Synthesis of Highly Functionalized Fluorinated Cispentacin Derivatives

by Melinda Nonn $\left.{ }^{a}\right)^{\text {b }}$), Loránd Kiss ${ }^{\text {a }}$), Mikko M. Hänninen ${ }^{\text {c }}$), Reijo Sillanpäää ${ }^{\text {c }}$), and Ferenc Fülöp $\left.{ }^{* a}\right)^{\text {b }}$)
${ }^{\text {a }}$) Institute of Pharmaceutical Chemistry, University of Szeged, HU-6720, Eötvös 6
${ }^{\text {b }}$) Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, HU-6720 Szeged, Eötvös 6
${ }^{\text {c }}$) Department of Chemistry, University of Jyväskylä, FI-40014, Jyväskylä
Dedicated to Professor Dieter Seebach on the occasion of his 75th birthday

Abstract

Fluorinated highly functionalized cispentacin derivatives were synthetised starting from an unsaturated bicyclic β-lactam through $\mathrm{C}=\mathrm{C}$ bond functionalization via the dipolar cycloaddition of a nitrile oxide, isoxazoline opening, and fluorination by OH / F exchange.

Introduction. - As a result of their biological potential, cyclic β-amino acids are of considerable importance in medicinal chemistry. As conformationally restricted derivatives, they are building blocks for the construction of biologically active peptides [1][2]. They include cispentacin (1), an important potent antifungal [1a][1b]. Multisubstituted aminocyclopentanecarboxylic acids such as Peramivir (2) and related analogs $\mathbf{3}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{OH} ; \mathrm{R}^{2}=\mathrm{Et}, \mathrm{Pr}\right)$ exhibit strong antiviral properties [3].

1

2

3

Fluorinated α - and acyclic β-amino acids comprise an expanding area of research, with increasing impact in both chemistry and biochemistry. They are valuable in medicinal chemistry as enzyme inhibitors, antitumour agents, or antibiotics [4][5]. Only a small number of fluorinated cyclic β-amino acids have been prepared so far, this being particularly true for the five-membered derivatives [6].

We recently reported the synthesis of highly functionalized cispentacin stereoisomers $\mathbf{7}$ and $\mathbf{8}$ from bicyclic β-lactam $\mathbf{4}$ by means of the regio- and stereoselective 1,3dipolar cycloaddition of a nitrile oxide (acetonitrile N-oxide) to ethyl cis- and trans-2-aminocyclopentene-3-carboxylates, followed by the stereoselective opening of the isoxazoline ring (Scheme 1) [7].

Results and Discussion. - Our current aim was to synthesize highly functionalized regio- and stereoisomers of F -containing five-membered cyclic β-amino acid deriva-

tives from bicyclic β-lactam 4 through selective transformation of its $\mathrm{C}=\mathrm{C}$ bond by the dipolar cycloaddition of a nitrile oxide, followed by reductive isoxazoline opening and H/F exchange.

Accordingly, novel OH -containing, multifunctionalized β-aminocyclopentanecarboxylates were prepared by reductive ring opening of the isoxazoline skeleton of 9 and $\mathbf{1 0}$ [8] (Scheme 2). In contrast to our earlier experiments on Me-substituted compounds (cf. Scheme 1) [7], the reductive isoxazoline opening of Et-substituted cis- and trans-isoxazoline-fused derivatives $\mathbf{9}$ and $\mathbf{1 0}$ under similar experimental conditions, with NaBH_{4} in the presence of NiCl_{2} in $\mathrm{EtOH} / \mathrm{THF}$, did not prove to be 100% stereoselective. Both transformations furnished two diastereoisomers, 11 (Fig. 1) and 12, or $\mathbf{1 3}$ and 14, in a ratio of $3: 1$, the major products, $\mathbf{1 1}$ and $\mathbf{1 3}$, respectively, resulting from H attack on the isoxazoline from the same face of the carbamate (Scheme 2; for several related transformations, see [3]). The products $\mathbf{1 1}+\mathbf{1 2}$ and $\mathbf{1 3}+\mathbf{1 4}$ were separated and isolated by column chromatography on SiO_{2}.

Scheme 2

New multifunctionalized hydroxylated cispentacin analogs containing a longer alkyl chain were next prepared by cycloaddition of the nitrile oxide formed from 2ethylbutyraldehyde oxime in the presence of N-chlorosuccinimide (NCS; Huisgen's conditions) to ethyl cis- and trans-2-aminocyclohexenecarboxylates, 15 and $\mathbf{1 8}$,

Fig. 1. a) Molecular structure of compound 11. Only one of two similar molecules in the asymmetric unit is presented. b) Ball-and-stick model of $\mathbf{1 1}$ showing inter- and intramolecular H-bonds. Thermal ellipsoids have been drawn at 30% probability level, and the $\mathrm{C}-\mathrm{H} \mathrm{H}$-atoms are omitted for clarity.
respectively (Scheme 3). The cycloaddition to $\mathbf{1 5}$ gave isoxazoline-fused amino ester regioisomers $16 / 17$ in a ratio of $7.5: 1$ (Scheme 3), the major product containing the Oatom of the isoxazoline skeleton farther from the carbamate group (for analogous transformations, see [8a]). The products were separated by chromatography. Similarly as with other nitrile oxides [8b], the cycloaddition to the trans counterpart $\mathbf{1 8}$ selectively afforded only cycloadduct 19 (Scheme 3).

Analogously to $\mathbf{9}$ and 10, the reductive ring openings of isoxazoline-fused cis- and trans-amino esters $\mathbf{1 6}$ and 19 , respectively, with $\mathrm{NaBH}_{4} / \mathrm{NiCl}_{2}$ each furnished two products, $\mathbf{2 0}$ (Fig. 2; the $\mathrm{H}_{2} \mathrm{O}$ adduct of the compound)/21, or 22/23, respectively, in a ratio of $2: 1$ and $3: 1$, which were separated by column chromatography (Scheme 4).

Introduction of a F-atom in the skeleton of the major isomers of the synthesized highly-functionalized cispentacin derivatives possessing a OH substituent was achieved through H/F exchange with Deoxo-Fluor ${ }^{\circledR}$ ($=$ bis(2-methoxyethyl)aminosulfur trifluoride) as reagent.

Fluorination of $\mathbf{7 , 1 1}$, and $\mathbf{2 0}$ in dry toluene at 0° for 2 h afforded the corresponding fluorinated compounds with inversion, 24a-24c, and the elimination products $\mathbf{2 5 a} \mathbf{- 2 5 c}$, respectively (for analogous experimental results, see [6a][6b] and ref. cit. therein; Scheme 5), which were separated by column chromatography. No experimental

Scheme 3

Fig. 2. Molecular structure of compound $\mathbf{2 0} \cdot \mathrm{H}_{2} \mathrm{O}$. Thermal ellipsoids have been drawn at 30% probability level, and the $\mathrm{C}-\mathrm{H} \mathrm{H}$-atoms are omitted for clarity.
conditions were found under which the large amounts of elimination products could be avoided.

Under similar conditions, fluorination of the trans counterparts 8, 13, and 22 provided the required fluorinated products $\mathbf{2 6 a}$ and $\mathbf{2 6 b}$, unfortunately again together with large quantities of elimination products $\mathbf{2 7 a} \mathbf{- 2 7} \mathbf{e}$, respectively (Scheme 6).

Scheme 5

Scheme 6

To summarize, highly functionalized fluorinated β-aminocyclopentanecarboxylate regio- and stereoisomers containing multiple stereogenic centers were synthesized from β-aminocyclopentenecarboxylates through the 1,3-dipolar cycloaddition of nitrile oxides and reductive ring opening of the isoxazoline skeleton, followed by H / F exchange. These products may be regarded not only as fluorinated cispentacin derivatives, but as precursors for the preparation of β-amino acid-modified peramivir analogs.

We are grateful to the Hungarian Research Foundation (OTKA No. NK81371 and K100530) for financial support.

Experimental Part

General. The chemicals were purchased from Aldrich. The solvents were used as received from the supplier. M.p.: Kofler apparatus. NMR Spectra: Bruker DRX 400 spectrometer, chemical shifts, δ, in ppm rel. to TMS as internal standard, with CDCl_{3} as solvent. MS: Finnigan MAT $95 S$ spectrometer. Elemental analyses: Perkin-Elmer CHNS-2400 Ser II elemental analyzer.

Synthesis of 2-Ethylbutyraldehyde Oxime ($=(1 \mathrm{E})-2-$ Ethyl-N-hydroxybutan-1-imine). To a soln. of 2ethylbutyraldehyde ($=2$-ethylbutanal; 50 mmol) in EtOH (50 ml), dry pyridine (150 mmol), and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(50 \mathrm{mmol})$ were added, and the mixture was stirred under reflux for 7 h . The mixture was then concentrated under reduced pressure, and the crude residue was purified by column chromatography (CC) on SiO_{2} (hexane/AcOEt) to give (1E)-2-ethyl- N-hydroxybutan-1-imine.

General Procedure for the Synthesis of Isoxazoline-Fused β-Aminocyclopentanecarboxylates. To a soln. of amino ester $\mathbf{1 5}$ or $\mathbf{1 8}(19.6 \mathrm{mmol})$ in THF (70 ml), ($1 E$)-2-ethyl- N-hydroxybutan-1-imine $(118 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}(19.6 \mathrm{mmol})$, and N-chlorosuccinimide ($=1$-chloropyrrolidine-2,5-dione; 78.4 mmol) were added, and the mixture was stirred at r.t. for 48 h . The mixture was then diluted with AcOEt $(75 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The crude mixture was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; hexane/ AcOEt to give $\mathbf{1 6 / 1 7}$ and $\left.\mathbf{1 9}\right)$.

General Procedure for Isoxazoline Ring Opening. To a soln. of dihydroisoxazol 9, 10, 16, or 19 $(1.46 \mathrm{mmol})$ in 10 ml of $\mathrm{EtOH} / \mathrm{THF} 3: 1(\mathrm{v} / \mathrm{v}), \mathrm{NiCl}_{2}(2.92 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(2.92 \mathrm{mmol})$ were added. After stirring for $10 \mathrm{~min}, \mathrm{NaBH}_{4}(2.92 \mathrm{mmol})$ was added in portions. The mixture was stirred at r.t. for 5 h , and the reaction was then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The mixture was filtered through Celite pad, and the filtrate was concentrated under reduced pressure. The residue was diluted with $\operatorname{AcOEt}(30 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The products $\mathbf{1 1} / \mathbf{1 2}, \mathbf{1 3} / \mathbf{1 4}, \mathbf{2 0} / \mathbf{2 1}$, and $\mathbf{2 2} / 23$ were purified and separated by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; hexane/ AcOEt$)$.

General Procedure for the Synthesis of F-Containing β-Aminocyclopentanecarboxylates. To a soln. of hydroxy compounds $\mathbf{7}, \mathbf{8}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{2 0}$, or $22(0.5 \mathrm{mmol})$ in dry toluene (10 ml), Deoxo-Fluor ${ }^{\oplus}$ soln. $(50 \%$ in toluene, 0.6 mmol) was added at 0° under Ar. The mixture was stirred at 0° for 2 h , and the mixture was then diluted with AcOEt , washed with sat. NaHCO_{3} soln. $(3 \times 10 \mathrm{ml})$, followed by $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The crude residue was purified by CC $\left(\mathrm{SiO}_{2}\right.$; hexane/AcOEt)to furnish 24a-24c, 25a-25c, 26a and 26b, and 27a-27c.

Ethyl (1R*,2S*,3S*,4R*)-2-\{[(tert-Butoxy)carbonyl]amino \}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]-aminolpropyl)-4-hydroxycyclopentanecarboxylate (11). White solid. Yield: $57 \% . R_{\mathrm{f}}$ (hexane/AcOEt) 0.24. M.p. $95-96^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.95\left(t, J=7.36\right.$, Me); $1.30\left(t, J=7.2\right.$, Me); $1.45\left(\mathrm{~s},{ }^{t} \mathrm{Bu}\right)$; $1.49\left(s,{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 1.94-2.16\left(m, 2 \mathrm{CH}_{2}\right) ; 3.34-3.65(m, \mathrm{H}-\mathrm{C}(1)) ; 3.79-3.89(m, \mathrm{H}-\mathrm{C}(3)) ; 4.12-4.30(m$, $\left.\mathrm{H}-\mathrm{C}(2), \mathrm{CH}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.44-4.55(m, \mathrm{H}-\mathrm{C}(4)) ; 5.26-5.37$ (br. $\left.s, \mathrm{NH}\right) ; 5.61-5.72$ (br. $\left.s, \mathrm{NH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 10.9; 13.7; 27.9; 28.0; 28.4; 36.4; 43.8; 50.1; 50.3; 53.8; 60.3; 72.9; 79.3; 79.6; 155.2; 157.3; 174.9. ESI-MS: $431\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}$: C 58.58, H 8.90, N 6.51; found: C 58.55, H 8.92, N 6.49.

Ethyl (1R*,2S*,3S*,4R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-3-((1R*)-1-\{[(tert-butoxy)carbonyl]-aminolpropyl)-4-hydroxycyclopentanecarboxylate (12). White solid. Yield:18\%. R_{f} (hexane/AcOEt $2: 1) 0.33$. M.p. $125-127^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.97(t, J=7.2, \mathrm{Me}) ; 1.28(t, J=7.1, \mathrm{Me}) ; 1.43(s$, $\left.{ }^{t} \mathrm{Bu}\right) ; 1.48\left(s,{ }^{t} \mathrm{Bu}\right) ; 1.65-1.89\left(m, \mathrm{CH}_{2}\right) ; 1.96-2.18\left(m, \mathrm{CH}_{2}\right) ; 3.50-3.61(m, \mathrm{H}-\mathrm{C}(1)) ; 3.66-3.77(m$, $\mathrm{H}-\mathrm{C}(3)) ; 4.06-4.27\left(m, \mathrm{CH}, \mathrm{H}-\mathrm{C}(2) ; \mathrm{CH}_{2} \mathrm{O}\right) ; 4.38-4.49$ ($\left.m, \mathrm{H}-\mathrm{C}(4)\right) ; 4.58-4.72$ (br. $\left.s, 2 \mathrm{NH}\right)$. ${ }^{13} \mathrm{C}$-NMR (100 MHz, CDCl_{3}): 10.0; 13.8; 25.3; 27.9; 35.4; 45.6; 50.9; 51.9; 56.6; 60.2; 71.3; 78.9; 79.5; 154.4; 156.7; 174.1. ESI-MS: $431\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}$: C 58.58, H 8.90, N 6.51; found: C 59.12, H 8.02, N 6.60.

Ethyl (1R*,2S*,3R*,4S*)-2-\{[(tert-Butoxy)carbonyl]amino\}-4-((1S*)-1-\{[(tert-butoxy)carbonyl]-aminolpropyl)-3-hydroxycyclopentanecarboxylate (13). White solid. Yield: 64%. R_{f} (hexane/AcOEt) 0.57. M.p. 216-217 ${ }^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.96(t, J=7.4, \mathrm{Me}) ; 1.25-1.33(\mathrm{~m}, \mathrm{Me}) ; 1.44\left(\mathrm{~s},{ }^{t} \mathrm{Bu}\right)$; $1.49\left(s,{ }^{t} \mathrm{Bu}\right) ; 1.76-2.38\left(m, 2 \mathrm{CH}_{2}\right) ; 2.47-2.62(m, \mathrm{H}-\mathrm{C}(1)) ; 2.76-2.96(m, \mathrm{H}-\mathrm{C}(4)) ; 3.10-3.19(m$, $\mathrm{H}-\mathrm{C}(2)) ; 3.68-3.80(m, \mathrm{CH}) ; 4.10-4.24\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.28-4.38($ br. $s, \mathrm{NH}) ; 4.42-4.47(m, \mathrm{H}-\mathrm{C}(3))$; $5.01-5.25$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.3 ; 11.1 ; 27.0 ; 28.1 ; 32.4 ; 33.2 ; 45.2 ; 52.3 ; 50.8 ; 54.1$;
58.8; 72.1; 77.0; $154.5 ; 156.5 ; 175.4$. ESI-MS: $431\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}: \mathrm{C} 58.58, \mathrm{H} 8.90$, N 6.51; found: C 58.57, H 8.91, N 6.49.

Ethyl (1R*,2S*,3R*,4S*)-2-\{[(tert-Butoxy)carbonyl]amino\}-4-((1R*)-1-\{[(tert-butoxy)carbonyl]-amino\}propyl)-3-hydroxycyclopentanecarboxylate (14). Brownish oil. Yield: 21%. R_{f} (hexane/AcOEt) $0.35 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.96(t, J=7.6, \mathrm{Me}) ; 1.25-1.33(\mathrm{~m}, \mathrm{Me}) ; 1.45\left(\mathrm{~s},{ }^{t} \mathrm{Bu}\right) ; 1.50\left(\mathrm{~s},{ }^{t} \mathrm{Bu}\right)$; 1.81-2.15 ($m, 2 \mathrm{CH}_{2}$); 2.24-2.36 ($\left.m, \mathrm{H}-\mathrm{C}(4)\right) ; 2.74-2.86(m, \mathrm{H}-\mathrm{C}(1)) ; 3.69-3.82(m, \mathrm{CH}) ; 4.09-4.26$ ($m, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3), \mathrm{CH}_{2} \mathrm{O}$); 4.29-4.39 (br. s, NH); 5.03-5.20 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $10.0 ; 11.0 ; 27.9 ; 28.0 ; 31.1 ; 35.5 ; 45.2 ; 51.7 ; 51.1 ; 56.5 ; 60.1 ; 71.6 ; 78.1 ; 154.4 ; 155.5 ; 174.6$. ESI-MS: $453\left([M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}: \mathrm{C} 58.58, \mathrm{H} 8.90$, N 6.51; found: C 58.57, H 8.98, N 6.50.

Ethyl $\left(3 a \mathrm{R}^{*}, 4 \mathrm{~S}^{*}, 5 \mathrm{R}^{*}, 6 a \mathrm{R}^{*}\right)-4-\{[($ tert-Butoxy) carbonyl]amino\}-3-(1-ethylpropyl)-4,5,6,6a-tetrahy-dro-3aH-cyclopenta[d][1,2]oxazole-5-carboxylate (16). Brownish oil. Yield: 45%. R_{f} (hexane/AcOEt) $0.72 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.90-1.00(\mathrm{~m}, 2 \mathrm{Me}) ; 1.30(t, J=7.1, \mathrm{Me}) ; 1.47\left(\mathrm{~s},{ }^{t} \mathrm{Bu}\right) ; 1.54-1.84(m$, $\left.2 \mathrm{CH}_{2}\right) ; 2.25-2.41\left(m, \mathrm{CH}_{2}\right) ; 2.46-2.55(m, \mathrm{H}-\mathrm{C}(5)) ; 2.94-3.07(m, \mathrm{H}-\mathrm{C}(3 \mathrm{a})) ; 3.64-3.75(m, \mathrm{CH})$; 4.16-4.31 ($\left.m, \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}(4)\right) ; 5.06-5.20(m, \mathrm{H}-\mathrm{C}(6 \mathrm{a}), \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.4 ; 12.5$; $14.5 ; 24.4 ; 25.9 ; 28.6 ; 31.6 ; 36.9 ; 41.0 ; 45.6 ; 52.1 ; 57.1 ; 61.6 ; 62.9 ; 83.7 ; 155.4 ; 160.8$. ESI-MS: $369\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 61.93, H 8.75, N 7.60 ; found: C 61.92, H 8.76, N 6.7.58.

Ethyl $\left(3 a \mathrm{R}^{*}, 5 \mathrm{~S}^{*}, 6 \mathrm{~S}^{*}, 6 a \mathrm{R}^{*}\right)-6-\{[($ tert-Butoxy) carbonyl]amino\}-3-(1-ethylpropyl)-4,5,6,6a-tetrahy-dro-3aH-cyclopenta[d][1,2]oxazole-5-carboxylate (17). Yellowish oil. Yield: $6 \% . R_{\mathrm{f}}$ (hexane/AcOEt) 0.52 . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.21-1.33(m, 3 \mathrm{Me}) ; 1.46\left(s,{ }^{t} \mathrm{Bu}\right) ; 1.51-2.20\left(m, 2 \mathrm{CH}_{2}\right) ; 2.32-2.46$ $\left(m, \mathrm{CH}_{2}\right) ; 2.93-3.07(m, \mathrm{H}-\mathrm{C}(5)) ; 3.44-3.54(m, \mathrm{H}-\mathrm{C}(3 \mathrm{a})) ; 4.01-4.24\left(m, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.28-4.40(m$, $\mathrm{H}-\mathrm{C}(6)) ; 4.87-4.92(m, \mathrm{H}-\mathrm{C}(6 \mathrm{a})) ; 5.64-5.80(\mathrm{br} . s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.5 ; 11.2 ; 14.5$; 23.9; 26.2; $30.0 ; 31.4 ; 35.9 ; 42.1 ; 44.9 ; 52.2 ; 56.9 ; 59.6 ; 62.9 ; 85.0 ; 155.4 ; 161.4$. ESI-MS: $369\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 61.93, H 8.75, N 7.60; found: C 61.91, H 8.76, N 7.61.

Ethyl (3aS*,5R*,6S*,6aR*)-6-\{[(tert-butoxy)carbonyl]amino\}-3-(1-ethylpropyl)-4,5,6,6a-tetrahydro$3 a \mathrm{H}$-cyclopenta[d][1,2]oxazole-5-carboxylate (19). White solid. Yield: 50\%. R_{f} (hexane/AcOEt) 0.38 . M.p. $95-96^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89-1.00(\mathrm{~m}, 2 \mathrm{Me}) ; 1.29(t, J=7.1, \mathrm{Me}) ; 1.46\left(\mathrm{~s},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 1.55-$ $1.74\left(m, 2 \mathrm{CH}_{2}\right) ; 1.97-2.04\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 2.14-2.31\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(5)\right) ; 2.38-2.49(m$, $\mathrm{H}-\mathrm{C}(3 \mathrm{a})) ; 3.62-3.73(m, \mathrm{CH}) ; 4.09-4.34\left(m, \mathrm{H}-\mathrm{C}(6), \mathrm{CH}_{2} \mathrm{O}\right) ; 4.85-4.91(m, \mathrm{H}-\mathrm{C}(6 \mathrm{a})) ; 5.19-5.26$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.5 ; 11.6 ; 13.6 ; 23.6 ; 25.3 ; 27.8 ; 29.9 ; 39.8 ; 46.4 ; 50.9 ; 59.5 ; 60.6$; $79.0 ; 82.5 ; 154.6 ; 162.4 ; 172.2$. ESI-MS: $369\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C} 61.93, \mathrm{H} 8.75, \mathrm{~N}$ 7.60; found: C 61.95, H 8.74, N 7.59.

Ethyl (1R*,2S*,3S*,4R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]-amino\}-2-ethylbutyl)-4-hydroxycyclopentanecarboxylate (20). White solid. Yield: 53\%. R_{f} (hexane/ AcOEt) 0.26. M.p. $99-100^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.80-0.93(m, 2 \mathrm{Me}) ; 1.24-1.67\left(\mathrm{~m}, 2{ }^{t} \mathrm{Bu}\right.$, $\left.\mathrm{CH}_{2}\right) ; 1.97-2.21\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(3)\right) ; 3.31-3.40(m, \mathrm{CH}) ; 3.77-3.89(m, \mathrm{CH}) ; 4.12-4.28$ $\left(m, \mathrm{H}-\mathrm{C}(2), \mathrm{CH}_{2} \mathrm{O}\right) ; 4.40-4.52(m, \mathrm{H}-\mathrm{C}(4)) ; 5.28-5.38$ (br. $\left.s, \mathrm{NH}\right) ; 5.80-5.90$ (br. $\left.s, \mathrm{NH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}): 9.6; 9.9; 13.7; 20.8; 21.4; 27.9; 28.0; 36.5; 43.0; 43.66; 50.1; 50.2; 50.4; 60.4; 73.4; 79.2; $79.5 ; 155.1 ; 157.2 ; 175.1$. ESI-MS: $495\left([M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{7}: \mathrm{C} 60.99, \mathrm{H} 9.38, \mathrm{~N} 5.93$; found: C 61.01, H, 9.39, N, 5.94.

Ethyl (1R*,2S*,3S*,4R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-3-((1R*)-1-\{[(tert-butoxy)carbonyl]-amino\}-2-ethylbutyl)-4-hydroxycyclopentanecarboxylate (21). White solid. Yield: 27\%. R_{f} (hexane/ AcOEt) 0.53. M.p. 197-198 $.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.90-1.03(m, 2 \mathrm{Me}) ; 1.08-1.24(m, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right) ; 1.29(t, J=7.2, \mathrm{Me}) ; 1.38-1.59\left(m, 2{ }^{t} \mathrm{Bu}, \mathrm{CH}_{2}\right) ; 1.83-1.95\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 1.97-2.21\left(m, \mathrm{CH}_{2}\right)$; 3.51-3.65 ($m, \mathrm{H}-\mathrm{C}(1)) ; 3.89-3.99(m, \mathrm{CH}) ; 4.02-4.73\left(m, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.4 ; 11.5 ; 14.0 ; 21.2 ; 22.7 ; 27.9 ; 27.94 ; 35.0 ; 41.1 ; 46.1 ; 50.6 ; 51.9 ; 54.2 ; 50.2$; $71.7 ; 78.9 ; 79.8 ; 154.1 ; 157.2 ; 174.0$. ESI-MS: $495\left([M+\mathrm{Na}]^{+}\right)$. Anal. calc. for: $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{7}: \mathrm{C} 60.99, \mathrm{H}$ 9.38, N 5.93; found: C 60.98, H 9.40, N 5.91.

Ethyl $\left(1 \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}\right)-2-\left\{\left[\left(\right.\right.\right.$ tert-Butoxy)carbonyl]amino\}-4-($\left(1 \mathrm{~S}^{*}\right)-1-\{[($ tert-butoxy) carbonyl]-amino\}-2-ethylbutyl)-3-hydroxycyclopentanecarboxylate (22). Yellowish oil. Yield: 58\%. R_{f} (hexane/ $\mathrm{AcOEt})$ 0.47. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 0.90-1.01 ($m, 2 \mathrm{Me}$); 1.09-1.34 ($m, \mathrm{Me}, 2 \mathrm{CH}_{2}$); 1.46 (s, $\left.2^{\mathrm{t}} \mathrm{Bu}\right) ; 1.92-2.30\left(m, \mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(1)\right) ; 2.76-2.88(m, \mathrm{H}-\mathrm{C}(4)) ; 2.94-3.02(m, \mathrm{CH}) ; 3.92-4.03(m, \mathrm{CH})$; 4.06-4.31 (m, H-C(2), H-C(3), $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 4.35-4.44$ (br. $\left.s, \mathrm{NH}\right) ; 5.07-5.19$ (br. $\left.s, \mathrm{NH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.0; 12.0; 14.3; 21.0; 24.3; 26.2; 27.0; 28.4; 44.3; 45.4; 48.0; 51.6; 58.8; 63.0; 73.8; 80.0;
127.0; 142.0; 153.7; 158.1. ESI-MS: $474\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{7}:$ C 60.99 , H 9.38, N 5.93; found: C 60.97, H 9.39, N 5.94.

Ethyl (1R*,2S*,3R*,4S*)-2-\{[(tert-Butoxy)carbonyl]amino\}-4-((1R*)-1-\{[(tert-butoxy)carbonyl]-amino\}-2-ethylbutyl)-3-hydroxycyclopentanecarboxylate (23). White solid. Yield: 20\%. R_{f} (hexane/ AcOEt) 0.35. M.p. $137-138^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 0.89-1.00 ($m, 2 \mathrm{Me}$); 1.29 ($t, J=7.1$, Me); 1.40-1.72 ($m, 2{ }^{t} \mathrm{Bu}, 4 \mathrm{CH}_{2}$); 1.96-2.52 ($\left.m, \mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4), \mathrm{CH}\right) ; 3.60-3.76(m, \mathrm{CH}) ; 4.07-4.42$ ($m, \mathrm{H}-\mathrm{C}(2), \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}(3)$); 4.84-4.93 (br. s, NH); 5.16-5.30 (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): 11.5; 11.9; 13.7; 21.2; 22.6; 25.2; 27.9; 27.9; 44.3; 44.7; 46.3; 50.9; 58.8; 60.3; 74.2; 79.1; 126.9; 142.0; 154.9; 156.3. ESI-MS: $474\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{7}$: C $60.99, \mathrm{H} 9.38$, N 5.93 ; found: C 61.01, H 9.36, N 5.92.

Ethyl (1R*,2R*,3S*,4S*)-2-\{[(tert-Butoxy)carbonyl]amino \}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]-aminolethyl)-4-fluorocyclopentanecarboxylate (24a). White solid. Yield: $24 \% . R_{\mathrm{f}}$ (hexane/AcOEt) 0.56. M.p. 114-115 ${ }^{\circ}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.23$ ($d, J=6.9, \mathrm{Me}$); 1.27-1.33 (m, Me); 1.43-1.49 $\left(m, 2{ }^{t} \mathrm{Bu}\right) ; 2.11-2.42\left(m, \mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(1)\right) ; 3.00-3.08(m, \mathrm{H}-\mathrm{C}(3)) ; 4.41-4.28\left(m, \mathrm{NH}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.83-$ 5.09 ($m, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(2)) ; 5.58-5.67$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.5 ; 19.6 ; 28.8 ; 34.8$; 34.9; 45.2; 46.1; 52.2; 55.9; 56.1; 61.3; 79.1; 79.8; 95.9; 152.8; 173.5. ESI-MS: $419\left([M+1]^{+}\right)$. Anal. calc. for: $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{FN}_{2} \mathrm{O}_{6}$: C 57.40, H 8.43, N 6.69; found: C 57.43, H 8.42, N 5.67.

Ethyl (1R*,2R*)-2-\{[(tert-butoxy)carbonyl]amino\}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]amino\}-ethyl)cyclopent-3-ene-1-carboxylate (25a). White solid. Yield: 45%. R_{f} (hexane/AcOEt) 0.52. M.p. 83$84^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.26-1.33(m, 2 \mathrm{Me}) ; 1.42-1.50\left(m, 2 \mathrm{Me}_{3} \mathrm{C}\right) ; 2.41-2.52(m, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right) ; 2.75-2.86\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 3.36-3.45(m, \mathrm{H}-\mathrm{C}(1)) ; 4.12-4.22\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.34$ (br. $\left.s, \mathrm{NH}\right) ; 4.70-$ $5.08(m, \mathrm{NH}, \mathrm{CH}, \mathrm{H}-\mathrm{C}(2)) ; 5.65(s, \mathrm{H}-\mathrm{C}(4)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.6 ; 21.2 ; 28.7 ; 28.8 ; 33.3$; 45.7; 47.7; 57.4; 61.0; 79.9; 121.4; 126.2; 155.5; 158.5; 172.9. ESI-MS: $399\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 60.28, H 8.60, N 7.03; found: C 60.26, H 8.61, N 7.04 .

Ethyl (1R*,2R*,3S*,4S*)-2-\{[(tert-Butoxy)carbonyl]amino\}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]-aminolpropyl)-4-fluorocyclopentanecarboxylate (24b). White solid. Yield: 30\%. R_{f} (hexane/AcOEt) 0.74. M.p. 103-104 ${ }^{\circ}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 0.97 ($t, J=7.3$, Me); 1.26-1.33 (m, Me); $1.44-1.50$ $\left(m, 2^{t} \mathrm{Bu}\right) ; 1.57-1.67\left(m, \mathrm{CH}_{2}\right) ; 2.09-2.45\left(m, \mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(1)\right) ; 2.97-3.06(m, \mathrm{H}-\mathrm{C}(3)) ; 3.86(\mathrm{br} . s, \mathrm{NH})$; $4.03-4.28\left(m, \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}(2)\right) ; 4.80-5.03(m, \mathrm{CH}, \mathrm{H}-\mathrm{C}(4)) ; 5.66-5.76$ (br. $\left.s, \mathrm{NH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $10.5 ; 13.6 ; 26.4 ; 27.9 ; 34.1 ; 44.5 ; 50.9 ; 51.3 ; 54.0 ; 60.5 ; 78.8 ; 79.3 ; 94.5 ; 95.9 ; 155.0 ; 155.9 ; 173.3$. ESI-MS: $434\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{FN}_{2} \mathrm{O}_{6}$: C 58.31, H 8.62, N 6.48; found: C 58.29, H 8.63, N 6.49.

Ethyl (1R*,2R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]amino\}pro-pyl)cyclopent-3-ene-1-carboxylate (25b). Brownish oil. Yield: 43%. R_{f} (hexane/AcOEt) $0.67 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.91(t, J=7.5, \mathrm{Me}) ; 1.29(t, J=7.2, \mathrm{Me}) ; 1.42-1.50\left(m,{ }^{t} \mathrm{Bu}\right) ; 1.62-1.77\left(m, \mathrm{CH}_{2}\right)$; $2.34-2.53\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 2.74-2.90\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 3.30-3.45(m, \mathrm{H}-\mathrm{C}(1)) ; 4.09-4.28(m, \mathrm{CH}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 4.78-5.05(m, 2 \mathrm{NH}, \mathrm{H}-\mathrm{C}(2)) ; 5.65(s, \mathrm{H}-\mathrm{C}(4)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.6 ; 13.8 ; 26.6$; $27.9 ; 27.9 ; 32.5 ; 46.7 ; 56.6 ; 60.2 ; 79.1 ; 112.5 ; 115.4 ; 117.2 ; 126.4 ; 154.8 ; 171.3 ; 172.2$. ESI-MS: $414\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 61.14, H 8.80, N 6.79; found: C 61.13, H 8.82, N 6.80 .

Ethyl (1R*, 2R*, 3S*,4S*)-2-\{[(tert-Butoxy)carbonyl]amino \}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]-amino\}-2-ethylbutyl)-4-fluorocyclopentanecarboxylate (24c). White solid. Yield: 28\%. R_{f} (hexane/ AcOEt) 0.75. M.p. $115-116^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.83-0.95(m, 2 \mathrm{Me}) ; 1.17-1.37(m, \mathrm{Me}$, $\left.\mathrm{CH}_{2}\right) ; 1.40-1.52\left(m, 2{ }^{t} \mathrm{Bu}, \mathrm{CH}_{2}\right) ; 2.10-2.38\left(m, \mathrm{CH}_{2}, \mathrm{CH}\right) ; 2.46-2.62(m, \mathrm{H}-\mathrm{C}(1)) ; 2.98-3.09(m$, $\mathrm{H}-\mathrm{C}(3)) ; 3.79-3.90(m, \mathrm{CH}) ; 4.03-4.29\left(m, \mathrm{H}-\mathrm{C}(2), \mathrm{CH}_{2} \mathrm{O}\right) ; 4.82(\mathrm{br} . s, \mathrm{NH}) ; 4.91-5.06(m, \mathrm{H}-\mathrm{C}(4))$; $5.68-5.79$ (br. s, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 9.5; 10.3; 13.6; 20.8; 21.4; 27.9; 34.0; 41.9; 44.7; 51.1; 51.2; 51.5; 60.5; 78.7; 79.2; 95.3; 96.7; 154.9; 156.0; 173.4. ESI-MS: $475\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{FN}_{2} \mathrm{O}_{6}: \mathrm{C} 60.74$, H 9.13, N 5.90; found: C 60.73, H 9.12, N 5.92.

Ethyl (1R*,2R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-3-((1S*)-1-\{[(tert-butoxy)carbonyl]amino\}-2-ethylbutyl)cyclopent-3-ene-1-carboxylate (25c). White solid. Yield: 27\%. R_{f} (hexane/AcOEt) 0.61. M.p. $94-95^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.84-1.11\left(m, 2 \mathrm{Me}, \mathrm{CH}_{2}\right) ; 1.17-1.36\left(m, \mathrm{Me}, \mathrm{CH}_{2}\right) ; 1.39-1.53(m$, $\left.2^{\mathrm{t}} \mathrm{Bu}\right) ; 2.40-2.53\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 2.76-2.89\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 3.36-3.47(m, \mathrm{CH}) ; 4.09-4.25(m$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 436($ br. $s, \mathrm{NH}) ; 4.62-5.07(m, \mathrm{CH}, \mathrm{NH}, \mathrm{H}-\mathrm{C}(2)) ; 5.63-5.65(m, \mathrm{H}-\mathrm{C}(4)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): 11.2; 12.2; 13.8; 21.1; 22.2; 27.8; 27.9; 32.4; 42.4; 46.7; 50.3; 56.5; 60.1; 78.8; 78.9; 126.5; 143.1;
154.6; 155.2; 172.1. ESI-MS: $455\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 63.41, H 9.31, N 6.16; found: C 63.39, H 9.32, N 6.17.

Ethyl (1R*,2S*,3S*,4S*)-2-\{[(tert-Butoxy)carbonyl]amino\}-4-((1S*)-1-\{[(tert-butoxy)carbonyl]-aminofethyl)-3-fluorocyclopentanecarboxylate (26a). White solid. Yield: 26\%. R_{f} (hexane/AcOEt) 0.51. M.p. 104-105 ${ }^{\circ}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.17-1.23(\mathrm{~m}, \mathrm{Me}) ; 1.29(t, J=7.2$, Me) ; 1.44-1.49 (m , $\left.2^{\mathrm{t}} \mathrm{Bu}\right) ; 2.09-2.24\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 2.27-2.58\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(1)\right) ; 2.69-2.94(m, \mathrm{H}-\mathrm{C}(4)) ; 3.69-$ $3.89(m, \mathrm{CH}) ; 4.09-4.25\left(m, \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}(2)\right) ; 4.26-4.43$ (br. $\left.s, \mathrm{NH}\right) ; 4.65-5.00(m, \mathrm{NH}, \mathrm{H}-\mathrm{C}(3))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.7 ; 15.5 ; 27.9 ; 33.5 ; 36.6 ; 46.5 ; 48.1 ; 50.8 ; 51.5 ; 51.7 ; 60.6 ; 79.2 ; 103.6$; 105.0; 154.8; 172.6. ESI-MS: $419\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{FN}_{2} \mathrm{O}_{6}$: C 57.40, H 8.43, N 6.69; found: C 57.41, H 8.41, N 6.70 .

Ethyl (12*,4R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-4-((1S*)-1-\{[(tert-butoxy)carbonyl]amino\}-ethyl)cyclopent-2-ene-1-carboxylate (27a). White solid. Yield: 48\%. R_{f} (hexane/AcOEt) 0.47. M.p. $129-130^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.18-1.3(m, \mathrm{Me}) ; 1.26-1.33(m, \mathrm{Me}) ; 1.45-1.48\left(m, 2{ }^{\mathrm{t}} \mathrm{Bu}\right)$; $2.29-2.49(m, \mathrm{H}-\mathrm{C}(1)) ; 2.57-2.79\left(m, \mathrm{CH}_{2}\right) ; 2.81-2.91(m, \mathrm{H}-\mathrm{C}(4)) ; 3.70-3.87(m, \mathrm{NH}) ; 4.15-4.25(m$, $\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}\right) ; 4.92-5.01(m, \mathrm{NH}) ; 5.45-5.47(m, \mathrm{H}-\mathrm{C}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.7 ; 19.4 ; 27.9$; $36.77 ; 44.9 ; 46.7 ; 46.6 ; 50.7 ; 60.4 ; 78.0 ; 79.2 ; 124.7 ; 148.3 ; 154.7 ; 167.8$. ESI-MS: $399\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 60.28, H 8.60, N 7.03; found: C 60.30, H 8.59, N 7.02.

Ethyl $\left(1 \mathrm{R}^{*}, 2 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}, 4 \mathrm{~S}^{*}\right)-2-\left\{\left[(\right.\right.$ tert-Butoxy) carbonyl]amino $\}-4-\left(\left(1 \mathrm{~S}^{*}\right)-1-\{[(\right.$ tert-butoxy $)$ carbonyl $]$ -aminolpropyl)-3-fluorocyclopentanecarboxylate (26b). Brownish oil. Yield: 15\%. R_{f} (hexane/AcOEt) 0.57. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.89-1.02(m, \mathrm{Me}) ; 1.25-1.33(m, \mathrm{Me}) ; 1.44-1.50\left(m, 2{ }^{t} \mathrm{Bu}\right) ; 1.64-$ $1.80\left(m, \mathrm{CH}_{2}\right) ; 2.23-3.06\left(m, \mathrm{CH}_{2}, \mathrm{H}-\mathrm{C}(1), \mathrm{CH}\right) ; 3.49-3.72(m, \mathrm{H}-\mathrm{C}(4)) ; 4.14-4.25\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.29-$ $4.54(m, \mathrm{H}-\mathrm{C}(2)) ; 4.57-4.82(m, \mathrm{H}-\mathrm{C}(3)) ; 4.97$ (br. $s, \mathrm{NH}) ; 5.13$ (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): 9.9; 13.7; 22.7; 27.9; 36.8; 47.9; 49.7; 52.9; 53.7; 57.3; 57.5; 60.5; 79.1; 103.8; 105.2; 154.3; 155.8. ESI-MS: $433\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{FN}_{2} \mathrm{O}_{6}$: C 58.31, H 8.62, N 6.48; found: C 58.30, H 8.61, N 6.50 .

Ethyl (1R*,4R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-4-((1S*)-1-\{[(tert-butoxy)carbonyl]amino\}pro-pyl)cyclopent-2-ene-1-carboxylate (27b). White solid. Yield: 39\%. R_{f} (hexane/AcOEt) 0.48. M.p. 121$122^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.88-1.01(\mathrm{~m}, \mathrm{Me}) ; 1.24-1.33(\mathrm{~m}, \mathrm{Me}) ; 1.47\left(\mathrm{~s}, 2^{\mathrm{t}} \mathrm{Bu}\right) ; 1.61-1.90(\mathrm{~m}$, $\left.\mathrm{CH}_{2}\right) ; 2.09-2.35\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 2.53-2.75\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; 2.77-2.92(m, \mathrm{H}-\mathrm{C}(1)) ; 4.07-4.25(m$, $\left.\mathrm{H}-\mathrm{C}(4), \mathrm{CH}_{2} \mathrm{O}\right) ; 4.47$ (br. $\left.s, \mathrm{NH}\right) ; 4.56-4.87(m, \mathrm{CH}) ; 4.93-5.05(m, \mathrm{NH}) ; 5.45-5.47(m, \mathrm{H}-\mathrm{C}(3))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.8 ; 13.7 ; 22.6 ; 26.1 ; 27.9 ; 50.6 ; 51.5 ; 57.3 ; 60.5 ; 79.0 ; 103.8 ; 105.2 ; 124.6$; 154.6; 155.8; 172.7. ESI-MS: $413\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 61.14, H 8.80, N 6.79 ; found: C 61.15, H 8.78, N 6.80.

Ethyl (1R*,4R*)-2-\{[(tert-Butoxy)carbonyl]amino\}-4-((1S*)-1-\{[(tert-butoxy)carbonyl]amino\}-2-ethylbutyl)cyclopent-2-ene-1-carboxylate (27c). Yellowish oil. Yield: $58 \% . R_{\mathrm{f}}$ (hexane/AcOEt) 0.48. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.85-1.17\left(\mathrm{~m}, 2 \mathrm{Me}, \mathrm{CH}_{2}\right) ; 1.23-1.39\left(m, \mathrm{Me}, \mathrm{CH}_{2}\right) ; 1.46\left(s, 2{ }^{t} \mathrm{Bu}\right) ; 1.58-$ $1.68\left(m, \mathrm{CH}_{2}\right) ; 2.41-2.90(m, \mathrm{CH}, \mathrm{H}-\mathrm{C}(1), \mathrm{CH}) ; 3.51-3.61(m, \mathrm{H}-\mathrm{C}(4)) ; 4.07-4.22\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.37$ (br. s, NH) ; 4.49 (br. s, NH) ; 5.63-5.64 ($m, \mathrm{H}-\mathrm{C}(3)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 10.8; 11.2; 13.7; 21.5; $22.6 ; 27.8 ; 27.9 ; 34.4 ; 43.1 ; 50.2 ; 52.0 ; 57.11 ; 60.4 ; 78.5 ; 79.1 ; 103.2 ; 105.5 ; 153.9 ; 155.8 ; 171.7$. ESI-MS: 455 $\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 63.41, H 9.31, N 6.16; found: C 63.44, H 9.30, N 6.14.

X-Rray Crystallographic Studies. Crystallographic data for the compounds $\mathbf{1 1}$ and $\mathbf{2 0}$ were collected with Agilent Supernova diffractometer equipped with Atlas area detector using $\mathrm{Cu} K_{\alpha}$ radiation $(\lambda=$ $1.54184 \AA$). Empirical absorption correction, using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm, was applied for both compounds with CrysAlisPro program package [9]. The structures were solved by direct methods using SIR97 [10] program, and full-matrix, least-squares refinements on F^{2} were performed using the SHELXL-97 [11] program. Molecular structure figures were drawn with Diamond3 program [12]. Selected crystallographic data collected in CCDC-902350 and -902351 contain the supplementary crystallographic data for $\mathbf{1 1}$ and $\mathbf{2 0}$. These data can be obtained free of charge via ttp://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: $(+44) 1223-336-033$; or e-mail: deposit@ccdc. cam.ac.uk.

REFERENCES

[1] a) F. Fülöp, Chem. Rev. 2001, 101, 2181; b) L. Kiss, E. Forró, F. Fülöp, 'Synthesis of carbocyclic β amino acids', in 'Amino Acids, Peptides and Proteins in Organic Chemistry', Vol. 1, Ed. A. B. Hughes, Wiley, Weinheim, 2009, p. 367; c) L. Kiss, F. Fülöp, Synlett 2010, 1302; d) D. Seebach, A. K. Beck, S. Capone, D. Deniau, U. Grošelj, E. Zass, Synthesis 2009, 1; e) S. Abele, D. Seebach, Eur. J. Org. Chem. 2000, 1; f) D. J. Ramón, G. Guilenna, D. Seebach, Helv. Chim. Acta 1996, 79, 875; g) Z. Hameršak, M. Roje, A. Avdagić, V. Šunjić, Tetrahedron: Asymmetry 2007, 18, 635; h) S. K. Pandey, G. F. Jogdand, J. C. A. Oliveira, R. A. Mata, P. R. Rajamohanan, C. V. Ramana, Chem. - Eur. J. 2011, 17, 12946.
[2] T. A. Martinek, F. Fülöp, Eur. J. Biochem. 2003, 270, 3657; E. Torres, C. Acosta-Silva, F. Rúa, Á. Álvarez-Larena, T. Parella, V. Branchadell, R. M. Ortuño, Tetrahedron 2009, 65, 5669; D. Fernández, E. Torres, F. X. Avilés, R. M. Ortuño, J. Vendrell, Bioorg. Med. Chem. 2009, 17, 3824; C. Fernandes, E. Pereira, S. Faure, D. J. Aitken, J. Org. Chem. 2009, 74, 3217; O. Roy, S. Faure, D. J. Aitken, Tetrahedron Lett. 2006, 47, 5981; F. Rúa, S. Boussert, T. Parella, I. Díez-Pérez, V. Branchadell, E. Giralt, R. M. Ortuño, Org. Lett. 2007, 9, 3643; V. D'Elia, H. Zwicknagl, O. Reiser, J. Org. Chem. 2008, 73, 3262; C. Fernandes, S. Faure, E. Pereira, V. Théry, V. Declerck, R. Guillot, D. J. Aitken, Org. Lett. 2010, 12, 3606; F. Fülöp, T. A. Martinek, G. K. Tóth, Chem. Soc. Rev. 2006, 35, 323; S. Celis, E. Gorrea, P. Nolis, O. Illa, R. M. Ortuño, Org. Biomol. Chem. 2012, 10, 861; T. A. Martinek, F. Fülöp, Chem. Soc. Rev. 2012, 41, 687; E. Gorrea, P. Nolis, E. Torres, E. Da Silva, D. B. Amabilino, V. Branchadell, R. M. Ortuño, Chem. - Eur. J. 2011, 17, 4588.
[3] A. J. Oakley, S. Barrett, T. S. Peat, J. Newman, V. A. Streltsov, L. Waddington, T. Saito, M. Tashiro, J. L. McKimm-Breschkin, J. Med. Chem. 2010, 53, 6421; W. J. Lü, Y. L. Chen, W. P. Ma, X. Y. Zhang, F. Luan, M. C. Liu, X. G. Chen, Z. D. Hu, Eur. J. Med. Chem. 2008, 43, 569; P. Chand, P. L. Kotian, A. Dehghani, Y. El-Kattan, T.-H. Lin, T. L. Hutchison, Y. S. Babu, S. Bantia, A. J. Elliott, J. A. Montgomery, J. Med. Chem. 2001, 44, 4379; P. Chand, Y. S. Babu, S. Bantia, S. Rowland, A. Dehghani, P. L. Kotian, T. L. Hutchison, S. Ali, W. Brouillette, Y. El-Kattan, T.-H. Lin, J. Med. Chem. 2004, 47, 1919; X. Yi, Z. Guo, F. M. Chu, Bioorg. Med. Chem. 2003, 11, 1465; P. Chand, S. Bantia, P. L. Kotian, Y. El-Kattan, T.-H. S. Lin, Y. S. Babu, Bioorg. Med. Chem. 2005, 13, 4071; Y. Cui, Z. Jiao, J. Gong, Q. Yu, X. Zheng, J. Quan, M. Luo, Z. Yang, Org. Lett. 2010, 12, 4; X. Yi, Z. Guo, F. M. Chu, Bioorg. Med. Chem. 2003, 11, 1465.
[4] N. C. Yoder, K. Kumar, Chem. Soc. Rev. 2002, 31, 335; R. I. Mathad, B. Jaun, O. Flögel, J. Gardiner, M. Löweneck, J. D. C. Codée, P. H. Seeberger, D. Seebach, M. K. Edmonds, F. H. M. Graichen, A. D. Abell, Helv. Chim. Acta 2007, 90, 2251; X.-L.Qiu, W.-D. Meng, F.-L. Qing, Tetrahedron 2004, 60, 6711; A. Sutherland, C. L. Willis, Nat. Prod. Rep. 2000, 17, 621; R. Smits, C. D. Cadicamo, K. Burger, B. Koksch, Chem. Soc. Rev. 2008, 37, 1727; A. E. Sorochinsky, V. A. Soloshonok, J. Fluorine Chem. 2010, 131, 127; Y. Pan, Y. Zhao, T. Ma, Y. Yang, H. Liu, Z. Jiang, C.-H. Tan, Chem. - Eur. J. 2010, 16, 779; S. Capone, I. Kieltsch, O. Flögel, G. Lelais, A. Togni, D. Seebach, Helv. Chim. Acta 2008, 91, 2035; D. F. Hook, F. Gessier, C. Noti, P. Kast, D. Seebach, ChemBioChem 2004, 5, 691; C. Jäckel, W. Seufert, S. Thust, B. Koksch, ChemBioChem 2004, 5, 717; J. L. Aceña, A. E. Sorochinsky, V. A. Soloshonok, Synthesis 2012, 44, 1591; M. Salwiczek, E. K. Nyakatura, U. I. M. Gerling, S. Ye, B. Koksch, Chem. Soc. Rev. 2012, 41, 2135; V. S. Yarmolchuk, P. K. Mykhailiuk, I. V. Komarov, Tetrahedron Lett. 2011, 52, 1300; I. Yamamoto, M. J. T. Jordan, N. Gavande, M. R. Doddareddy, M. Chebib, L. Hunter, Chem. Commun. 2012, 48, 829.
[5] J. Luis Acena, A. Simon-Fuentes, S. Fustero, Curr. Org. Chem. 2010, 14, 928; S. Fustero, J. F. SanzCervera, J. L. Acena, M. Sanchez-Rosello, Synlett 2009, 525; K. Mikami, S. Fustero, M. SánchezRoselló, J. L. Aceña, V. Soloshonok, A. Sorochinsky, Synthesis 2011, 3045.
[6] a) L. Kiss, E. Forró, S. Fustero, F. Fülöp, Eur. J. Org. Chem. 2011, 4993; b) L. Kiss, E. Forró, S. Fustero, F. Fülöp, Org. Biomol. Chem. 2011, 9, 6528 c) J. Mittendorf, F. Kunisch, M. Matzke, H.-C. Militzer, A. Schmidt, W. Schönfeld, Bioorg. Med. Chem. Lett. 2003, 13, 433; d) S. Fustero, J. F. SanzCervera, J. Piera, M. Sánchez-Roselló, G. Chiva, A. Simón-Fuentes, J. Fluorine Chem. 2004, 125, 621; e) S. Fustero, M. Sánchez-Roselló, J. L. Aceña, B. Fernandez, A. Asensio, J. F. Sanz-Cervera, C.
del Pozo, J. Org. Chem. 2009, 74, 3414; f) S. Fustero, M. Sánchez-Roselló, J. F. Sanz-Cervera, J. L. Aceña, C. del Pozo, B. Fernández, A. Bartolomé, A. Asensio, Org. Lett. 2006, 8, 4633.
[7] M. Nonn, L. Kiss, R. Sillanpää, F. Fülöp, Beilstein J. Org. Chem. 2012, 8, 100.
[8] a) L. Kiss, M. Nonn, E. Forró, R. Sillanpää, F. Fülöp, Tetrahedron Lett. 2009, 50, 2605; b) M. Nonn, L. Kiss, E. Forró, Z. Mucsi, F. Fülöp, Tetrahedron 2011, 67, 4079.
[9] R. C. Clark, J. S. Reid, Acta Cryst., Sect. A 1995, 51, 887; CrysAlis PRO, 2012, Agilent Technologies, Yarnton, England.
[10] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
[11] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
[12] Diamond - Crystal and Molecular Structure Visualization, Crystal Impact, K. Brandenburg and H. Putz, Postfach 1251, D-53002 Bonn.

