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Abstract
If rock beatsscissorsand scissorsbeat paper, onemight assume that rock beatspaper too. But this is
not thecase for intransitive relationships that makeup thefamousrock-paper-scissorsgame.
However, thesolepresence ofpaper might prevent rock from beatingscissors, simplybecausepaper
beats rock. This is theblueprint for the rock-paper-scissorsgamewith protection spillovers, which has
recentlybeen introduced asanewparadigm for biodiversityin well-mixed microbial populations.
Herewestudythegame in structured populations, demonstrating that protection spilloversgive rise
to spatial patterns that are impossible to observe in theclassical rock-paper-scissorsgame. Weshow
that thespatiotemporal dynamicsof thesystem isdetermined bythedensityofstablevortices, which
mayultimatelytransform to frozen states, to propagatingwaves, or to target waveswith reversed
propagation direction, dependingfurther on thedegreeandtypeof randomness in the interactions
amongthespecies. Ifvorticesare rare, thefixation to wavesand complexoscillatorysolutions is
likelier. Moreover, annealed randomness in interactions favors theemergenceof target waves, while
quenched randomness favorscollectivesynchronization. Our resultsdemonstrate that protection
spilloversmayfundamentallychange thedynamicsofcyclicdominance in structured populations,
and theyoutline thepossibilityofprogrammingpattern formation in microbial populations.

1. Introduction

Cyclical interactionsareat theheart ofmarinebenthicpopulations[1], plant systems[2–5], and microbial
populations[6–11]. Cyclicdominancealso playsan important role in theovergrowth ofmarinesessile
organisms[12], thematingstrategyofside-blotched lizards[13], thegenetic regulation in the repressilator[14],
and in explainingtheoscillationsof thepopulation sizeoflemmings[15] and thePacificsalmon[16]. More
generally, evolutionarygamesentailingcyclicdominanceplaya prominent role in explainingbiodiversity
[17–27], and theyarealso able to provide insights into Darwinian selection[28], structural complexity[29], and
prebioticevolution[30], aswell as into theeffectivenessofpositiveand negative reciprocity[31], volunteering
[32,33], rewarding[34,35], and punishment[32,36–39], to namebut a fewrepresentative examples.

In agreement with the impressive implications fundamentalresearch on cyclical interactionshas, it is little
surprisingthat theclassical rock-paper-scissorsgame—theworkhorse for research on cyclicdominance—has
been studied so extensively, not least bymethodsofstatisticalphysics[40–58], which are indispensable for a
comprehensive treatment of thegameand itsextensions in structured populations. Although the rulesof the
gamecan bewritten down in a short sentence, thecomplexityofspatial patterns that emergespontaneouslyasa
consequenceof thesimple microscopic rules isunparalleled. Labyrinthineclustering[59] and interfaceswith
internal structure[60] are just two of themost intriguingrecent examplesattestingto this fact.
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Despite theoverwhelmingattention therock-paper-scissorsgamehasreceived[61], there isone important
aspect of thegamethat hastill recentlybeen overlooked. Inparticular, while thedirection of invasion between
the rock, thescissorsand thepaper is intransitive,and thusconductive to speciescoexistence[62,63], thismay
not be the case for theprotection onespecies offers to theother. Ifoneconsiders thegamenot from the
standpoint ofdominance in that rock iswrapped bypaper, paper iscut byscissors, and scissorsarebroken bya
rock, but rather from thestandpoint ofsurvival in that scissorsprotect itself from paper’s toxin, paper protects
itself from rock’s toxin, and the rock protect itself from scissors’s toxin, then onequicklycomes to realize that
such protection maybenon-excludable, and that in fact it can spill over to theother strategy. Motivated bythis
important consideration, Kelsicet al�[25] have recently introduced cyclical interactionswith protection
spilloversasanewparadigm for biodiversityin well-mixedmicrobialpopulations. Byusingsimulationsand
analyticalmodels, theyhaveshowthat theopposingactionsofantibioticproduction and degradation enable
coexistenceeven if the interactionsamongthecyclicallydominatingspeciesarerandom. In a commentaryto the
originalpaper, Bergstrom and Kerr[27] havegeneralized these results to theclassical rock-paper-scissors game
in a well-mixed population, revealinga stable, attractiveequilibrium containingall threespecies if thepossibility
isgiven that a predator’spredator can protect thepreyof the former.

However, since interactions in microbialpopulationsareoften not random[7,11,20], it is important to
determine themeritsofprotection spilloversalso in structured populations. We therefore studythe rock-paper-
scissorsgamewith protection spillovers on thesquare latticewith annealed and quenched randomness. In a
structured population, thesolepresence of rock might prevent scissors from beatingpaper, simplybecause rock
beatsscissors. Aswewill show, thisseeminglysmall modification of themicroscopicdynamicshas rather
spectacular consequences for thecollectivebehavior of thesystem. Unlike in theclassical rock-paper-scissors
game, here thespatiotemporaldynamics isdetermined bythedensityofstablevortices, which mayultimately
transform to frozen states, to propagatingwaves, or to target waveswith reversed propagation direction. Since
the initial densityofvortices iscontrollable in experimental setups, like for example in aPetri dishe[7] or in
bacterialbiofilms[64], our results thusreveala feasiblewayofprogrammingpattern formation in microbial
populations. Different from theclassical rock-paper-scissorsgame, wherewecan observe globallysynchronized
oscillations in the frequencyofstrategiesaswe increase the levelof randomness(either quenched or annealed),
here theconsideration of these two different typesof randomnesscan beadecisive factor that determines the
evolutionaryoutcome. Aswewill show, annealed and quenched randomness havea completelydifferent impact
on theemergenceofstable spatialpatterns, thusdemonstratingthat protection spilloversmayfundamentally
change thespatiotemporal dynamicsofcyclicdominance in structured populations.

Theorganization of thispaper isas follows. Wepresent the definition of thespatial rock-paper-scissors game
with protection spilloversand thedetailsof theMonteCarlo simulation procedure in section�2. Main resultsare
presented in section�3. Weconcludewith thesummaryof the resultsand adiscussionof their implications in
section�4.

2. Rock-paper-scissors with protection spillovers

Weconsider amodified version of theclassic rock-paper-scissors game, where the threespeciescyclically
dominateeach other. For convenience, we refer to thespeciesasR,PandS, wherestrategyRinvadesstrategyS,
strategySinvadesstrategyP, and strategyPinvadesstrategyR. However, due to theconsideration ofprotection
spillovers, these invasionsoccur only ifnoneof thedirectneighborsof thepreyisapredator to theoriginal
predator. For example, rock isunable to invadescissors ifoneof thedirect neighborsof thescissors ispaper.
Similarly, scissors areunable to invade paper ifoneof thedirect neighborsof thepaper is rock, and paper is
unable to invade rock ifoneof thedirect neighborsof the rock arescissors.

Thedescribed rock-paper-scissorsgamewith protection spillovers isstudied in structured populations.
Each species is thus located on the sitexofa square latticewith periodicboundaryconditions, where thegrid
containsL�× �Lsites. In addition, wealso explore the impact ofdisorder, which hasproven to beadecisive factor
in theclassical rock-paper-scissors game[65,66]. In particular, the introduction ofstructural randomnesscan
trigger a globaloscillatorystate, which is impossible to observe in theabsenceof long-range interactions.
Interestingly, previous research on theclassical rock-paper-scissorsgame[65,66] hasemphasized that the type
ofdisorder bymeansofwhich long-range linksare introduced hasonlysecond-order importance, given that
both annealed and quenched randomnesshavea qualitativelysimilar impact on pattern formation. However,
the introduction ofprotection spilloversmaysignificantlyaffect thedynamicsofcyclicdominance[25], which is
whywehereconsider the impact ofannealed and quenched randomness separately. Aspanel(a) offigure1
illustrates, annealed randomness is introduced so that at each instanceof thegamea potential target for an
invasion isselected randomlyfrom thewholepopulation with probabilityϑ, while with probability1�−�ϑ the
invasion is restricted to a randomlyselected nearest neighbor [65,66]. Forϑ�=�1 wethusobtain well-mixed
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conditions, while forϑ�= �0 onlyshort-range invasionsalongtheoriginal square lattice interaction structureare
possible. Quenched randomness, illustrated in panel(b) offigure1, is introduced byrandomlyrewiringa
fractionθof the links that form thesquare latticewhile preservingthedegree ofeach site. We therebyobtain
regular small-world networks for small valuesofθand a regular random network in the 1q � limit.
Importantly, therewiring isperformed onlyoncebefore thestart of thegame, thus introducingquenched(time
invariant) randomness in the interactions amongthespecies.

Theevolution ofspeciesproceeds in agreement with a randomsequentialupdate, whereduringa full Monte
Carlo step(MCS) everyplayer receivesachanceonceon average to invadeone randomlyselected neighbor(or
anymember of thepopulation with probabilityϑ in caseannealed randomness isconsidered), asallowed bythe
rulesof thegame. Theaverage fraction of rock(ρR), paper(ρP), and scissors(ρS) in thepopulation ismonitored
duringthewholeevolutionaryprocess. Wehavesystematicallyapplied different system sizes rangingfrom
L�= �40 toL�= �1 000 to reveal thepossiblesize-dependence of theobservedsolutions. When determiningthe
fixation probability, wehaveaveraged theoutcomeover 10 000independent runs. Themonitoringtime, which
exceeded 107MCSfor the largest system size, wasalwayschosen to beat least 100 times longer than the longest
measuredfixation time.

3. Results

Beforepresentingthemain results, webrieflycontemplateon thepotential impact ofprotection spillovers in
cyclical interactions. Foremost, it is important to note that the introduction ofprotection spillovers raisesan
interestingdilemma that isotherwiseabsent in theclassical version of the rock-paper-scissorsgame. Namely, the
‘spillover protector’ ofa species issimultaneouslyalso itsprey. Thus, each timean invasion ismade, the invading
speciespotentially(although not certainlybecause theremaybeother instancesof thesamepreyin the
neighborhood) looses thebenefit ofspillover protection. Thepredator is thus faced with a difficult choice.
Perhapseven more frustratingly, thepredator isunable to actuallymakeachoice. The invasion will go forward
with certainty ifonlythepreyisnot protected bya‘spillover protector’. Thisdilemma isa good indicator of the
fact that a correct intuitiveanticipation of the impact ofprotection spillovers isnot at all trivial.

Regardingthepotential impact ofannealed and quenched randomness, previous research has revealed that
both sourcesof randomnesshave thesame impact on cyclical interactions in that theyevokesynchronized
oscillationsamongthecompetingspecies[65,66]. Aswewill showin the followingsubsections, thisconceptual
similarityno longer exists ifprotection spilloversare introduced.

3.1. Evolution on the square lattice
Webegin bypresentingthemain resultsobtained on thesquare lattice in theabsenceofboth annealed and
quenched randomness. Thefirst keyfact is illustrated in the four snapshots that aredepicted infigure2, which is
that the initial statedeterminessignificantlythefinaloutcome of thegame. Moreprecisely, if the rock-paper-
scissorsgamewith protection spillovers is launched with random initial conditions, asshown in the top left
panel, then thepopulation terminates rather quickly in a frozen state, asshown in the top right panel. It can be
observed at a glance that both theconfiguration and thedensityof the threecompetingspecies remain practically
unchanged duringtheevolution. Ofcourse, once the frozen state is reached, the invasionsseizecompletely. On
theother hand, if thegame is initiated with prepared initial conditions, asshown in thebottom left panelof
figure2, then thepropagatingwavesemerge that arequalitatively identical to those that have been observed so
often in theclassical spatial rock-paper-scissors game[61]( for thecorrespondingmoviesee[67]) . Thecrucial
propertythat characterizes thespecial initial conditionshown in thebottom left panel is that it contains two

Figure 1. Schematic illustration ofannealed(left) and quenched(right) randomness. Annealed randomnesspreserves the regular
interaction structure, but a player mayinvade a randomlychosen distant player with probabilityϑ (denoted byadashed green line),
while with probability1�− �ϑ the invasion remainsbounded to nearest neighbors. Quenched randomness requires that a fractionθof
nearest-neighbor links(denoted bylight greylines) is rewired randomly(denoted bythin green lines), all thewhile preservingthe
degreeofeverynode. This interaction structure doesnot change over time, and so the invasions can occur onlyvia the partly
(dependingon the value ofθ) randomized interaction network.
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vortex-antivortex pairs, onevortex in themiddleof the lattice, and the rest of thevortices located at theedgeof
the latticedue to periodicboundaryconditions. Thesevorticesact assources for thepropagatingwaves, ascan be
deduced clearly from thestationarystate that isdepicted in thebottom right panel offigure2. We emphasize that
ρR�= �ρP�= �ρS�=�1/ 3 holds for all four depicted snapshots, and that thusall four statesare represented bythe
samepoint in a simplex. Evidently, this illustrates that the representation of theactualstate in a simplex isnot
alwayssatisfactoryfor a spatial system. But more importantly, theequalityof thedensityofspecies in both
stationarystates indicates that thebiodiversity in the rock-paper-scissors gamewith protection spilloverscan be
realized in verydifferent ways.

To better understand and explain the two significantlydifferent evolutionaryoutcomesdepicted infigure2,
wepresent infigure3two simpleL�× �L�= �3�× �3configurations in which there isno invasion between the
speciesdue to themutual protection between predator-preypairs. Ifwecheck thedepicted configurations
carefully, it can beobserved that a predator cannot invadeaneighboringpreybecause there isalwaysa
predator’(s) predator in theneighborhood of theprey, and who thusprotects thepreydue to theconsideration
ofprotection spillovers. Theseconfigurations represent axialor tilted stripes, which areactually thebuilding
blocksof frozen statesalso in much larger populations. Evidently, a‘random’ distribution ofspeciescan also
yield a frozen state, as it is illustrated in the top rowoffigure2, but such an outcome requires manyvorticesbe

Figure 2. Snapshots of thesquare lattice, showinga characteristic evolution asobtained from a random initial state(top row)and from
a prepared initial state(bottom row). If initiallyall threespeciesaredistributed uniformlyat random, asshown in the top left panel, the
system quicklyevolves to an almost unchanged frozen state(top right panel) where invasions no longer occur. However, ifweuse
special initial conditions where initially thereareonlytwo vortex-antivortexpairs(one in the middleand the rest at theedge of the
lattice due to periodic boundaryconditions), asshown in thebottom left panel, the system evolves into anactivestationarystate that is
characterized bypropagatingwaves(bottom right panel). Thesepropagatingwavesaremuch thesameas those wecan observe in the
classic rock-paper-scissors game. Interestingly, in all four depicted snapshots it holds thatρR�= �ρP�= �ρS�= �1/ 3, yet the stationary
realization of this biodiversity is lastlyverydifferent.For clarity, wehavehere used a small square latticewith linear sizeL�= �120.

Figure 3. Two possible realizationsofa frozen state, asobtained on aL�× �L�= �3�× �3square latticewith periodicboundaryconditions.
Due to the introduction ofprotection spillovers, the depicted configuration ofspecies in both casesmutuallyprevents successful
invasions ofother species. These tilted(left) and axial(right) stripesare the fundamental buildingblocksof frozen states in large
populations.
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present in the initial distribution of thespecies(or a fullyrandom initial distribution, as isdepicted in thetop left
panel offigure2).

Thecrucial roleof the initial densityofvortices for thefinaloutcome of thegame is illustrated infigure4.
Unlike in thebottom left panel offigure2, whereonlya fewvortices are initiallypresent, wenowinitiate the
gamewith manymorevortices initiallypresent in thepopulation. Aspanel�(a) offigure4shows, we initiallyhave
a homogeneousstate in which 80 vorticesare inserted uniformlyat random. Thesevorticesall serveaspotential
sourcesofpropagatingwaves, and indeed manydo nucleate(for thecorrespondingmoviesee[68]) . Thecritical
point ofevolution occurswhen a relativelysmall frozen patch emerges, as illustrated in panel�(b). We emphasize
that thepattern in the frozen patch is initiallyidentical to theone that isdepicted in the left paneloffigure3. In
fact, such frozen patches typicallyemergewhen propagatingwavecollideand give rise to sizablepatches that are
madeup ofstablepatternsshown infigure3. Duringthecourseofevolution thearea that isoccupied bysuch
stablepatchesgrows, asshown in panel�(c), while the area where invasionsarestill possibleshrinksand becomes
limited to smaller and smaller adjacent domains. Eventuallyeven the last remainingactiveareas, asshown in
panel�(d), becomefrozen to yield thefinal frozen state(not shown infigure3, but can beseen in the
correspondingmovie[68]) . The latter ismadeup ofa mixtureof fundamental frozen patterns that areshown in
figure3.

Evidently, theemergenceofviable frozen domains that areable to growdependssensitivelynot just on the
number, but also on the initial distribution of thevortices. Thefinaloutcomecould bedifferent even ifwestart
with thesamenumber ofvortices, because their proximityonthe latticecould bea decisive factor aswell.
Accordingly, theemergenceof frozen states is astochasticprocess. Theprobability to reach the frozen state(Φ f)
in dependenceon the initial densityofvortices(vi) is illustrated infigure5, while the inset shows thescaled
version ofcurves to thereference system sizeL0�=�40. Thedepicted results indicate that thepopulation becomes
moreand moresensitive to the initial presence ofvorticesaswe increase itssize. Moreprecisely, the initial
densityofvortices required to reachfixation decreasesaswe increase thesystem size. Thiscounterintuitive
phenomenon is related to theapplication ofperiodic boundaryconditions. In particular, thevorticesserveas
permanent sourcesofpropagatingwaves, and if thesystem size issmall, then a specificsourcecan easilyinteract
with itsvirtual‘clone’ due to periodicboundaryconditions. The realand virtual sourcesemit waves
synchronouslywhich preventsblockingofakin propagatingwaves. Accordingly, weneed a relatively larger
number ofvortices to reachfixation here. Naturally, thiseffect becomesweaker asweenlarge thesystem size,
and thusfewer initial vorticessuffice to reach thesamefixation probability. On theother hand, wenote that a
‘non-frozen’ stateactuallycorresponds to astationarystatewith endlesslyemergingpropagatingwaves, rather
than a failureon our side to wait sufficiently longfor thesystem to get trapped in a frozen state. Just to illustrate
this fact, a system with linear sizeL�= �80 size remains in theactivestateup to 4�× �106MCS. While there isof
courseafluctuation about thefixation timehavingnormaldistribution, themonitoringtrial timewasalwaysat
least 100 times longer than the longest observedfixation time.

3.2. Evolution on the square lattice with annealed randomness
Wefirst consider the impact ofannealed randomnesson thedynamics ofbiodiversity in thestudied rock-paper-
scissorsgamewith protection spillovers. Asdescribed in Section�II, duringeach instanceof thegamethere is
thusa probabilityϑ that a potential target for invasion will beselected from thewholepopulation rather than
from thenearest neighborsofa square lattice. In theclassical rock-paper-scissors game, the introduction of
annealed randomnessevokesa synchronized statewhere thedensitiesofspeciesoscillate in time(notethat these

Figure 4. Snapshots of thesquare lattice, showinga characteristic evolution towards a frozen state from left to right,as obtained from
an initial configuration containingseveral vortices. While each vortex ispotentiallya source ofpropagatingwaves, once thesewaves
emerge theycollide, eventuallyleadingto the formation ofarelativelysmall frozen patch(seepanelb), which ultimatelygrows to
occupythe entire lattice. For clarity, wehavehereused a small square latticewith linear sizeL�= �120, with 80 vortices inserted at
random. Technically, wehave inserted 80pairsof the two species(yellowand blue) that aredifferent from the‘background’ species
(red). Here the frozen state is reached within 600 MCS.
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oscillationsareabsent in the absenceofannealed randomness). Theamplitudeof theseoscillations increased as
we increaseϑ, and at a critical value thesystem terminates into an absorbingphasewherea singlespecies
survives[65,66].

In the rock-paper-scissorsgame with protection spillovers the impact ofannealed randomness is
significantlydifferent. Ifwestart with an initial condition whereall threespeciesaredistributed uniformlyat
random, then thepopulation again, ason thesquare lattice,terminates rather quickly in a frozen state(seetop
rowoffigure2). Here thevalueofϑplaysanegligible role. In exploringother initial conditions, wefind that the
keyfactor isagain thedensityofvortices that are initiallypresent in thepopulation. If thevorticesaresufficiently
common the frozen state ispracticallyunavoidable, and indeed verysimilarfixation curvescan beobtained aswe
haveshown for theoriginal square lattice topologyinfigure5. Thisbehavior can beobserved regardlessof the
strength ofannealed randomnessϑ. However, if thevorticesare initiallyrare, thenon-frozen state issignificantly
different from thepropagatingwavesdepicted in thebottomright panel offigure2.

To illustratewhat happensand to explain theorigin of thedifference, wemonitor theevolution at a
representative valueofϑ�= �0.22 from a prepared initial state, whereonlya singlevortex is initiallypresent in the
population(for thecorrespondingmoviesee[69]) . The relatedfigure6showshowthe fraction ofan arbitrary
species(top panel) and thespatialdistribution ofspecies(bottom row) evolve. In panel�(a) thevortex is initially
placed at thecenter of thebottom left quadrant of thesquarelattice. Similarlyas in the random-free case, this
vortexfirst servesasa sourceofpropagatingwaves. Theexpansion ofthe initialwavescan beobserved in
panels�(b) and(c). Thebackground, however, changes intensively, which is thewell-known consequenceof
synchronization that emerges due to the introduction ofannealed randomness. Acrucialdifference here is that
thepresenceof thevortex doesnot allowthesystem to terminate into a homogeneous, absorbingphase. Wenote
that thesystem would in fact be in an absorbingphaseat such ahigh value ofϑ in theclassical rock-paper-
scissorsgame, as illustrated infigure5 of�[65]. In thepresent case, however, thevortex behaves likeafixed point
whoseposition doesnot change in timebecauseneither nearest nor distant neighborsareable to invade the
specieswho form thevortex due to protection spillovers that warrant them mutual immunity.

As timegoesby, target wavesemergeas illustrated in panel�(c) offigure6. It iseasyto see that the
configuration ofspecieswithin thesewaves ispracticallyidentical to the fundamentalbuildingblocksof frozen
states that wehaveshown infigure3. Accordingly, this‘stripe-like’ targetsare stableagainst the invasion
attemptsof far-awayother species, which happens frequentlyat nonzero valuesofϑ. Interestingly, and unlike in
theabsenceofannealed randomness, however, these target wavesdo not represent frozen states. Instead, the
depicted target wavespropagatestowardsthevortex in thebottom left quadrant of the lattice. When theyarrive
at thevortex theysimplyvanish. Moreprecisely, thevortexpermanentlyerodes thenearest locallyhomogeneous
wavefront, which results in a continuousshift of thestripes toward thecenter of thevortex. Thevortex thusacts
likea sink for the target waves, and itsposition never changesover time. Wenote that the reversed propagation
direction of the target wavescan be inferred from thesnapshots because theorder ofcolors, and henceof the
species, isdifferent from theorder in thepropagatingfront. This‘dynamicallystable’ domain around thevortex
will growth until it reaches the frontier ofa similar domain(in panel(e) thedomain actuallymeets itselfdue to
theperiodicboundaryconditions). In contrast to the random-freecase, here thearea in themiddleof theupper

Figure 5. Theprobability to reach the frozen state(Φ f) in dependence on the initial densityofvortices(vi), as obtained for different
system sizes(see legend). It can be observed that thesmaller thesystem size, themorefrequent initiallyvortices need to be for the
propagatingwaves to eventually terminate in a frozen state. The inset shows the scaled version of thecurves depicted inthemain panel
to the referencesystem sizeL0�= �40. Depicted resultsareaverages over 104 independent runs.
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right quadrant of the lattice, where there isa‘void’ between the target wavedomains, changescolor periodically
due to the invasions from distant sites(which ismadepossible byannealed randomness), and thusacts like the
sourceof thewaves. Thewavefronts travel outward to join the target wavedomains, and then continue towards
thecenter of thevortex which actsas their sink. In even larger populations, it ispossible that more than onesuch
source-sink pairsemerge, resulting in a dynamicallystablepattern where the frequenciesofall threespecies are
equalat all times. Arepresentativeevolution for the latter casecan beseen in themovie[70].

3.3. Evolution on the square lattice with quenched randomness
An alternativewayof introducingrandomness in the interactions amongthespecies isbyrandomlyrewiringa
fractionθof the links that form thesquare lattice, wherebyweobtain regular small-world networks for small
valuesofθand a regular random network in the 1q � limit [65,66]. Since the interaction topologydoesnot
change over time, thissetup corresponds to quenched randomness.

As in all previouslyconsidered cases, here too a random initial state terminatesquickly in a frozen state, and
the initial fraction ofvortices in thepopulation isakeydeterminant of thespatiotemporal dynamics that
subsequentlyemerges. Themore frequent the vortices, the likelier thepopulation will terminate in a frozen state.
Unlikebyannealed randomness, however, here thevalueofθplaysan important role in determiningthe
conditions that lead tofixation. This fact is illustrated infigure7, whereweshowthefixation probability in
dependenceon the initial densityofvortices for differentvaluesofθ. Thepresented results indicate that the less
ordered the interaction structure, the less likely is thefixation to a frozen state. Importantly, weemphasize that,
even in the 1q = limit, when thestrength ofquenched randomness ismaximal,completelyrandom initial
conditionswill still inevitablyfixate to a frozen state.

On theother hand, if initially thevorticesareonlyfewand thesystem ishenceable to avoidfixation, then the
resultingspatiotemporal dynamics issignificantlydifferent from theonedepicted infigure6for annealed
randomness. Similarlyas in theclassical version of therock-paper-scissors gamewithout protections spillovers
[65], in thiscasecollectivesynchronization amongthespeciesemerges, yieldingoscillationsof their densities, or
equivalently, a periodicorbit in the ternarydiagram. The introduction ofprotection spillovers thusdoesnot
qualitativelymodifythe impact ofquenched randomnesson thedynamicsof thespatial rock-paper-scissors
game, ifonlythepopulation can avoidfixation to a frozen state.

Nevertheless, protection spilloversdo affect thestationarystate in that sufficientlyrarevortices facilitate the
emergence ofcollectivesynchronization. Thiseffect is illustrated infigure8, wherewecompare the level of

Figure 6. The time evolution of thedensityofan arbitraryspecies(top panel), and the correspondingsnapshots of the square lattice
(bottom row), showinga characteristic evolution towards target waves with reversed propagation direction. Thesewavesare
practicallymovingbackward(towards the center), while the area occupied bytheseconcentricwavesexpandsgradually. Theonly
vortex that is initially located in themiddle of thebottom left quadrant of the lattice(seepanela) ultimatelyactsas thesink for the
waves, while the location where thewavefrontscollidedue to theperiodic boundaryconditions in the top right quadrantof thesquare
lattice acts like the source of the wavefronts. The stationarystate is not frozen as the timecourse in the top panelmightsuggest.
Instead, wavefrontsemerge continuouslyat the sourceand travel towards thesink, in thedirection that is opposite to the impression
onemight have ifsimply lookingat the snapshot from left to right. Thestrength ofannealed randomness isϑ�= �0.22, and for clarity,
we haveagain used a small square latticewith linear sizeL�=�120.
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synchronization in the rock-paper-scissors game, asobtained without and with protection spillovers. In the
latter case theapplied initial densityofvortices is low(vi = 0.001), wherefixation to a frozen state is thusvery
unlikely. Thepresented results indicatesclearlythat even a minute fraction of long-range linksevokesa
synchronized state, which wequantifybytheareaofcorrespondingclosed orbits(A) in the ternarydiagram(see
inset). In comparison, ifprotection spillovers arenot considered, there existsa critical valueofθ�= �θc�= �0.067,
which must be reached for oscillations to emerge[65]. Even ifwe use thesame initial conditions in theclassical
version of thegame, anyinitial deviations from thesimplexwill bedamped and thesystem ultimatelyreturns
back to thecenter of thesimplex for allθ�< �θc. Protection spilloverseffectively lower thiscritical value less than
0.001. Thiseffect can beunderstood ifwe consider the fact that vortices in the rock-paper-scissors game with
protection spilloversarefixed in spaceand incessantlyact as triggers ofsynchronization. Ifprotection spillovers
areabsent, thevorticesareno longer able to hold their position in a given spot of thepopulation since there is
nothingto prevent them from movingabout. Thismovement actsasan additional source ofnoise that hinders
theonset ofsynchronization, which can thus emerge onlywhen thecritical valueofθ�= �θc�= �0.067 isexceeded.

Figure 7. Theprobability to reach the frozen state(Φ f) in dependence on the initial densityofvortices(vi), as obtained for different
valuesofθthat determine thestrength ofquenched randomness(see legend). It can beobserved that themore thesquare lattice
approaches the regular random graph limit( 1q � ), themore frequent initiallyvortices need to be for thepropagatingwavesto
eventually terminate in a frozen state. In other words, the higher the randomness in the interactions, themore vorticesare initially
allowed for the system to still avoid a frozen state. Depicted resultsareaveragesover 104 independent runswith a linear system size
L�= �640.

Figure 8. Theareaof closed orbits(A) that correspond to stationarynon-frozen states in the ternarydiagram in dependenceon the
strength ofquenched randomness(θ), asobtained for the classical rock-paper-scissorsgame(open squares) and the rock-paper-
scissorsgamewith protection spillovers(filled squares). In the latter case, we haveused the initial densityof vorticesvi�= �0.001at a
linear system sizeL�= �1000. Although the impact ofquenched disorder is in principlesimilar in both studied versionsof rock-paper-
scissorsgame in that it promotes theemergence ofcollective synchronization in the system, the shift towards larger valuesofA
demonstratesclearlythat protection spillovers further enhance thiseffect. The inset shows thecorrespondingorbits in the ternary
diagram, as obtained atθ�= �0.01(solid red line),θ�= �0.03(dotted green line), and atθ�= �0.3(dashed blue line) in the rock-paper-
scissorsgamewith protection spillovers. Theareasof theseorbitsare marked byarrowswith the samecolor in themain panel.
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Lastly, we also consider the 1q � limit, where the initial densityofvortices in thepopulation can be
reasonablyhigh without thesystem beingdestined to a frozen state(seefigure7). Theobtained resultsare
summarized infigure9, where thearea ofstationaryorbits in the ternarydiagram(A) isplotted in dependence
on the initialdensityofvortices(vi). Given that thevalueofAdecreasesaswe increasevi, too manyvortices
evidentlyhinder theemergence ofcollectiveglobal synchronization. In fact, as thenumber ofvortices that are
fixed in space increases, so does thenumber ofpropagatingwaves. Sooner or later thesewavesmeet and collide,
which disturbs theemergence ofsynchronization.Moreover, the inset offigure9illustrates that not onlydoes
theamplitudeofoscillationsdecreases, but also so does their frequency. Therefore, the frozen state in thev 1i �

limit can beconsidered as thezero-amplitude infinite-period limit of thedepicted oscillations.

4. Discussion

Motivated bytheprecedingresearch ofKelsicet al�[25], who haveshown that theopposingactionsofantibiotic
production and degradation enablestablecoexistence, we haveherestudied the rock-paper-scissorsgamewith
protection spillovers in structured populations. Although the introduction ofprotection spilloversseems likea
relativelyminor amendment to themicroscopicdynamicsdescribingthe rock-paper-scissorsgame, the
consequences arequitespectacular. Dependingon the initial conditions, it iscertainlysurprisinghowlittleof the
original results that wereobtained with theclassical rock-paper-scissorsgame is recovered. Whilepropagating
wavesdominate in the later case, wehaveshown that in therock-paper-scissorsgame with protection spillovers
the initial presence ofvorticesplaysa keyrole. Moreprecisely, wehaveshown that thespatiotemporal dynamics
of thesystem isdetermined bythedensityof thesevortices,which mayultimatelytransform to frozen states, to
propagatingwaves, or to target waveswith reversed propagation direction. Since the initial densityofvortices
might becontrolled in experimental setups, our results thus reveala feasiblewayofprogrammingpattern
formation in microbialpopulations.

Wehavealso shown that annealed and quenched randomness in the interactionsamongspecieshavea
completelydifferent impact on thedynamicsofbiodiversity. Importantly, this isnot thecase for theclassical
rock-paper-scissors gameand related evolutionarygames that are governed bycyclicdominance, whereboth
sourcesof randomnesshavebeen shown to have thesameimpactin that theyevokesynchronized oscillations
amongthecompetingspecies[65,66]. For the rock-paper-scissorsgamewith protection spillovers, our research
reveals that, just like in theclassical version of thegame,quenched randomness facilitatescollective
synchronization in thepopulation, which manifestsasoscillationsofstrategydensities. Annealed randomness,
however, favors theemergence of target waves, but with a reversed propagation direction where thevortices
actuallyact assinks for thewavefronts. To thebest ofour knowledge, weareunawareofother systems, either
biological or chemical, that would exhibit this typeofspatiotemporal dynamics, i.e., target waveswith reversed

Figure 9. Theareaof closed orbits(A) that correspond to stationarynon-frozen states in the ternarydiagram in dependenceon the
initial densityofvortices(vi), asobtained in the rock-paper-scissors gamewith protection spillovers in the regular random
graph(θ= 1) limit with L�= �106nodes. The inset shows the time evolution of the densityofanarbitraryspecies, asobtained at a low
initial densityofvortices(vi = 0.02, solid red line) and at a high initial densityof vortices(vi = 0.4, dashed blue line). The areasof these
oscillations in the ternarydiagram are marked byarrowswith the same color in themain panel. These resultsdemonstratethat as the
initial densityofvortices increases(as weapproach the random initial state limit), not onlydoes theamplitude(and hence thearea in
the ternarydiagram;see main panel) decreases, but also that the frequencyofoscillations decreases(see inset). Accordingly, the frozen
state that isobtained at sufficientlyhigh valuesofvi can beconsidered as the zero-amplitude infinite-period limit of the oscillations
that are depicted in the inset.
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propagation direction, effectivelymovingbackward but looking like theyaremovingforward. In conclusion, we
haveshown that protection spillovers mayfundamentallychangethedynamicsofcyclicdominance in
structured populations, especiallyso under the impact ofannealed randomness.

Our resultshave important and far-reaching implications.Protection spilloversarecommon in microbial
populations, and it is in fact surprisingthat thishasnot received more attention in thepast. In thestandard
setup, each bacterial speciesmust protect itself from the toxin of itsvictim. For example, scissorsprotects itself
from paper’s toxin. Aneglected aspect of thisprotection is that it maybenon-excludable, meaningthat
protection mayspill over to other species[25,27]. Such transitivity in protection mayoccur ifa cell degrades the
antimicrobialsofacompetingspeciesbysecretingenzymesthat do the job externally, or bydeactivatingthe
competitor’santimicrobialsonce theyhave entered thecell[71]. Regardlessof thedetails, this reduces the
concentration of theantimicrobial in theenvironment, thusgivingrise to thehereconsidered protection
spillovers. Asargued alreadybyKelsicet al�[25], theseconsiderationshavedirect relevance for engineering
multi-speciesmicrobial consortia and shed light on thedynamicsofbiodiversity in populations that are
governed bycyclicdominance. Beyond microbialcommunities, cyclicdominance playsan important rolealso
in marinebenthicpopulationsand plant systems, and the list ofexampleswhere thepuzzle ofbiologicaldiversity
can beexplained bycyclical interactions in thegoverningfood webs is indeed impressively longand inspiring
[61,72]. Timewill tell in which examplesprotection spilloversplaya keyrole. Based on thepresented results,
however, it iscertain that their impact isgoingto bea significant one, but also that reverse engineeringthis
impact might bea difficult proposition.
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