IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Vortices determine the dynamics of biodiversity in cyclical interactions with protection

spillovers

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 New J. Phys. 17 113033
(http://iopscience.iop.org/1367-2630/17/11/113033)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 84.0.191.247
This content was downloaded on 01/01/2016 at 17:08

Please note that terms and conditions apply.




10P Publishing

@ CrossMark

CPENACCESS

RECEIVED
10 August 2015

REVISED
50ctober 2015

ACCEPTED FORPUBLICATION
26 October 2015

PUBLISHED
16 November 2015

Content from thiswork
maybe used under the
termsoftheCreative
Commons Attribution 3.0
licence

Anyfurther distribution of
thiswork must maintain
attribution to the
authols) and thetitle of
the work, journal citation
and DOL.

NewJ Phys 17(2015 113033 doi:10.10881367-263017/ 11/ 113033

- O ATy e Published in partnership
New journal Of PhYSlcs e ezt h"(I)DPG with: Deutsche Physikalische
0P Institute of Physics | Gesellschaftand the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

\ortices determine the dynamics of biodiversityin cyclical
interactions with protection spillovers

Attila Szolnoki'and Matja& Perc-**°

 Institute of Technical Physics and Materials Science, @&t Energy Research, Hungarian Academy of Sciences, R@B#1-1525
Budapest, Hungary

2 Faculty of Natural Sciences and Mathematics, Universiiarfibor, Koraka cesta 160, SI-2000 Maribor, Slovenia

3 Department of Physics, Faculty of Sciences, King Abduldriwersity, Jeddah, Saudi Arabia

4 CAMTP—Center for Applied Mathematics and Theoretical Physicsyehsity of Maribor, Krekova 2, SI-2000 Maribor, Slovenia

5 Author to whom any correspondence should be addressed.

E-mail:szolnoki@mfa.kfki.niandmatjaz.perc@uni-mb.si

Keywords: evolutionary game theory, cyclical interactippattern formation

Abstract

Ifrock beats scissors and scissors beat paper, one migimhashat rock beats paper too. But thisis
notthe case for intransitive relationships that make ufeime@us rock-paper-scissors game.
However, the sole presence of paper might prevent rock fremtitg scissors, simply because paper
beatsrock. Thisisthe blueprint for the rock-paper-scsgame with protection spillovers, which has
recentlybeen introduced asanew paradigm for biodivarsitill-mixed microbial populations.
Here we studythe gamein structured populations, demdirgithat protection spillovers give rise
to spatial patternsthat are impossible to observe in tissickl rock-paper-scissors game. We show
that the spatiotemporal dynamics ofthe system is detemhiigehe density of stable vortices, which
may ultimatelytransform to frozen states, to propagatiages, or to target waves with reversed
propagation direction, dependingfurther on the degreéypeabfrandomnessin theinteractions
amongthe species. Ifvortices are rare fikaion to waves and complex oscillatory solutionsis
likelier. Moreover, annealed randomnessin interactiauats the emergence oftarget waves, while
guenched randomnessfavors collective synchronizatianr€sults demonstrate that protection
spillovers may fundamentally change the dynamics of cgidiminance in structured populations,
and theyoutline the possibility of programming pattermiation in microbial populations.

1. Introduction

Cyclicalinteractions are at the heart of marine benthiagatong 1], plant systemg—5], and microbial
population§6-11]. Cyclicdominance also plays an important role in the oveng of marine sessile
organism$17], the mating strategy of side-blotched lizafilg, the genetic regulation in the repressildtof],
and in explainingthe oscillations ofthe population sizenfmingq15] and the Pacic salmor{16]. More
generally, evolutionary games entailing cyclicdomingpleg a prominent role in explaining biodiversity
[17-27],and theyare also able to provide insights into Darwiniggcsen[28], structural complexit{29], and
prebiotic evolutior{30], as well as into the effectiveness of positive and negagisiprocity{ 31], volunteering
[32,33, rewardind 34, 35, and punishmer82, 36-39], to name but a few representative examples.

In agreement with the impressive implications fundamemis@arch on cyclical interactions has, it is little
surprisingthat the classical rock-paper-scissors gathe workhorse for research on cyclicdominandeas
been studied so extensively, not least by methods of statighysic§40-58], which are indispensable for a
comprehensive treatment ofthe game and its extensionsictsted populations. Although the rules ofthe
game can be written down in ashort sentence, the compldsipatial patternsthat emerge spontaneouslyasa
consequence ofthe simple microscopic rules is unpardlliegdyrinthine clusterinfp9 and interfaces with
internal structurgs(] are just two ofthe most intriguing recent examples attgstirihis fact.
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Despite the overwhelmingattention the rock-paper-scggme has receivgdl], thereisoneimportant
aspect ofthe game that hastillrecently been overlookguiticular, while the direction ofinvasion between
the rock, the scissors and the paper isintransitive, angldtrductive to species coexistefie® 63], this may
not bethe case for the protection one species offers to biee.dfone considersthe game not from the
standpoint ofdominancein that rock iswrapped by papefepagput by scissors, and scissors are broken by a
rock, but rather from the standpoint of survival in thatseis protect itself from papaitoxin, paper protects
itselffrom rockstoxin, and the rock protect itselffrom scissstexin, then one quickly comesto realize that
such protection maybe non-excludable, and that in fachispdl over to the other strategy. Motivated bythis
important consideration, Kelsital[]25] have recentlyintroduced cyclical interactions with pobiten
spillovers as anewparadigm for biodiversityin well-mixaérobial populations. By using simulations and
analytical models, they have showthat the opposing actibargtibiotic production and degradation enable
coexistence even ifthe interactionsamongthe cyclicalipohating species arerandom. In acommentaryto the
original paper, Bergstrom and Kde7] have generalized these results to the classical rock-gsmgsors game
in awell-mixed population, revealing a stable, attraatiailibrium containing all three speciesifthe possipilit
isgiven that a predattepredator can protect the preyofthe former.

However, since interactionsin microbial populations dreronot randonfi7, 11, 2], itisimportant to
determine the merits of protection spillovers also in dinued populations. We therefore studythe rock-paper-
scissors game with protection spillovers on the squaiiedatith annealed and quenched randomness. In a
structured population, the sole presence of rock mightgariescissors from beating paper, simplybecause rock
beats scissors. Aswe will show, this seemingly small rfication of the microscopic dynamics has rather
spectacular consequences for the collective behavioeafistem. Unlike in the classical rock-paper-scissors
game, herethe spatiotemporal dynamics is determined lo\gtisity of stable vortices, which may ultimately
transform to frozen states, to propagatingwaves, or tetavgves with reversed propagation direction. Since
the initial density of vortices is controllable in experimal setups, like for example in a Petridigfipor in
bacterial biailms[64], our results thusreveal a feasible way of programming paftemation in microbial
populations. Different from the classical rock-papeisseis game, where we can observe globally synchronized
oscillationsin the frequency of strategies as we incrdestetel of randomnegsither quenched or annea)ed
here the consideration ofthese two different types of ramaless can be a decisive factor that determinesthe
evolutionary outcome. As we will show, annealed and quethchirdomness have a completely different impact
on the emergence of stable spatial patterns, thus demtingtifaat protection spillovers may fundamentally
change the spatiotemporal dynamics of cyclic dominandeurttired populations.

The organization of this paper is as follows. We present ghiaition of the spatial rock-paper-scissors game
with protection spillovers and the details of the Monte @afinulation procedure in sectidh Main results are
presented in sectioB. We conclude with the summary ofthe results and a discussibreir implicationsin
section4.

2. Rock-paper-scissors with protection spillovers

We consider amofiied version ofthe classic rock-paper-scissors game, whetbtee species cyclically
dominate each other. For convenience, we refer to the seleP andS where strategirinvades stratedy
strategySinvades stratedy, and strategPinvades stratedy. However, due to the consideration of protection
spillovers, these invasions occur onlyifnone ofthe dingitthbors ofthe preyis a predator to the original
predator. For example, rockisunable to invade scissongibdthe direct neighbors ofthe scissorsis paper.
Similarly, scissors are unable to invade paper if one of tteztineighbors of the paper isrock, and paper is
unabletoinvaderockifone ofthedirect neighbors ofth&oe scissors.

The described rock-paper-scissors game with protectiiovars is studied in structured populations.
Each speciesisthuslocated on thesitéa square lattice with periodic boundary conditions, wtbe grid
containd[x [L sites. In addition, we also explore the impact of disord&ictvhas proven to be a decisive factor
in the classical rock-paper-scissors gd6t66]. In particular, the introduction of structural randomrzss
trigger a global oscillatory state, which isimpossiblebserve in the absence oflong-range interactions.
Interestingly, previous research on the classical rogiepacissors ganjés, 66] has emphasized that the type
ofdisorder by means ofwhich long-range links are introdiitas only second-order importance, given that
both annealed and quenched randomness have a qualitsitivédy impact on pattern formation. However,
the introduction of protection spillovers may sigjoantly affect the dynamics of cyclic dominari@é], which is
whywe here consider theimpact ofannealed and quenchedmameks separately. As pa@lof figurel
illustrates, annealed randomnessisintroduced so thatlairstance of the game a potential target for an
invasion is selected randomly from the whole populatiomitobabilityd, while with probability 1+ (S the
invasion isrestricted to arandomly selected nearest heigh5, 66]. ForSr= 1 we thus obtain well-mixed
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(b)

Figure 1. Schematicillustration of annea(tdt) and quenchetight) randomness. Annealed randomness preservesthe regular
interaction structure, but a player mayinvade arandondgeh distant player with probabili§(denoted by adashed green line
while with probability 1+ (8 the invasion remains bounded to nearest neighbors. Quénahdomness requires that a fractéwf
nearest-neighbor linKslenoted bylight grey lingss rewired randomIydenoted bythin green lingsllthe while preservingthe

degree ofeverynode. Thisinteraction structure does restghover time, and so the invasions can occur onlyvia thilypar
(depending on the value Bfrandomized interaction network.

conditions, while foR= [0 only short-range invasions alongthe original square&ititeraction structure are
possible. Quenched randomness, illustrated in gaheffigurel, isintroduced by randomlyrewiringa
fractionBofthelinksthat form the square lattice while preserviredlegree of each site. We thereby obtain
regular small-world networks for small valueiand aregular random networkintbel  linit.

Importantly, therewiringis performed only once beforesteat ofthe game, thusintroducing quencfttede
invarian) randomnessin the interactions amongthe species.

The evolution of species proceedsin agreement with a rarsgégonential update, where during a full Monte
Carlo stedMCS every player receives achance once on average to invadamdemly selected neighb¢or
anymember ofthe population with probabil@yn case annealed randomnessis consigeasdllowed bythe
rules ofthe game. The average fraction of r¢mQ, paper(pp), and scissorgg) in the population is monitored
duringthe whole evolutionary process. We have systenligiégaplied different system sizesrangingfrom
Lr=r40toL =1 000to reveal the possible size-dependence ofthe obsalkeibns. When determiningthe
fixation probability, we have averaged the outcome over 10@pendent runs. The monitoringtime, which
exceeded 1QMCSfor the largest system size, was always chosen to besa B@times longer than the longest
measuredixation time.

3. Results

Before presentingthe main results, we biyieontemplate on the potentialimpact of protection spdteim
cyclicalinteractions. Foremost, it isimportant to notattthe introduction of protection spilloversraises an
interesting dilemmacthat is otherwise absent in the clalsgcsion ofthe rock-paper-scissors game. Namely, the
‘spillover protectorofa speciesis simultaneously also its prey. Thus, eachdimirevasion is made, the invading
species potentialfalthough not certainly because there may be other instafitessame preyin the
neighborhoojllooses the ben of spillover protection. The predator is thus faced withiféicult choice.
Perhapseven morefrustratingly, the predator is unablett@ly make a choice. The invasion will go forward
with certaintyifonlythe preyis not protected b\spillover protector. Thisdilemma s a good indicator ofthe
fact that a correct intuitive anticipation oftheimpact obfection spilloversis not at all trivial.

Regardingthe potentialimpact ofannealed and quenchebraness, previous research has revealed that
both sources ofrandomness have the same impact on cyatiectionsin that they evoke synchronized
oscillationsamongthe competing spe¢iEs 66]. As we will showin the following subsections, this concegdtu
similarity no longer exists if protection spillovers ar¢rinduced.

3.1. Evolution on the square lattice

We begin by presenting the main results obtained on the edattice in the absence of both annealed and
quenched randomness. Titrst key fact isillustrated in the four snapshots that aréadeg infigure2, which is
that the initial state determines signantly thefinal outcome ofthe game. More precisely, iftthe rock-paper-
scissors game with protection spillovers is launched vettdom initial conditions, as shown in the top left
panel, then the population terminatesrather quickly imzeh state, as shown in the top right panel. It can be
observed at a glance that both thetigaration and the density ofthe three competing speciesngmnactically
unchanged duringthe evolution. Of course, once the fraz¢aisreached, the invasions seize completely. On
the other hand, ifthe game isinitiated with prepared indbaditions, as shown in the bottom left panel of
figure?, then the propagatingwaves emerge that are qualitatdettical to those that have been observed so
often in the classical spatial rock-paper-scissors déjefor the corresponding movie sg&/) . The crucial
propertythat characterizes the special initial condibawn in the bottom left panelis that it contains two
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Figure 2. Snapshots ofthe square lattice, showing a cleaiigtat evolution as obtained from arandom initial s{ao@ row) and from
aprepared initial staf@ottom row. Ifinitially all three species are distributed uniformirandom, as shown in the top left panel, the
system quickly evolvesto an almost unchanged frozen@tgieight panélwhere invasions no longer occur. However, ifwe use
specialinitial conditions whereinitially there are onka vortex-antivortex pair@ne in the middle and the rest at the edge ofthe
lattice due to periodic boundary conditignas shown in the bottom left panel, the system evolves intetve stationary state that is
characterized by propagating waeettom right pangl These propagatingwaves are much the same as those we eavedbshe
classicrock-paper-scissors game. Interestingly, imall iepicted snapshotsit holds tipat= [pp = [pd = [1/ 3, yet the stationary
realization ofthis biodiversity s lastly very differerior clarity, we have here used a small square lattice witalirsize = 120.

-

Figure 3. Two possible realizations of a frozen state, a@inbt on &/ x [L[=[3 x [3square lattice with periodic boundaryconditions.
Dueto theintroduction of protection spillovers, the dégdacoriiguration of species in both cases mutually prevents sufatess
invasions of other species. These tildt) and axialright) stripes are the fundamental building blocks of frozen stiatkarge
populations.

vortex-antivortex pairs, one vortex in the middle of théita, and the rest of the vorticeslocated at the edge of
the lattice due to periodic boundary conditions. Thesdaestct as sources for the propagating waves, as can be
deduced clearly from the stationary state that is depicttud bottom right panel afgure2. We emphasize that
PrE [pp = [pd =1/ 3holdsfor all four depicted snapshots, and that thus all$tates are represented by the
same pointin asimplex. Evidently, thisillustrates tha&itbpresentation ofthe actual state in a simplexis not
always satisfactory for a spatial system. But more impdhgame equality ofthe density of species in both
stationary states indicates that the biodiversity in thokfpaper-scissors game with protection spillovers can be
realized in very different ways.

To better understand and explain the two sigantly different evolutionary outcomes depictedigure?2,
we present imigure3 two simplelL[x [L[= [3(x [3 corfigurations in which thereisno invasion between the
species due to the mutual protection between predatorpaiey Ifwe check the depicted cigurations
carefully, it can be observed that a predator cannot invag@hboring preybecause there isalways a
predatof(s) predator in the neighborhood ofthe prey, and who thus prstiee prey due to the consideration
of protection spillovers. These ctigurations represent axial or tilted stripes, which arealstthe building
blocks offrozen states also in much larger populationsldaily, arandonidistribution of species can also
yield afrozen state, asitisillustrated in the top rowigdire2, but such an outcome requires manyvortices be
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Figure 4. Snapshots ofthe square lattice, showing a cleaiigtat evolution towards a frozen state from left to rigigtpbtained from

an initial corfiguration containing several vortices. While each vortgoientially a source of propagating waves, once these waves
emerge theycollide, eventuallyleadingto the formatioam&atively small frozen patdisee paneljwhich ultimately growsto
occupythe entire lattice. For clarity, we have here usedal sauare lattice with linear sitex (120, with 80 vortices inserted at
random. Technically, we have inserted 80 pairs of the twoisp@ellow and blugthat are different from thdackgroundspecies
(red). Here the frozen state isreached within 600 MCS.

presentin theinitial distribution ofthe specfesa fully random initial distribution, as is depicted in tio@ left
panel ofiigure?).

The crucial role ofthe initial density of vortices for thieal outcome ofthe gameisillustratedigure.
Unlikein the bottom left panel afgure?, where only a fewvortices are initially present, we nowiaté the
game with manymore vortices initially presentin the popata As panel(a) of figure4 shows, we initially have
ahomogeneous state in which 80 vortices are inserted umlif@t random. These vortices all serve as potential
sources of propagatingwaves, and indeed many do nufeatbe corresponding movie sg&) . The critical
point of evolution occurs when arelatively small frozenghegmerges, asillustrated in paifie). We emphasize
that the pattern in the frozen patch isinitiallyidenticaitie one that is depicted in the left paneligéire3. In
fact, such frozen patches typically emerge when propageiive collide and give rise to sizable patchesthat are
made up of stable patterns shownigure3. During the course of evolution the area that is occupiedibly s
stable patches grows, as shown in pgiagiwhile the areawhere invasions are still possible shrinkideecomes
limited to smaller and smaller adjacent domains. Evenges#in the last remaining active areas, as shown in
panel(d), becomefrozen to yield tHanal frozen staténot shown irfigure3, but can be seen in the
correspondingmovigg) . The latter is made up of a mixture offundamental frozenguag that are shown in
figures.

Evidently, the emergence ofviable frozen domains thattasleta grow depends sensitively not just on the
number, but also on the initial distribution ofthe vorticEsefinal outcome could be different even ifwe start
with the same number of vortices, because their proximityerattice could be a decisive factor aswell.
Accordingly, the emergence of frozen states is a stochasiaess. The probabilityto reach the frozen statg
in dependence on the initial density of vorti¢e}is illustrated infigure5, while the inset shows the scaled
version of curvesto thereference systemisize [40. The depicted resultsindicate that the population besom
more and more sensitive to the initial presence of vortisegdancrease its size. More precisely, the initial
density of vorticesrequired to reatikation decreases as we increase the system size. This cotuitae
phenomenon isrelated to the application of periodic bomnetanditions. In particular, the vortices serve as
permanent sources of propagating waves, and if the systens small, then a spéa source can easilyinteract
with its virtual‘cloné due to periodic boundary conditions. The real and virtuaises emit waves
synchronouslywhich prevents blocking of akin propagatiages. Accordingly, we need arelatively larger
number ofvorticesto readtxation here. Naturally, this effect becomes weaker as vargathe system size,
and thusfewer initial vortices stie to reach the saniation probability. On the other hand, we notethat a
‘non-frozenstate actually correspondsto a stationary state with eslgiemerging propagatingwaves, rather
than afailure on our side to wait sidiently longfor the system to get trapped in afrozen stasttd illustrate
thisfact, a system with linear size= [80 size remains in the active state upt® 4.0° MCS. While there is of
course dluctuation about theixation time havingnormal distribution, the monitoringitime was always at
least 100timeslonger than the longest obsefadion time.

3.2. Evolution on the square lattice with annealed rand@sne

Wefirst consider theimpact of annealed randomness on the dgaaftiodiversity in the studied rock-paper-
scissors game with protection spillovers. As describe@ati@ll, duringeach instance ofthe gamethereis
thus a probability that a potential target for invasion will be selected fromwhole population rather than
from the nearest neighbors of a square lattice. In the cldssick-paper-scissors game, the introduction of
annealed randomness evokes a synchronized state whesnsitiad of species oscillate in tirfreote that these
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Figure 5. The probabilityto reach the frozen s{atg in dependence on the initial density of vorti¢e} as obtained for different
system sizefsee legeny It can be observed that the smaller the system size, thefnegreent initially vortices need to be for the
propagating wavesto eventually terminate in afrozen stateinset shows the scaled version ofthe curves depicte@ imain panel
to the reference system sizg= [40. Depicted results are averages ovéiin@ependent runs.

oscillations are absent in the absence of annealed randsgritee amplitude ofthese oscillationsincreased as
weincreas®, and at a critical value the system terminatesinto an abspphase where a single species
surviveg 65, 66].

In the rock-paper-scissors game with protection spillstlee impact ofannealed randomnessis
significantly different. If we start with an initial condition wheall three species are distributed uniformly at
random, then the population again, as on the square lagiceinates rather quickly in afrozen stédee top
row offigure?). Here the value & plays a negligible role. In exploring other initial conditis, wefind that the
keyfactor is again the density of vortices that are initiptiesent in the population. Ifthe vortices aremigntly
common the frozen state is practically unavoidable, andaeddery similafixation curves can be obtained aswe
have shown for the original square lattice topologygures. This behavior can be observed regardless ofthe
strength ofannealed randomn@sklowever, ifthe vortices areinitially rare, the non-froztate is sigriicantly
different from the propagating waves depicted in the bottigimt panel ofigure2.

Tolllustrate what happens and to explain the origin of tiifexdince, we monitor the evolution ata
representative value 8f+ (0.22 from a prepared initial state, where only a single vagmitially present in the
population(for the corresponding movie &) . The relatedigure6 shows howthe fraction ofan arbitrary
speciegtop panéland the spatial distribution of specie®ttom row evolve. In panéla) the vortexisinitially
placed at the center ofthe bottom left quadrant of the sdatii®e. Similarlyasin the random-free case, this
vortexfirst serves asa source of propagatingwaves. The expanstominitial waves can be observed in
panels(b) and(c). The background, however, changes intensively, whicleig#il-known consequence of
synchronization that emerges due to the introduction ogaled randomness. Acrucial difference here isthat
the presence ofthe vortex does not allowthe system to tatainto ahomogeneous, absorbingphase. We note
that the system would in fact be in an absorbing phase at duigh alue of in the classical rock-paper-
scissors game, asillustratedigure 5 of[65]. In the present case, however, the vortex behavesiike@point
whose position does not change in time because neitherstearalistant neighbors are able to invade the
specieswho form the vortex due to protection spilloversit@arant them mutualimmunity.

Astime goes by, target waves emerge asillustrated in gahedfigure6. It is easyto seethat the
configuration of species within these waves s practically iciahto the fundamental building blocks of frozen
states that we have shownfigure3. Accordingly, thisstripe-liké targets are stable against the invasion
attempts of far-away other species, which happens fretyusmtonzero values &f. Interestingly, and unlike in
the absence ofannealed randomness, however, these tavgstde not represent frozen states. Instead, the
depicted target waves propagétegardsthe vortexin the bottom left quadrant of the lattice. Whesytarrive
atthe vortextheysimplyvanish. More precisely, the vopesmanently erodes the nearest locallyhomogeneous
wavefront, which resultsin acontinuous shift of the stsifmvard the center ofthe vortex. The vortexthus acts
like a sink for the target waves, and its position never ckeaoger time. We note that the reversed propagation
direction ofthe target waves can be inferred from the snatsdiecause the order of colors, and hence ofthe
species, is different from the order in the propagatingtfrdhis‘dynamically stabledlomain around the vortex
willgrowth untilit reachesthe frontier ofa similar domgin panel(e) the domain actually meetsitselfdue to
the periodic boundary conditionsn contrast to therandom-free case, herethe areain thdledtthe upper
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Figure 6. Thetime evolution ofthe density of an arbitramg@pqtop pané€), and the corresponding snapshots ofthe square lattice
(bottom row}, showing a characteristic evolution towards target wavsneversed propagation direction. These waves are
practically moving backwar(towards the cent@rwhile the area occupied by these concentric waves expaadsaly. The only
vortex that isinitially located in the middle of the bottosftlquadrant ofthe lattiogsee paneljaultimately acts as the sink for the
waves, while the location where the wavefronts collide @b é periodic boundary conditionsin the top right quadcdtiie square
lattice acts like the source ofthe wavefronts. The statipstate is not frozen as the time course in the top panel rsigigest.

Instead, wavefronts emerge continuously at the sourcerauel towards the sink, in the direction that is oppositéimpression
one might have if simplylooking at the snapshot from leftight. The strength of annealed randomnessis 0.22, and for clarity,

we have again used a small square lattice with lineat sizel 20.

right quadrant ofthe lattice, where there ig@d’ between the target wave domains, changes color periadicall
duetotheinvasions from distant si{edich is made possible by annealed randomnassl thus actslike the
source ofthe waves. The wavefronts travel outward to jo@rtahget wave domains, and then continue towards
the center ofthe vortex which acts astheir sink. In everelgpgpulations, it is possible that more than one such
source-sink pairsemerge, resulting in a dynamically stahttern where the frequencies of allthree species are
equal at alltimes. Arepresentative evolution for the fatése can be seen in the madvi€].

3.3. Evolution on the square lattice with quenched rand@sane

An alternative way ofintroducingrandomnessin the intéoas amongthe speciesis byrandomly rewiring a
fractionBofthe linksthat form the square lattice, whereby we obtegutar small-world networks for small
valuesoBand aregular random networkinthel linit [65, 66]. Since the interaction topology does not
change over time, this setup correspondsto quenched rameksm

Asin all previously considered cases, here too a randormlisifite terminates quickly in afrozen state, and
theinitial fraction of vortices in the population is a keyeleninant of the spatiotemporal dynamics that
subsequentlyemerges. The more frequent the vorticeskdlied the population willterminate in a frozen state.
Unlike byannealed randomness, however, here the vaBgays an importantrole in determiningthe
conditionsthat lead ttixation. Thisfactisillustrated ifigure7, where we show thixation probability in
dependence on the initial density of vortices for diffeneaities oB. The presented resultsindicate that the less
ordered theinteraction structure, the less likely igtkegion to a frozen state. Importantly, we emphasize that,
eveninthen = 1imit, when the strength of quenched randomness is maxeoaipletely random initial
conditionswill stillinevitablyfixate to a frozen state.

On theother hand, ifinitially the vortices are only few ahd system is hence able to avaikhtion, then the
resulting spatiotemporal dynamics is sigrantly different from the one depictedfiguret for annealed
randomness. Similarly asin the classical version of thieaper-scissors game without protections spillovers
[65], in this case collective synchronization amongthe speaes ges, yielding oscillations of their densities, or
equivalently, a periodic orbit in the ternary diagram. Titeeduction of protection spillovers thus does not
qualitatively modify theimpact of quenched randomnes$s@uinamics ofthe spatial rock-paper-scissors
game, ifonlythe population can avdistation to afrozen state.

Nevertheless, protection spillovers do affect the statigstate in that stitiently rare vortices facilitate the
emergence of collective synchronization. This effechisitated irfigure8, where we compare the level of
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Figure 7. The probability to reach the frozen s{at@ in dependence on the initial density of vorti¢e$ as obtained for different
values oBthat determine the strength of quenched random(sesdegeny It can be observed that the more the square lattice
approachestheregular random graph litait! 1),the morefrequentinitially vortices need to be for the @gating wavesto
eventuallyterminate in afrozen state. In other words, thledr the randomnessin the interactions, the more voriegsitially
allowed for the system to still avoid a frozen state. Depictsults are averages ovef iflependent runs with a linear system size
L'=1640.
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Figure 8. The areaof closed orb(fy that correspond to stationary non-frozen states in thatgiagram in dependence on the
strength of quenched randomn@sas obtained for the classical rock-paper-scissors gapen squargsind the rock-paper-
scissors game with protection spillovéfiied squares In the latter case, we have used the initial density of gestj = [0.001 at a
linear system size =1000. Atthough the impact of quenched disorder isin priteggpnilar in both studied versions of rock-paper-
scissorsgamein that it promotesthe emergence of cobeggichronization in the system, the shift towards largeregsofA
demonstrates clearlythat protection spillovers furtimdras ce this effect. The inset shows the correspondingsantibe ternary
diagram, as obtained @t= [0.01(solid red ling, 8= [0.03(dotted green lingand ab = [0.3(dashed blue linegn the rock-paper-
scissors game with protection spillovers. The areas oétbsts are marked by arrows with the same color in the maiepa

synchronization in the rock-paper-scissors game, asurdaiithout and with protection spillovers. In the
latter case the applied initial density of vortices s [ew= 0.001), wherefixation to a frozen state isthus very
unlikely. The presented resultsindicates clearly that euminute fraction oflong-range links evokes a
synchronized state, which we quantify by the area of comedmg closed orbitgd) in the ternary diagrarfsee
insed. In comparison, if protection spillovers are not considetkere exists a critical value 6f= (6,/= (0.067,
which must be reached for oscillations to emédfgg. Even ifwe use the same initial conditionsin the classical
version ofthe game, anyinitial deviations from the simpiddoe damped and the system ultimately returns
backto the center ofthe simplex for @lk [B.. Protection spillovers effectively lower this criticalua less than
0.001. This effect can be understood ifwe consider thelfadttortices in the rock-paper-scissors game with
protection spillovers arixed in space and incessantly act astriggers of synchrdomzétprotection spillovers
are absent, the vortices are no longer able to hold theitippn a given spot ofthe population since thereis
nothingto prevent them from moving about. Thismovemergasan additional source of noise that hinders
the onset of synchronization, which can thus emerge onlpwihecritical value o8= 0/% (0.067 is exceeded.

8



10P Publishing

NewJ Phys 17(2015 113033 ASzolnokiand M Perc

e

=] 1.0 ——————— |

w
08} 0.8f 1
n
06 r .\! 0.4 N | Lt T
= I Y 0.2 |

04} . ;

I \\ 004 200 400 600-
02t AN time [MCS]

- .\.77 ~m— -
0.0 L L L L L L |7 7171:7.717'

0 0.1 0.2 0.3 04 0.5

Vi

Figure 9. The areaof closed orb(fg that correspond to stationary non-frozen states in thatgiagram in dependence on the
initial density of vorticegv;), as obtained in the rock-paper-scissors game with protesilloversin the regular random

graph(8 = 1) limitwith L'= (1P nodes. The inset shows the time evolution ofthe density afhitrary species, as obtained at a low
initial density of vorticegv; = 0.02, solid red linand at a high initial density of vorticég = 0.4, dashed blue lineThe areas ofthese
oscillationsin the ternary diagram are marked by arrowls thie same color in the main panel. These results demongiedzs the
initial density of vortices increaséas we approach the random initial state ligritot onlydoes the amplitudand hence the areain
theternarydiagram; see main pgriscreases, but also that the frequency of oscillation @dsegsee insét Accordingly, the frozen
state that isobtained at sicfently high values of; can be considered as the zero-amplitudmite-period limit of the oscillations
that are depicted in the inset.

Lastly, we also consider theel1 1limit, where theinitial density of vortices in the poputattican be
reasonably high without the system being destined to arfrstzeseefigure7). The obtained results are
summarized imigure9, where the area of stationary orbits in the ternary diagr@is plotted in dependence
on theinitial density of vortice;). Given that the value & decreases as we increas¢oo manyvortices
evidently hinder the emergence of collective global syodiiwation. In fact, asthe number of vorticesthat are
fixed in space increases, so doesthe number of propagatieg\&aoner or later these waves meet and collide,
which disturbsthe emergence of synchronization. Morgakerinset ofigure9illustratesthat not only does
the amplitude of oscillations decreases, but also so deeditequency. Therefore, the frozen state inthe 1
limit can be considered asthe zero-amplitudaite-period limit ofthe depicted oscillations.

4. Discussion

Motivated bythe precedingresearch of Ketia([25], who have shown that the opposing actions of antibiotic
production and degradation enable stable coexistencegweditere studied the rock-paper-scissors game with
protection spilloversin structured populations. Althbulye introduction of protection spillovers seemslike a
relatively minor amendment to the microscopic dynamicsides g the rock-paper-scissors game, the
consequences are quite spectacular. Depending on tla¢dénitiditions, it is certainly surprising how little ofthe
originalresults that were obtained with the classical rpaker-scissors game isrecovered. While propagating
waves dominatein the later case, we have shown that in tkerager-scissors game with protection spillovers
the initial presence of vortices plays a key role. More madgj we have shown that the spatiotemporal dynamics
ofthe system isdetermined bythe density of these vortideish may ultimately transform to frozen states, to
propagatingwaves, or to target waves with reversed praijpagdirection. Since the initial density of vortices
might be controlled in experimental setups, our results tbueal a feasible way of programming pattern
formation in microbial populations.

We have also shown that annealed and quenched randomrtessiteractions among species have a
completelydifferent impact on the dynamics of biodiverdinportantly, thisis not the case for the classical
rock-paper-scissors game and related evolutionary gdratarte governed by cyclicdominance, where both
sources ofrandomness have been shown to have the sameimtpatthey evoke synchronized oscillations
amongthe competing specjés, 66]. For the rock-paper-scissors game with protection sgllepour research
revealsthat, just like in the classical version ofthe gagmenched randomness facilitates collective
synchronization in the population, which manifests adlaticins of strategy densities. Annealed randomness,
however, favors the emergence oftarget waves, but withemsed propagation direction where the vortices
actually act as sinks for the wavefronts. To the best of oomkedge, we are unaware of other systems, either
biological or chemical, that would exhibit this type of Soé¢mporal dynamics, i.e., target waves with reversed
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propagation direction, effectively moving backward butking like theyare movingforward. In conclusion, we
have shown that protection spillovers mayfundamentaliyce the dynamics of cyclicdominancein
structured populations, especially so under the impactioéaled randomness.

Our results have important and far-reaching implicati®netection spillovers are common in microbial
populations, and itis in fact surprising that this has noéied more attention in the past. In the standard
setup, each bacterial species must protect itself fronobhie bfits victim. For example, scissors protectsitself
from papetstoxin. Aneglected aspect of this protection isthat it magbn-excludable, meaning that
protection may spill over to other speci&s, 27]. Such transitivity in protection may occur if a cell degraties
antimicrobials of acompeting species by secreting enzyhatslo the job externally, or by deactivating the
competitots antimicrobials once they have entered thg ¢éJl Regardless of the details, thisreducesthe
concentration ofthe antimicrobial in the environment ghiving rise to the here considered protection
spillovers. Asargued already by Kelst@l[[25], these considerations have direct relevance for engimgeri
multi-species microbial consortia and shed light on theayits of biodiversity in populationsthat are
governed by cyclicdominance. Beyond microbial commusitigclicdominance plays an important role also
in marine benthic populationsand plant systems, and tiaf Bxamples where the puzzle of biological diversity
can be explained by cyclical interactionsin the governangifwebs isindeed impressivelylongand inspiring
[61,72). Time willtellin which examples protection spillovers pkkey role. Based on the presented results,
however, it is certain that their impact is going to be a sigant one, but also that reverse engineering this
impact might be a difcult proposition.
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