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Abstract In this paper we present a model of turning

operations with state-dependent distributed time delay.

We apply the theory of regenerative machine tool chat-

ter and describe the dynamics of the tool-workpiece sys-

tem during cutting by delay-differential equations. We

model the cutting-force as the resultant of a force sys-

tem distributed along the rake face of the tool, which

results in a short distributed delay in the governing

equation superimposed on the large regenerative de-

lay. According to the literature on stress distribution

along the rake face, the length of the chip-tool inter-

face, where the distributed cutting-force system is act-

ing, is function of the chip thickness, which depends on

the vibrations of the tool-workpiece system due to the

regenerative effect. Therefore, the additional short de-
lay is state-dependent. It is shown that involving state-

dependent delay in the model does not affect linear sta-

bility properties, but does affect the nonlinear dynamics

of the cutting process. Namely, the sense of the Hopf bi-

furcation along the stability boundaries may turn from

sub- to supercritical at certain spindle speed regions.

Keywords metal cutting · turning · delay-differential

equation · distributed delay · state-dependent delay ·
Hopf bifurcation

1 Introduction

Many engineering problems can be described by delay-

differential equations (DDEs) involving distributed de-
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lays. Examples include wheel-shimmy [37,41], delay-

coupled networks [40], predictive control systems [30,

16,31] and machine tool vibrations [36,11,27,32]. Dif-

ferential equations involving state-dependent delays also

often show up in different fields of science, such as clas-

sical electrodynamics [13], population models [26,35],

market dynamics [6], and, again, machine tool vibra-

tions [23,15,3,28,29]. In this paper, a model is pre-

sented for machining, which involves a combination of

these two types of delays: a state-dependent distributed

delay.

A model of regenerative machine tool vibrations is

analyzed with special attention to the distribution of

the contact force between the tool’s rake face and the

workpiece. According to experiments [24,42,44,39], the

length and the shape of the force distribution depends

on the chip thickness, which implies that the corre-

sponding distributed delay in the model equation is

state-dependent. The scope of this paper is to explore

whether this state-dependent delay affects the linear

and the global stability properties of the machining op-

eration compared to the same model with distributed

delay of constant length.

Linearization of state-dependent delay-differential

equations (SD-DDEs) is complicated by the fact that

the solution of the system is not differentiable with re-

spect to the state-dependent delay (see, e.g., [20] and

the references therein). Consequently, linearization in

the traditional sense is not possible, but a linear DDE

can be constructed, which is associated to the origi-

nal SD-DDE in the sense that they have the same lo-

cal stability properties. Here, we follow the lineariza-

tion technique developed by Hartung and Turi in [19].

Note that there are similar methods for different classes

of state-dependent delay-differential equations, see, for
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Fig. 1 Single-degree-of-freedom model of orthogonal cutting
(a); cutting-force distribution along the tool’s rake face (b)

instance, [10,21,17]. A detailed survey about general

types of SD-DDEs is given in [18].

The outline of the paper is as follows. Section 2

briefly revises an earlier model [36] of orthogonal cut-

ting, where distributed delays are involved in the gov-

erning equation. Section 3 extends this model by con-

sidering the state-dependency of the length of the dis-

tributed delay. The linear system associated with the

state-dependent delay-differential equation is determined

and compared with that of the corresponding constant-

length delay model in Section 4. Numerical bifurca-

tion analysis using DDE-Biftool is performed in Sec-

tion 5. Finally, conclusions are drawn in Section 6.

2 Distributed-delay model

In this paper we investigate the dynamics of turning op-

erations by analyzing the single-degree-of-freedom model

of orthogonal cutting. The mechanical model is pre-

sented in Fig. 1. Given the modal mass m, damping c,
and stiffness k corresponding to the dominant vibration

mode of the machining system, the equation of motion

of the tool can be written in the form

mẍ(t) + cẋ(t) + kx(t) = Fx(t) , (1)

where Fx(t) is the x-component of the cutting-force act-

ing on the tool.

Here we model the cutting-force as the resultant of a

force system acting on the tool’s rake face. The cutting-

force system is assumed to be distributed along the in-

terface between the chip and the tool. The length of

the contact region is denoted by l as shown in panel (b)

of Fig. 1. This model was investigated by Stépán [36]

assuming that the contact length l and the speed v by

which the chip slips along the rake face is constant in

time. Here, this model is extended to state-dependent

contact length.

The distributed cutting-force P (t, s) acting on the

rake face can be described using the local spatial coor-

dinate s ∈ [−l, 0] running from the point of chip sepa-

ration at s = −l to the tool tip at s = 0. If the speed v

is constant, then the cutting-force distribution can be

written as a function of time using a local temporal co-

ordinate θ = s/v, θ ∈ [−σ, 0]. Here σ = l/v denotes the

time it takes for a given particle of the chip to slip along

the rake face of the tool, which is constant in time if

the assumptions l = const, v = const hold. This way

the cutting-force expression becomes

Fx(t) =

∫ 0

−l
P (t, s)ds =

∫ 0

−σ
p(t, θ)dθ , (2)

where p(t, θ) = vP (t, vθ).

From this point on, the intensity p(t, θ) distributed

in the time θ is used to represent the distributed cutting-

force instead of P (t, s). We assume that p(t, θ) can

be decomposed multiplicatively into a time-dependent

term FT
x (t, θ) and a time-independent term w(θ):

p(t, θ) = FT
x (t, θ)w(θ) , θ ∈ [−σ, 0] . (3)

The weight function w(θ) describes the shape of the

force distribution along the tool’s rake face in case of

stable stationary cutting where the chip thickness is

constant. The function is normalized so that it satisfies∫ 0

−σ
w(θ)dθ = 1 . (4)

We assume that the same weight function can be

used for non-stationary cutting (chatter). In this case,

the surface of the workpiece becomes wavy and the chip

thickness h(t+ θ) varies in time as a function of t and

changes along the rake face as a function of θ. Therefore,

the chip thickness variation affects the cutting-force,

which is involved in the term FT
x (t, θ) describing the

magnitude of force distribution. We assume that the

magnitude FT
x (t, θ) of the cutting-force distribution can

be given as a function of the chip thickness using the

well-known three-quarter rule [1], namely

FT
x (t, θ) =

{
Kahq(t+ θ) if h(t+ θ) ≥ 0 ,

0 if h(t+ θ) < 0 ,
(5)

where K is the cutting coefficient to be determined by

experiments, q = 3/4 is the cutting-force exponent, and

a is the width of cut. The case h(t+θ) < 0 applies when

the tool loses contact with the workpiece due to large-

amplitude chatter. Further on, we exclude this case and

assume h(t + θ) ≥ 0, that is, the tool remains in cut

during the entire machining operation. Note that the

dependence of the cutting force Fx on the vibration

velocity ẋ is neglected here. Therefore, this model does

not describe the friction-induced stick-slip phenomenon

[29].
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According to the theory of regenerative machine

tool chatter, the uncut chip thickness h(t) at the tool

tip depends on the actual position of the cutting tool

and the position at the previous cut:

h(t) = h0 + x(t− τ)− x(t) , (6)

where h0 is the prescribed uncut chip thickness, which

is equal to the feed per revolution in case of orthogo-

nal cutting. Whereas τ is the regenerative delay, which

is now equal to the rotation period and can be ex-

pressed with the angular velocity Ω of the workpiece:

τ = 2π/Ω. Experiments show [24,39] that the chip

thickness h̃(t, θ) along the rake face (also called the de-

formed chip thickness) is proportional to the shifted

uncut chip thickness h(t + θ) (also called undeformed

chip thickness): h̃(t, θ) = Ch(t+ θ), where 1 < C < 10

is a constant depending primarily on the workpiece ma-

terial and the rake angle. Thus,

h̃(t, θ) = C
(
h0+x(t−τ+θ)−x(t+θ)

)
, θ ∈ [−σ, 0]. (7)

Substituting the cutting-force expression given by

Eqs. (2)-(6) back into the equation of motion (1), and

dividing by the modal mass m, we obtain

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t)

=
Ka

m

∫ 0

−σ

[
h0 + x(t− τ + θ)− x(t+ θ)

]q
w(θ)dθ ,

(8)

where ωn =
√
k/m denotes the natural angular fre-

quency of the undamped system and ζ = c/(2
√
km) is

the damping ratio. We can see that Eq. (8) is a delay-

differential equation with two distributed-delay terms
over [−τ − σ,−τ ] and [−σ, 0]. The kernel w(θ) of the

distributed-delay terms is determined by the shape of

force distribution along the tool’s rake face at station-

ary cutting.

3 State-dependent delay model

Equation (8) has already been derived by Stépán [36].

Now we improve his model by recognizing that the size

l of the chip-tool interface is not constant, but is a func-

tion of the time-varying uncut chip thickness h. Accord-

ing to experimental results presented in [24,42,44,39],

the relation between the contact length and chip thick-

ness can be described using a linear (or shifted linear)

function in a wide range of uncut chip thickness values.

Therefore, we assume that the contact length is propor-

tional to the uncut chip thickness at the tool tip:

l(t) = Ah(t) = A
(
h0 + x(t− τ)− x(t)

)
. (9)

Since the cutting experiments are usually performed

under chatter-free conditions, the measured constant A

is actually the ratio of the stationary contact length

l0 and the prescribed chip thickness h0. According to

measurements reported in [24,42,44,39], this ratio is

in the range 2 < A < 20 depending on the workpiece

material (e.g. A ≈ 5 for steel, A ≈ 10 for copper in [42],

and A ≈ 20 for aluminum in [24]).

Based on Eq. (9), the contact length l depends on

the position of the tool. Thus, we will emphasize the

state-dependency by the notation l = l(xt), where the

function xt(ϑ) = x(t+ ϑ) represents the tool’s position

over the delay period ϑ ∈ [−ρ, 0], and ρ is the maximum

delay that can occur in the system.

Furthermore, we keep the assumption that the chip

slips along the rake face by a constant speed v. From

Eq. (9) it follows that the additional short delay is also

state-dependent:

σ(xt) =
l(xt)

v
=
A

v

(
h0 + x(t− τ)− x(t)

)
. (10)

Note that in [36] it was assumed that the short delay

σ is proportional to the regenerative delay τ : σ = ετ ,

where ε is a small constant value. If we simplify Eq. (10)

by assuming stationary cutting with constant contact

length l0 = Ah0 and assuming that v is equal to the

constant cutting speed, v = ΩD/2 = Dπ/τ , then we

get the same relation σ = ετ with ε = Ah0/Dπ. Here

D denotes the tool diameter, hence ε is equivalent to the

ratio of the contact length l0 = Ah0 and the workpiece

perimeter Dπ. Typical values of this ratio are in the

range 0.0005 < ε < 0.05 [5,7]. However, in case of the

state-dependent short delay described by Eq. (10), the

ratio σ(xt)/τ = ε(xt) is no longer constant but state-

dependent.

Since the delay σ(xt) varies according to the tool

position, the domain [−σ(xt), 0] and the magnitude of

the kernel function w(θ) also changes. Therefore, the

kernel function can be written as

w(θ) =
1

σ(xt)
f

(
θ

σ(xt)

)
, (11)

where f is a function, which characterizes the shape of

the stationary force distribution along the tool’s rake

face independently of the state xt. It is reasonable to

introduce a coordinate θ̂ = θ/σ(xt) ∈ [−1, 0], which is

interpreted on a fixed domain independently of xt. Due

to Eq. (4), the function f has the property∫ 0

−1
f
(
θ̂
)
dθ̂ = 1 . (12)

The shape f(θ̂) of the force distribution can be de-

termined based on the results of stress distribution mea-

surements along the tool’s rake face. Summaries of the
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Fig. 2 The shape of force distribution along the cutting-tool

experimental results can be found in [45,2,25]. In case

of zero rake angle, the x-directional component of the

stresses on the rake face is the shear stress. According

to the literature on shear stress distribution measure-

ments, two different types of shear stress distributions

were identified. Several measurements [43,8,24,5,9,7]

showed that the shear stress has a plateau near the tool

tip along a certain sticking length ls, and then decays

to zero at the point of chip separation. The correspond-

ing shape function f(θ̂) can be approximated using a

constant and an exponential function as shown in panel

(a) of Fig. 2, and can be written in the form

f(θ̂) =


1− e−α+1

2− (α+ 1)e−α+1
if θ̂ ∈ [−α, 0] ,

1− eθ̂+1

2− (α+ 1)e−α+1
if θ̂ ∈ [−1,−α) ,

(13)

where α = ls/l denotes the sticking length to contact

length ratio. According to other shear stress distribu-

tion measurements [8,4], the shear stress initiates from

a small value at the tip, reaches a maximum in the mid-
dle of the contact region, and then decays to zero. We

can approximate this function by a half-sine wave:

f(θ̂) = −π
2

sin
(
πθ̂
)
, (14)

which is also shown in panel (b) of Fig. 2.

Eq. (11) shows the form of the kernel w(θ), which

can be substituted back into Eq. (8). The resulting

equation of motion becomes

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t)

=
Ka

m

∫ 0

−σ(xt)

[
h0 + x(t− τ + θ)− x(t+ θ)

]q
× 1

σ(xt)
f

(
θ

σ(xt)

)
dθ , (15)

where σ(xt) must be substituted from Eq. (10). The

governing equation (15) is a delay-differential equation

containing two state-dependent distributed-delay terms.

Note that the state-dependent short delay σ(xt) ap-

pears in the governing equation (15) explicitly. Scaling

the integral term using θ̂ = θ/σ(xt), one obtains

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t)

=
Ka

m

∫ 0

−1

[
h0 + x(t− τ + θ̂σ(xt))− x(t+ θ̂σ(xt))

]q
× f

(
θ̂
)
dθ̂ , (16)

which does not contain the term σ(xt) explicitly any

more. Note that state-dependent delay differential equa-

tions are always nonlinear, since the state appears in its

own argument. Thus, Eqs. (15) and (16) would still be

nonlinear even if the cutting exponent was q = 1. In

the next section, we derive the linear delay-differential

equation associated with Eq. (15).

4 Associated linear system

The associated linear system, whose local stability prop-

erties are equivalent to the original state-dependent delay-

differential equation, is determined using the method

published in [19]. For this purpose, we write Eq. (15)

in the form investigated in [19]. First, we introduce the

coordinate x̂(t) shifted to the equilibrium x of Eq. (15):

x(t) = x+ x̂(t) , x =
Kahq0
mω2

n

. (17)

Accordingly, Eq. (15) can be written in the form

¨̂x(t) + 2ζωn
˙̂x(t) + ω2

nx̂(t)

=
Ka

m

∫ 0

−σ(x̂t)

[(
h0 + x̂(t− τ + θ)− x̂(t+ θ)

)q − hq0]
× 1

σ(x̂t)
f

(
θ

σ(x̂t)

)
dθ , (18)

where property (12) of f was taken into account when

moving hq0 inside the integral. The equilibrium of Eq. (18)

is therefore x̂(t) ≡ 0.

Then, we replace the state-dependent lower limit of

the integration by a constant using the Heaviside step

function H in the kernel of the distributed-delay term:

¨̂x(t) + 2ζωn
˙̂x(t) + ω2

nx̂(t)

=
Ka

m

∫ 0

−σmax

[[
h0 + x̂(t− τ + θ)− x̂(t+ θ)

]q − hq0]
× 1

σ(x̂t)
f

(
θ

σ(x̂t)

)
H(θ + σ(x̂t)) dθ , (19)

where σmax = ρ − τ is the maximal length of the ad-

ditional short delay. Finally, we expand the term
[
h0 +
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x̂(t − τ + θ) − x̂(t + θ)
]q

into Taylor series around h0
and obtain

¨̂x(t) + 2ζωn
˙̂x(t) + ω2

nx̂(t)

=
Ka

m

∫ 0

−σmax

[
x̂(t− τ + θ)− x̂(t+ θ)

]
×
[
qhq−10 +

1

2
q(q−1)hq−20

[
x̂(t−τ+θ)−x̂(t+θ)

]
+h.o.t.

]
× 1

σ(x̂t)
f

(
θ

σ(x̂t)

)
H(θ + σ(x̂t)) dθ , (20)

where h.o.t. stands for higher-order terms.

In [19], a method was proposed to determine the

equivalent linear system for a class of state-dependent

delay-differential equations of form

˙̂z(t) = g
(
ẑ(t), Λ(ẑt, ẑt)

)
,

Λ(ψ,φ) =

∫ 0

−σmax

dθµ(θ,ψ)φ(θ) ,
(21)

where g is a continuously differentiable function satisfy-

ing g(0, 0) = 0 and µ(.,ψ) is of bounded variation (see

[19] for more details). Equation (20) can be represented

in form (21) by introducing

ẑ(t) =

[
x̂(t)
˙̂x(t)

]
, ẑt(ϑ) = ẑ(t+ ϑ) , ϑ ∈ [−ρ, 0] , (22)

g(U, V ) =

[
U2

−2ζωnU2 − ω2
nU1 +

Ka

m
V

]
, (23)

Λ(ψ,φ) =

∫ 0

−σmax

[
φ1(−τ + θ)− φ1(θ)

]
×
[
qhq−10 +

1

2
q(q − 1)hq−20

[
ψ1(−τ + θ)− ψ1(θ)

]
+ h.o.t.

]
× 1

σ(ψ)
f

(
θ

σ(ψ)

)
H(θ + σ(ψ)) dθ , (24)

σ(ψ) =
A

v

[
h0 + ψ1(−τ)− ψ1(0)

]
. (25)

Here, U1, U2, φ1, and ψ1 are the corresponding elements

of vectors U, φ, and ψ, respectively.

According to [19], the linear system associated with

Eq. (21) can be written in the form

u̇(t) = D1g(0, 0)u(t) + D2g(0, 0)Λ(0,ut) , (26)

where Di denotes the derivative with respect to the ith

argument (i = 1, 2), and u(t) = [ξ(t) ξ̇(t)]T stands for

the perturbation around the trivial solution ẑ(t) ≡ 0.

The derivatives of g obtained from Eq. (23) are

D1g(0, 0) =

[
0 1

−ω2
n −2ζωn

]
, D2g(0, 0) =

[
0
Ka

m

]
.

(27)

Whereas from Eq. (24) we get

Λ(0,φ) =

∫ 0

−σmax

[
φ1(−τ + θ)− φ1(θ)

]
× qhq−10

1

σ
f

(
θ

σ

)
H(θ + σ)dθ , (28)

where σ denotes the constant solution for the short de-

lay obtained from Eq. (25):

σ =
Ah0
v

. (29)

Substitution of Eqs. (27) and (28) into Eq. (26) gives

d

dt

[
ξ(t)

ξ̇(t)

]
=

 ξ̇(t)

−ω2
nξ(t)− 2ζωnξ̇(t) +

Kaqhq−10

m
I(ξt)


(30)

with

I(ξt) =

∫ 0

−σ

[
ξ
(
t− τ + θ

)
− ξ
(
t+ θ

)] 1

σ
f

(
θ

σ

)
dθ ,

(31)

which is equivalent to the second-order linear system

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t)

=
Kaqhq−10

m

∫ 0

−σ

[
ξ
(
t− τ + θ

)
− ξ
(
t+ θ

)] 1

σ
f

(
θ

σ

)
dθ .

(32)

It can be seen that Eq. (32) associated with the state-

dependent delay-differential equation (15) is the same

as the linear part of model (8) with constant delay σ =

σ. Thus the state-dependency has no effect on the linear

stability of the machining operation, and the stability

charts derived in [36] are valid without any change for

the extended state-dependent delay model, too.

Note that the same linear system can also be ob-

tained by formal differentiations from Eq. (16), which

has a nontrivial equilibrium x(t) ≡ x. In order to show

this, Eq. (16) is represented in first-order form:

ż(t) =

∫ 0

−1
g (z(t), η(zt)) f(θ̂)dθ̂ , (33)

where

z(t) =

[
x(t)

ẋ(t)

]
, zt(ϑ) = z(t+ ϑ) , ϑ ∈ [−ρ, 0] , (34)

g (z(t), η(zt)) =

[
ẋ(t)

−2ζωnẋ(t)− ω2
nx(t) +

Ka

m
ηq(xt)

]
,

(35)

η(xt) = h0 + x
(
t− τ + θ̂σ(xt)

)
− x
(
t+ θ̂σ(xt)

)
. (36)
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Note that η(zt) = η(xt) is linear in xt. In Eq. (33), we

took advantage of property (12) of f when taking the

terms ẋ(t), −2ζωnẋ(t), and −ω2
nx(t) inside the integral.

The associated linear system around the constant

solution z(t) ≡ z = [x 0]T of Eq. (33) can be written in

the form

u̇(t) =

∫ 0

−1
D1g (z, η(zt)) u(t)f(θ̂)dθ̂

+

∫ 0

−1
D2g (z, η(zt)) Dη(zt)utf(θ̂)dθ̂ . (37)

Substituting x(t) ≡ x into Eq. (10) gives the constant

solution (29) for the short delay. Calculation of the

derivatives in Eq. (37) results in

D1g (z, η(zt)) =

[
0 1

−ω2
n −2ζωn

]
,

D2g (z, η(zt)) =

 0

Kaqhq−10

m

 . (38)

The term Dη(zt)ut can be written as

Dη(zt)ut =
[
Dxt

η(zt) Dẋt
η(zt)

] [ξt
ξ̇t

]
= Dxtη(zt)ξt + Dẋt

η(zt)ξ̇t , (39)

where Dxtη and Dẋtη denote the Frechét derivatives

of η with respect to xt and ẋt, respectively. Taking the

Frechét derivative of both sides of Eq. (36) with respect

to xt and ẋt gives

Dxt
η(zt)ξt =ξ

(
t− τ + θ̂σ

)
− ξ
(
t+ θ̂σ

)
,

Dẋt
η(zt)ξ̇t =0 .

(40)

Substitution of Eqs. (38)-(40) into Eq. (37) and scaling

the integral by θ = σθ̂ give Eq. (30).

5 Numerical analysis of the nonlinear system

Although state-dependency does not affect the stabil-

ity of small-amplitude vibrations, it modifies the non-

linear behavior and affects large-amplitude chatter. In

some cases, relevant qualitative changes can occur in

the dynamics of the nonlinear system due to the state-

dependent delay. For instance, it was shown in [22] for

a two-degrees-of-freedom model of turning operations

that the state-dependency of the regenerative delay can

change the sense of the Hopf bifurcation: at some seg-

ments of the linear stability boundaries, the Hopf bi-

furcation turns from sub- to supercritical.

We investigate the effect of state-dependency in the

current model by analyzing Eq. (16) using DDE-Biftool

[14,34]. In order to accommodate the system to DDE-

Biftool, we need to approximate Eq. (16), and trans-

form it into a more convenient form.

First, we reduce the number of parameters by intro-

ducing the dimensionless time t̃ = ωnt, the dimension-

less delays τ̃ = ωnτ and σ̃(xt) = ωnσ(xt), the dimen-

sionless position x̃ = x/h0, and the dimensionless chip

width p = Kaqhq−10 /(mω2
n). After dropping the tilde,

Eq. (16) can be represented in dimensionless form as

x′′(t) + 2ζx′(t) + x(t)

=
p

q

∫ 0

−1

[
1 + x(t− τ + θ̂σ(xt))− x(t+ θ̂σ(xt))

]q
× f

(
θ̂
)
dθ̂ . (41)

Note that for small spindle speeds when Ω approaches

zero, the delays become infinitely large as τ → ∞. In

order to avoid a badly-scaled system caused by very

large delays, we rescale time as T = t/τ , which yields

x′′(T ) + 2ζτx′(T ) + τ2x(T )

=
pτ2

q

∫ 0

−1

[
1 + x

(
T − 1 + θ̂ε(xT )

)
− x
(
T + θ̂ε(xT )

)]q
× f

(
θ̂
)
dθ̂ , (42)

where

ε(xT ) =
σ

τ

(
1 + x(T − 1)− x(T )

)
. (43)

Furthermore, since DDE-Biftool is developed for

equations with point delays, we approximate the distributed-

delay term in Eq. (42) by a sum of s point delays as

x′′(T ) + 2ζτx′(T ) + τ2x(T )

≈ pτ2

q

s∑
k=1

[
1 + x

(
T − 1− θ̂kε(xT )

)
− x
(
T − θ̂kε(xT )

)]q
fk ,

(44)

where

θ̂k =

(
k − 1

2

)
1

s
, fk =

∫ −(k−1)/s
−k/s

f
(
θ̂
)
dθ̂ . (45)

Finally, we expand the qth power of the bracketed term

in Eq. (44) into a Taylor series around 1 up to third or-

der in order to avoid the infinite derivative at zero (since

q < 1). Introducing the shifted coordinate x̂(T ) = x(T )−
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p/q, we get

x̂′′(T ) + 2ζτ x̂′(T ) + τ2x̂(T )

≈ pτ2
s∑

k=1

{[
x̂
(
T − 1− θ̂kε(xT )

)
− x̂
(
T − θ̂kε(xT )

)]
+η2

[
x̂
(
T − 1− θ̂kε(xT )

)
− x̂
(
T − θ̂kε(xT )

)]2
+η3

[
x̂
(
T − 1− θ̂kε(xT )

)
− x̂
(
T − θ̂kε(xT )

)]3}
fk ,

(46)

where η2 = (q − 1)/2, η3 = (q − 1)(q − 2)/6.

Equation (46) can directly be used as input for DDE-

Biftool. First, numerical continuation is used to de-

termine the local stability boundaries of the system,

where Hopf bifurcation occurs. Then, at each Hopf bi-

furcation point, the amplitude of the arising periodic

orbit is computed and continued until the periodic os-

cillations get so large that loss of contact (h(t) < 0)

occurs and Eq. (16) is not valid anymore.

The results are summarized in Fig. 3. Panels (a)

and (b) present the stability charts of the system in

the plane (Ω, p) for high and low spindle speed re-

gions, respectively. These diagrams were calculated us-

ing the plateau-and-decay force distribution (13) with

α = 0.4, assuming a damping ratio ζ = 0.02, a delay

ratio σ/τ = 0.05, and a cutting exponent q = 0.75. The

distributed-delay term is approximated by s = 10 point

delays. Solid line indicates the local stability bound-

aries of the equilibrium, where Hopf bifurcation oc-

curs. This line coincides with the linear stability bound-

aries obtained analytically in [36] for the corresponding

constant-delay model (8), hence the numerical analysis

verifies the derivation of the associated linear system in

Section 4.

Panels (c)-(g) of Fig. 3 present the bifurcation di-

agrams corresponding to the 2nd, 3rd, 4th, 18th, and

24th stability lobes indicated by arrows in panels (a)

and (b). Branches of periodic solutions were computed

at discrete points along the stability lobes. The order

of the points on the stability charts and the respec-

tive order of the bifurcation curves are indicated by

arrows. In the bifurcation diagrams we plot the ampli-

tude r = (max x̂(t)−min x̂(t))/2 of periodic orbits born

at the Hopf bifurcation as a function of the bifurcation

parameter, the dimensionless chip width, p. In order to

see the tendency of the branches, the amplitude r is

normalized by the critical amplitude rcr, which denotes

the smallest amplitude where the tool first loses con-

tact with the workpiece due to the periodic oscillations.

Similarly, the bifurcation parameter p is normalized by

its value pst at the Hopf bifurcation. The dimensionless

chip width corresponding to rcr is denoted by pcr (see

panel (h) of the figure). Hence, in the normalized plane

(p/pst, r/rcr) each branch starts from point (1, 0) and

ends at point (pcr/pst, 1).

Note that the Hopf bifurcation is subcritical when a

bifurcation curve starts bending to the left, and super-

critical when it bends to the right. It can be concluded

from panels (c)-(g) of Fig. 3 that the Hopf bifurcation

changes criticality as the spindle speed Ω is decreased.

In panels (a) and (b) of Fig. 3, the subcritical segment

of the stability lobes is shown by a thin line, whereas

thick lines indicate supercriticality. The points where

the criticality turns are marked by large dots. Panel (c)

shows that the bifurcation is subcritical in the high-

speed region along the 2nd lobe. Then, the sense of

the bifurcation turns from sub- to supercritical at the

3rd lobe, and remains supercritical down to the 14th

lobe (in this particular example). At low spindle speeds,

from the 15th lobe, subcritical segments appear on the

right side of the stability lobes. As the spindle speed is

decreased, the subcritical segments grow, and from the

24th lobe, the bifurcation is subcritical again.

This is an important qualitative difference from the

behavior of the constant-delay model (8) where the

bifurcation is subcritical independently of the spindle

speed, and pcr ≤ p ≤ pst holds for the branches of pe-

riodic solutions [33]. In the constant-delay model, con-

sequently, there exists a bistable region at pcr < p <

pst where stable stationary cutting and large-amplitude

chatter coexist and the system becomes unstable to

large enough perturbations. It was shown in [33] that

the bistable region occupies approximately 4% of the

linearly stable region for all spindle speeds. For the

state-dependent model presented here, supercritical bi-

furcations also occur. Furthermore, at certain spindle

speeds, the supercritical branches turn back to the left

as shown in panel (h) of Fig. 3. Therefore, a bistable

region can still exist for a supercritical Hopf bifurca-

tion: it occupies pbist < p < pst where pbist is the left-

most point of the bifurcation curve, see panel (h). The

bistable boundary pbist is indicated by dashed line in

the stability charts in panels (a) and (b) of Fig. 3. The

bistable region itself is denoted by dark grey shading,

whereas the globally stable region is indicated by light

grey. As shown in panel (b), the bistable region grows

as the spindle speed is decreased. In this sense, the gain

in the linear stability boundaries at low spindle speeds

is reduced by nonlinear effects.

6 Conclusions

In this paper, we proposed a dynamical model of turn-

ing operations where the cutting force is modeled as
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Fig. 3 Stability charts of system (16) for high (a) and low (b) spindle speed regions; bifurcation diagrams showing the
amplitude of periodic orbits along the stability lobes (c)-(g); a possible bifurcation scenario (h)

a force system distributed along the chip-tool inter-

face. We described machine tool chatter using delay-

differential equations with a short distributed delay su-

perimposed on the large regenerative point delay. As

the size of the chip-tool interface varies according to

the tool position, the distributed delay becomes state-

dependent. Using the algorithm introduced in [19], we

determined the linear system which is associated with

state-dependent equation in terms of same local stabil-

ity properties. We have shown that the linear system

is equivalent to that of the model with constant de-

lay. Thus, state-dependency of the short delay does not

affect the linear stability properties of the cutting pro-

cess.

The proposed model is qualitatively different form

the one presented in [23], where a two-degrees-of-freedom

turning model associated with state-dependent point

delay was investigated. In the model in [23], it was

shown that the stability boundaries of the associated

linear system differ slightly from those of the tradi-

tional model with state-independent (constant) time-

delay. The reason of the difference was that the state-

dependent delay appeared explicitly in the nonlinear

equation, which resulted in an additional term in the

associated linear system. In the model proposed in this

paper, the state-dependent delay appears only in the ar-

gument of the state variables, therefore this additional

term does not show up.

Although state-dependency has no effect on the lo-

cal stability for the presented model of machining, it

affects the nonlinear behavior. Namely, it changes the

sense of the Hopf bifurcation at the stability bound-

aries. The bifurcation turns from sub- to supercritical

at certain spindle speeds.

From engineering point of view, the subcritical Hopf

bifurcation is more dangerous, since large-amplitude vi-

brations can evolve in certain (linearly stable) parame-

ter regions for large enough perturbations (see [38,12]).

Therefore, it is important to avoid these parameter re-

gions and rather operate the cutting-process near the

supercritical part of the Hopf boundaries. From this

point of view, state-dependent delay models become
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relevant in finding the supercritical segments of the sta-

bility boundaries.
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