth—the characte
istic surface dimensions exhibit only minor recovery.1,10

On the other hand, if the deformation is mostly elast
 1996 Materials Research Society
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FIG. 1. Schematic picture of an indentation cycle.

TABLE I. Compositions and densities of Si3N4 ceramic samples.

90 wt. %, Si3N4, 4 wt. %
Al2O3, 6 wt. % Y2O3

90.9 wt. %, Si3N4, 3 wt. %
Al2O3, 6.1 wt. % Y2O3

Sample Density (gycm3) Sample Density (gycm3)

1 2.03 6 2.697
2 2.11 7 2.823
3 2.34 8 2.935
4 2.54 9 2.954
5 2.70 10 3.032

11 3.115
12 3.161

(syyE is large) then a significant portion of the conta
area at maximum depth is due to elastic deformatio
Consequently, the residual projected area is smaller th
the projected contact area at maximum penetration, a
the conventional Meyer hardness is larger than the me
contact pressure.

The load-penetration depth function can be d
scribed with quadratic polinoms (Fig. 1):

P ­ c2h 1 c3h2, (2)

P ­ cp
2sh 2 h0d 1 cp

3sh 2 h0d2, (3)

both in the loading and in the unloading periods, respe
tively, whereP is the load,h is the penetration depth,
and h0 is the residual indentation depth after removin
the punch;c2, c3, cp

2, and cp
3 are fitting parameters.

The total indentation work,Wt, is the integral of the
load versus the indentation depth, i.e., the area un
the load-penetration depth curve during the unloadi
period. Upon unloading a part of this work,We, can be
regained; it equals to the area under the load-indentat
depth curve for this latter period. The difference of the
two quantities,Wd, gives the net work expended durin
J. Mater. Res., Vol. 11
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the entire loading-unloading period (Fig. 1):

Wd ­ Wt 2 We. (4)

The work performed during loading (Wt) and that re-
gained during unloading (We) can be calculated by the
integration of Eqs. (2) and (3), respectively.

It was found that in spite of the linear terms appea
ing in Eqs. (2) and (3) for a broad variety of materia
and in a wide load range, the following relationship
with good accuracy valid (see Fig. 2):

We

Wt
­

r
c3

cp
3

. (5)

The parameterc3 characterizes the resistance of th
material against the elastic-plastic deformation.11 In the
case of ideally plastic materials, the load-depth functio
is purely quadratic:P ­ c3h2,1,12 and in this case there
is no elastic relaxation, thed ­ 7 ? hm equation between
the diagonald and the maximum indentation depthhm

which is the consequence of the geometry of the Vicke
pyramid is exactly satisfied [Fig. 3(a)]. Consequently th
Meyer hardness of ideally plastic materials can be giv
in the following form:

H ­ 2
P

d2
­

P

24.5h2
m

­ a1 ? c3 (6)

with a1 ­ 0.0408 for the Vickers geometry.
If the material is not ideally plastic then with in-

creasing elastic contribution, the elastic deflection und
the indenter is increasing [Fig. 3(b)]. Consequently 7hm

becomes increasingly larger thand, and as a result of
this a1 ? c3 will be less thanH. This can be taken into
account introducing a relationship betweenH anda1 ? c3

of the form:

H ­ a1 ? c3 ?
Wt

Wd
. (7)

FIG. 2. The ratio of the elastic and total work versus the paramet
of the indentation curves.
, No. 12, Dec 1996 2965
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FIG. 3. Schematic picture showing the behavior of various mater
(a–c) during Vickers indentation.

It is obvious that this new definition ofH gives back
Eq. (6) for ideally plastic materials and it increase
with increasing elasticity, and in the limiting case o
an ideally elastic material it becomes infinite, because
this case there is no residual deformation after unload
[Fig. 3(c)]. Figure 4 shows that theH values determined
from DSI measurements according to Eq. (7) agree w
within the experimental errors with the conventional
determined hardness.

The most frequently used hardness determinat
method from DSI measurements introduced by Oliv
and Pharr3 is based on the mean contact pressure
the maximum indentation depth with the followin
expression:

Hm ­
Pm

A
­

Pm

24.5h2
c

­ a1
Pm

h2
c

, (8)

where A is the projected contact area andhc is the
contact depth at the maximum load [Fig. 3(b)]. Usin

FIG. 4. The conventionally determined hardness number versus
quantity calculated on the basis of Eq. (7).
2966 J. Mater. Res., Vol. 11
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Sneddon’s elastic theory13 and empirical results of Oliver
and Pharr,3 the contact depth can be given as:

hc ­ hm 2 e
Pm

S
, (9)

whereS is the slope of the initial part of the unloading
curve (Fig. 1) ande ­ 0.75 for the case of Vickers
indenters.

To compare the new hardness formula (7) with th
mean contact pressure as expressed in Eqs. (8) and
Pm and hc are expressed with thec3 and cp

3 parameters
and the indentation works. If only the quadratic term
existed in Eqs. (2) and (3),Pm andhc could be expressed
easily with the parametersc3 and cp

3. Because of the
existence of the linear terms, some approximations
used in the considerations.

According to Eq. (3)S can be given as

S ­
dP

dh

Å
hm

­ cp
2 1 2cp

3shm 2 h0d. (10)

The second term in Eq. (10) may be expressed a
fraction of S:

kS ­ 2cp
3shm 2 h0d (11)

and similarly the quadratic term of the load-depth fun
tion of the unloading curve as a fraction of the maximu
load:

kpPm ­ cp
3shm 2 h0d2. (12)

With Eqs. (11) and (12)PmyS can be given as

Pm

S
­

k

kp

kp

k

hm 2 h0

2
. (13)

From Eqs. (3) and (10)–(13),hc can be given in the
following form:

hc ­ hm 2
2

1 1 kp

e

2
shm 2 h0d. (14)

Expressing the quadratic term in Eq. (2) as a fraction
the maximum load:

kPm ­ c3h2
m, (15)

the Hm mean contact pressure in Eq. (8) can be writt
as follows:

Hm ­ a1c3
1≥p

k 2
2
p

kp

11kp

e

2

q
c3

cp
3

¥ . (16)

According to our measurements for the differe
materials investigated with different loads,k andkp vary
between 0.64 and 1. Ifkp > 0.64 then s2

p
kpdys1 1

kpd > 0.98; therefore, this quantity can be taken as
, No. 12, Dec 1996
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Using Eq. (5) the following relationship is obtained fo
Hm:

Hm ­ a1c3
1≥p

k 2
e

2
We

Wt

¥2 . (17)

This can be compared with the new hardness form
Eq. (7), which using Eq. (4) can be written as:

H ­ a1c3
1

1 2
We

Wt

. (18)

The difference betweenH and Hm can be seen in
Fig. 5 in which the two hardness numbers divided
a1c3 are shown as a function ofWeyWt. For Hmya1c3

three curves are shown as
p

k equal to 0.8 or 0.9 or
1 (k ­ 0.64 or 0.81 or 1).WeyWt equals zero for the
ideally plastic limiting case; it increases with increasin
elastic deformation in the indentation, and it is 1 for th
ideally elastic material. By the new hardness formu
[Eqs. (7) or (18)], the behavior of the conventional har
ness number (and consequently the plastic propertie
materials) is better characterized than by the mean c
tact pressure, because while the former tends to infin
the latter gives a finite value in the ideally elastic limitin
case. As it can be seen in Fig. 5 in the region0 <
WeyWt < 0.7, there is no significant difference betwee
the two hardness numbers. TheWeyWt values for the ma-
terials investigated here are in this region; consequen
the hardness numbers obtained by both methods a
well with the values of the Meyer hardness obtained
optical observation after unloading (Fig. 5).

FIG. 5. The hardness numbers divided bya1c3 as a function of
WeyWt .
J. Mater. Res., Vol. 11
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A new formula is proposed for the characterizatio
of the hardness of materials from DSI tests. The v
ues of the hardness calculated by this equation ag
well with those measured by the conventional meth
for a broad variety of materials. Comparing the ne
hardness formula with that based on the mean cont
pressure, the former correctly describes the behavior
the conventional hardness both in the ideally plastic a
ideally elastic limiting cases, while the latter deviate
from the conventional hardness number in the idea
elastic limit. At the same time in the range where optic
measurements can also be applied (0 < WeyWt < 0.7),
the difference between the two DSI evaluation metho
is within the experimental error. A technical advantag
of the new evaluation method is that the parameters u
in the hardness formula can be determined at a h
accuracy from the registered indentation curves. Furth
measurements are planned on materials and for load
conditions falling in the region where the new hardne
number is rapidly increasing (0.8 < WeyWt < 1). This
regime, however, is not easy to obtain experimentally
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