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A new semiempirical formula is developed for the hardness determination of the
materials from depth sensing indentation tests. The indentation works measured both
during loading and unloading periods are used in the evaluation. The values of the Meyer
hardness calculated in this way agree well with those obtained by conventional optical
observation, where this latter is possible. While the new hardness formula characterizes
well the behavior of the conventional hardness number even for the ideally elastic
material, the mean contact pressure generally used in hardness determination differs
significantly from the conventional hardness number when the ideally elastic limiting

case is being approached.

Hardness testing with sharp indenters is generallfhe same velocity is applied in the unloading period
considered as a simple method for characterizing the&vhen the pyramid moves backwards. In the course of
mechanical strength of materials. Recently the deptlhe test, the load is registered as a function of the
sensing indentation (DSI) test became a widely usegenetration depth. The measurements were carried out
method of hardness determinatibf.In the DSI tests in the macrohardness regio®,( =~ 100N) on the fol-
the applied load is registered as a function of indentatioowing materials: metals (99.99% pure Al and Cu), soda
depth both during loading and unloading. A schematidime silica glass, sodium chloride, polypropylene, and
load versus penetration depth curve is shown in Fig. 1SisN, ceramics of two compositions sintered to different
The most frequently used DSI method was developed bgensities. Compositions and densities of ceramic samples
Oliver and Phar by which the hardness number can beshown in Table |I.
determined without optical observation. In this method  The conventional definition of the Meyer hardness
the mean contact pressure at the maximum depth is usédr any sharp indenter geometry is the followifig
to characterize the plastic properties of materials. If, P
however, a considerable part of the deformation during H=—, (1)
the indentation is elastic, this pressure deviates signif- A
icantly from the conventional hardness number whichwhere P is the applied load andA is the residual
is determined by optical observation of the indentationprojected area of the hardness impression after unload-
trace. For example, in the limiting case of the ideallying. The hardness measurement was originally devel-
elastic material, the conventional hardness number tendsped for testing metals in which the deformation is
to infinity while the mean contact pressure gives finitemostly plastic ¢,/E is small whereo, is the flow
value since an elastic contact surface is developingtress ancE is Young's modulus); therefore, there is
between the indenter tip and the ideally elastic matérial.practically no elastic recovery under unloading, and

The paper is a continuation of a recently pub-the projected area at the maximum depth equals the
lished worR in which a new semiempirical formula residual projected area after unloading. Consequently,
has been developed for the determination of the Meyethe mean contact pressure at the maximum penetration
hardnes¥ of materials. With the formula proposed, evendepth (defined as the indentation load divided by the
the limiting case of the ideally elastic materials can beprojected contact area) equals the conventional hardness
correctly described. The main results of our recent papemumber H) determined after unloading. This is also
are briefly summarized below to give a basis for thethe case when the elastic portion of the deformation
subsequent comparison with another evaluation methodduring the indentation is negligible and the projected area

Hardness measurements were carried out on difeefore unloading agrees well with that measured after
ferent materials by the DSI method using a computerunloading, because—although the elastic recovery may
controlled hydraulic mechanical testing machine with abe significant for the indentation depth—the character-
Vickers indenter. During the loading period the Vickersistic surface dimensions exhibit only minor recovésy.
pyramid penetrates the sample at constant velocity, an®n the other hand, if the deformation is mostly elastic
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FIG. 1. Schematic picture of an indentation cycle.

TABLE I. Compositions and densities of 38l, ceramic samples.

90 wt. %, SiNg4, 4 wt. %
Al 203, 6 Wt. % Y,03

90.9 wt. %, SiN4, 3 wt. %
Al 203, 6.1 wt. % Y,03

the entire loading-unloading period (Fig. 1):
Wy=W, — W,. (4)

The work performed during loadingf) and that re-
gained during unloadingW;) can be calculated by the
integration of Eqgs. (2) and (3), respectively.

It was found that in spite of the linear terms appear-
ing in Egs. (2) and (3) for a broad variety of materials
and in a wide load range, the following relationship is
with good accuracy valid (see Fig. 2):

We C3
— = .. 5
w, e 5)

The parametec; characterizes the resistance of the
material against the elastic-plastic deformatibin the
case of ideally plastic materials, the load-depth function
is purely quadraticP = c;#2,%'?2 and in this case there
is no elastic relaxation, th& = 7 - h,, equation between
the diagonald and the maximum indentation depki,
which is the consequence of the geometry of the Vickers
pyramid is exactly satisfied [Fig. 3(a)]. Consequently the
Meyer hardness of ideally plastic materials can be given

Sample  Density (gen) Sample  Density (g¢) jn the following form:

1 2.03 6 2.697 P P

2 211 7 2.823 _ L _ - .

3 2.34 8 2.935 H=20 = s — @O ©)

4 2.54 9 2.954

5 2.70 10 3.032 with «; = 0.0408 for the Vickers geometry.
11 3.115 If the material is not ideally plastic then with in-
12 3.161

creasing elastic contribution, the elastic deflection under
the indenter is increasing [Fig. 3(b)]. Consequenthy, 7
becomes increasingly larger thah and as a result of

(oy/E is large) then a significant portion of the contactthis «, - ¢; will be less thanH. This can be taken into

area at maximum depth is due to elastic deformationaccount introducing a relationship betweémnda; - c;
Consequently, the residual projected area is smaller thagf the form:

the projected contact area at maximum penetration, and

the conventional Meyer hardness is larger than the mean H=a ¢ —. (7)

contact pressure.

The load-penetration depth function can be de-
scribed with quadratic polinoms (Fig. 1):

P = Czl’l + C3h2,
P = c;(h — hy) + c5(h — hy)%,

(2)
3)

lass
0.75- i
Cu
NaCl
SN

SisNy(2)

0.50- SN®

both in the loading and in the unloading periods, respec _
tively, whereP is the load,h is the penetration depth, %
and hg is the residual indentation depth after removing =
the punch;c,, c3, c¢>, and ¢; are fitting parameters.
The total indentation workW, is the integral of the
load versus the indentation depth, i.e., the area unde
the load-penetration depth curve during the unloading
period. Upon unloading a part of this woM/, can be
regained; it equals to the area under the load-indentatio..

depth curve for this _|atter period. The difference of ﬂ?(ESQ:IG. 2. The ratio of the elastic and total work versus the parameters
two quantitiesWy, gives the net work expended during of the indentation curves.
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a)ideally plastic b) efastoplastic ©)ideallyelastic Sneddon’s elastic theoryand empirical results of Oliver
and Phar? the contact depth can be given as:

he = hy — e— 9)
whereSis the slope of the initial part of the unloading
curve (Fig. 1) ande = 0.75 for the case of Vickers
indenters.

To compare the new hardness formula (7) with the
mean contact pressure as expressed in Egs. (8) and (9),
Pn andh. are expressed with they and ¢; parameters
and the indentation works. If only the quadratic terms

i : existed in Egs. (2) and (3P, andh. could be expressed
L destc easily with the parameters; and c¢;. Because of the

" existence of the linear terms, some approximations are
FIG. 3. Schematic picture showing the behavior of various materialdised in the considerations.
(a—c) during Vickers indentation. According to Eq. (3)Scan be given as
. . . _— . dpP N N
It is obvious that this new definition dfl gives back S = an = ¢; + 2¢3(h, — hy). (10)

Eqg. (6) for ideally plastic materials and it increases
with increasing elasticity, and in the limiting case of The second term in Eq. (10) may be expressed as a
an ideally elastic material it becomes infinite, because ifraction of S

this case there is no residual deformation after unloading _

[Fig. 3(c)]. Figure 4 shows that the values determined kS = 2¢3(h, — ho) (11)
from DSI measurements according to Eq. (7) agree well

within the experimental errors with the conventionally @nd similarly the quadratic term of the load-depth func-
determined hardness. tion of the unloading curve as a fraction of the maximum

The most frequently used hardness determinatiofPad:
method from DSI measurements introduced by Oliver
and Phart is based on the mean contact pressure at

the maximum indentation depth with the following \pjtp Egs. (11) and (12pP,./S can be given as
expression: "

k*P,, = ci(h, — hy)* 12
3

oo — P _ _Pu N Pu ®) Pu = ﬁ*kru (13)
T A T 245n2 0 Y2 S Kk 2

From Egs. (3) and (10)—(13). can be given in the
following form:

where A is the projected contact area afg is the
contact depth at the maximum load [Fig. 3(b)]. Using

2 €
he = h, — —(h,, — hy). 14
o c m 1+ k* 2( m 0) ( )
A A
3 Neoi Expressing the quadratic term in Eq. (2) as a fraction of
¢ S the maximum load:
B SN2
— O Si;Ng3) 2
& & SN kP, = c3h,,, (15)
g FSiN,(S)
T * SN the H,, mean contact pressure in Eq. (8) can be written
+ SN .
X s as follows:
¥ SiNJ9) 1
o SiN(10) H, = « — 16
O SN " 1C3< _ Wke C_§> (16)
W SiN(12) 1+k* 2y 3
T T T M T
0 5 10 15 LB, rspiere

According to our measurements for the different
0.0408 ¢ WyW, [GPa] materials investigated with different loadsandk™ vary

FIG. 4. The conventionally determined hardness number versus thBétween 0.64 and 1. ”.C* = 0-6‘_1 then 2vk*)/(1 +
quantity calculated on the basis of Eq. (7). k*) = 0.98; therefore, this quantity can be taken as 1.
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Using Eg. (5) the following relationship is obtained for A new formula is proposed for the characterization
Hm: of the hardness of materials from DSI tests. The val-
1 ues of the hardness calculated by this equation agree
o (17)  well with those measured by the conventional method
< k — gwf> for a broad variety of materials. Comparing the new
) ) hardness formula with that based on the mean contact
This can be compared with the new hardness formulgyoqq re, the former correctly describes the behavior of
Eq. (7), which using Eq. (4) can be written as: the conventional hardness both in the ideally plastic and
1 ideally elastic limiting cases, while the latter deviates
H=aic—w,. (18) " from the conventional hardness number in the ideally
Wi elastic limit. At the same time in the range where optical
The difference betweell and H,, can be seen in measurements can also be applied( W,/W, < 0.7),
Fig. 5 in which the two hardness numbers divided bythe difference between the two DSI evaluation methods
a;c; are shown as a function a¥,/W,. For H,,/ a1 ¢3 is within the experimental error. A technical advantage
three curves are shown ag equal to 0.8 or 0.9 or of the new evaluation method is that the parameters used
1 (k = 0.64 or 0.81 or 1).W,/W, equals zero for the in the hardness formula can be determined at a high
ideally plastic limiting case; it increases with increasingaccuracy from the registered indentation curves. Further
elastic deformation in the indentation, and it is 1 for themeasurements are planned on materials and for loading
ideally elastic material. By the new hardness formulaconditions falling in the region where the new hardness
[Egs. (7) or (18)], the behavior of the conventional hard-number is rapidly increasind§ < W./W, < 1). This
ness number (and consequently the plastic properties oggime, however, is not easy to obtain experimentally.
materials) is better characterized than by the mean con-
tact pressure, because while the former tends to infinity,
the latter gives a finite value in the ideally elastic limiting ACKNOWLEDGMENTS
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