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ABSTRACT 

 
Electrospinning is a very popular technology nowadays for the production of different nanofiber structures. 

Instead of mechanical forces, electrostatic ones are applied for drawing the fibers. The low viscosity of the 

polymer solution and the high electric field strength makes available to produce fibers with a diameter 

typically between 50-500 nm. There are many other factors that affect the fiber formation, such as ambient 

conditions, electrode configuration including the distance of the electrodes, the surface tension and the 

electric conductivity of the liquid, etc. 

There are many studies which try to give a theory for the correlation of the different parameters and the 

fiber morphology, but these are rather special experimental results than universal laws. There are fewer 

studies in the literature on the effect of the electric field distribution and other setup-related parameters. 

Because of the many stochastic parameters, electrospinning technique is still based on "trial and error" 

approach.  

A novel method making possible a high throughput nanofiber production was invented and patented. Our 

aim is to investigate the deposition of nanofibers and also try to determine the areal distribution in case of 

the new technique. Finite element analysis gives a hand to study the electric field distribution for different 

electrospinning configurations and electrode geometries. Moreover it makes possible to analyze the local 

electric field strength hence the efficiency of fiber production can also be studied. 

 

 

1. INTRODUCTION 

 

Electrospinning has gained a high interest in the last two decades as this technique offers a 

simple method for producing polymer nanofibers. By adjusting the material and processing 

parameters a wide range of fiber diameters can be achieved typically between a few tenths of 

nanometers and a few microns. 

The typical electrospinnig configuration works with a simple spinneret: a small metal 

capillary. It is connected to a high voltage power supply. The material, destined to be spun, is 

usually a polymer solution and is continuously fed through the capillary. When starting the 

process the solution forms a small droplet at the tip of the capillary. After switching the power 

supply on, the charges are flowing onto the surface of the (conductive) droplet. As there is a 

high charge concentration at the surface, the droplet is deformed to a conical shape also 

known as Taylor-cone. After reaching a specific limit a thin jet is emerged from the tip. The 

evolved jet travels to another electrode, so-called collector that is grounded. For more detailed 

descriptions the reader is referred to further literature [1-4]. 

As the solvent is continuously evaporating the jet solidifies and nanofibers can be obtained. 

The possible application fields are widening, including pharmaceutical, filtration, sensor, 

solar energy, and composite applications [5, 6]. Nowadays, these products have begun to be 

realized in real commercial applications. 

This single capillary method has several disadvantages that hinder the industrialization efforts. 

Using multiple capillaries might be a feasible way, but clogging and holding the same flow 

and pressure conditions can be a crucial issue. Moreover cleaning of the small capillaries can 

cause some inconvenience for the user. There are novel methods that make possible the 
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nanofiber formation by using free liquid surface and special electrodes [7-9]. In such case the 

solvent evaporates from the free surface that can also cause problems. 

A novel electrospinning method that avoids the application of capillaries was developed and 

patented [10].The new method is called corona-electrospinning as the configuration shape 

looks similar to an ancient crown. The first paper of the method was freshly peer-reviewed in 

European Polymer Journal [11].  

In our joint project with ESITH, Morocco, our aim is to functionalize textiles with nanofibers 

and/or microcapsules. These microcapsules contain phase change material that makes possible 

to regulate the body temperature when there is a sudden change in ambient temperature. 

These textiles could be mainly used as protective or sports clothing. The microcapsules are 

embedded into or grafted onto the surface of nanofibers. The combination of nanofibers and 

microcapsules are applied as a surface coating of knitted textiles, therefore it is necessary for 

us to make nanofiber layers in effective (productive) ways having a homogeneous thickness. 

Proper homogeneity and high productivity is therefore in our focus.  

In this study our aim was to demonstrate the main features of the new method and also how it 

works. The high throughput – compared to single capillary system – was realized and 

formerly pointed out. Besides the earlier morphology studies it is also interesting how the 

fibers are deposed on the surface of the collector screen. For investigating the deposition 

characteristics of the fibers and the efficiency of the system finite element analysis (FEA) was 

applied. The electric field distributions were determined and conclusions were made. 

 

2. EXPERIMENTAL PROCEDURES 

 

2.1 The corona-electrospinning method 

 

In the spinneret the polymeric solution is continuously fed through a narrow, but long gutter 

bounded by a metal electrode having sharp edge, instead of using a capillary. This special 

electrode is connected to high voltage and many self-assembled Taylor-cones are formed 

along this sharp edge. The spinneret itself is rotating that helps the homogeneous distribution 

of the forming cones and jets along the circular gutter. The generated nanofibers can be 

collected on a grounded collector screen or on a textile substrate placed right in front of it. 

The process works without open liquid surface and the solution flows continuously 

eliminating the problems of other needleless methods. The designed rotating spinneret 

prototype is a simple construction, easy to clean and maintain and furthermore the technology 

can easily be industrialized. With the first, small size prototype we could reach a productivity 

of 200 ml/h in specific cases [12]. 

The concept of corona-electrospinning can be seen in Figure 1a. In the upper part the solution 

is distributed along the thin gutter (between parts 2 and 5). The metal electrode which is 

usually cylindrical (other shapes can also work) have a sharp edge for creating charge 

concentration. In the engineering implementation of this concept, the solution is fed through a 

hollow shaft (by using syringe pump) having appropriate roller bearings and sealing to avoid 

the leakage. The design of one of the first prototypes can be seen in Figure 1b. 
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Figure 1: Corona-electrospinning setup. a) Schematic figure of the corona-electrospinning setup. 1: 

high voltage power supply, 2: circular electrode having sharp edge, 3: grounded collector screen, 4: 

fiber formation space, 5: lid, 6: solution feed, 7: traction of the collector textile […] b) design concept 

of the spinneret 

 

The fiber morphology is quite similar to that of the single capillary method. Figure 2 shows a 

SEM image of the formerly produced polyacylonitrile (PAN) nanofibers. In this former study 

for electrospinning a high voltage of 45 kV, a spinneret – collector distance of 120 mm was 

used. Nanofibers having a diameter of 350 nm in average were obtained. 
 

 
 

Figure 2: Nanofibers electrospun form polyacrylonitrile by corona-electrospinning 

 

2.2 Finite Element Analysis 

 

For determining the field strength intensity of the process finite element analysis (FEA) was 

applied. Different electrode configurations were designed and modeled. The charge 

concentration of the edge was simulated by applying high voltage on the spinneret and 

grounding on the plate collector electrode. The field strength distribution was also 

investigated for different electrode geometries. For the FEA simulations Ansys Maxwell 

software was used and conclusions were made. 
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3. RESULTS AND DISCUSSION 

 

The finite element results of the first model can be seen in Figure 3 representing the total 

electric field strength distribution when the spinneret is under high voltage. Note that only the 

top part of the spinneret is modeled and a parallel grounded plate electrode was applied at a 

distance of 100 mm. The results are focusing on the spinneret part and therefore the upper part 

(horizontal collector electrode) was cut from the top of the image for better visibility. For 

modeling the main material was set to aluminum while the lid (inner part) was set to an 

insulating polymer material (PE). 

The remarkable inhomogeneity of the electric field distribution, which is a nature of all 

electrospinning method, can be an advantage. It can be seen that a charge concentration 

appears exactly at the edge where Taylor-cones and fibers are destined to be spun. It makes 

this method efficient as there is a high charge concentration that facilitates fiber formation. On 

the other hand it can lead to further issues as fiber deposition on the collector electrode is not 

homogeneous. 
 

  
 

a) b) 

Figure 3: The electric field distribution of corona-electrospinning’s spinneret. a) whole spinneret, b) 

magnified view of the edge 

 

During the real tests it turned out that the forming fibers are diverging because of the 

repulsion between them caused by the same positive charges (Coulomb-repulsion) that cannot 

be neglected. When applying the textile substrate with continuous traction speed for collecting 

the fibers it was found that the forming stipe of nanofibers had a width of approximately 

300 mm. In the middle part there were less fibers deposed while at the edges there were a 

thicker layer. It can be a problem when coating different textile substrates. The FEA made 

possible to model different electrode shapes. For studying this, the angle of the electrode edge 

was changed and the results were evaluated (Figure 4.) 

It can be seen in the image that the electric field can be controlled by the shape of the 

electrode part itself. This feature can be useful for controlling the fiber deposition. It is 

assumed that the fibers began to travel in the direction perpendicular to the equipotential lines. 

Based on these results it seems to be favorable to construct the geometry of the last figure 

causing more converging fibers. In the next step the forming fibers are also planned to be put 

in the model for gaining more precise extimations. 
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Figure 4: The electric field strength distribution of different geometries 

 

 

4. CONCLUSIONS 

 

A new electrospinning setup was invented. In this study it was demonstrated that a high 

charge concentration occurs along the applied sharp edge that facilitates fiber formation. The 

FEA models reveal that by adjusting the geometry of the spinneret itself the local electric field 

distribution can be controlled. This gives a hand in reaching better homogeneity of the areal 

density. Our future aim is to build a new prototype based on these results and to compare the 

results to former ones. 
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