The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress

<table>
<thead>
<tr>
<th>Journal:</th>
<th>New Phytologist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>NPH-MS-2014-18958.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>MS - Regular Manuscript</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Kohoutová, Lucie; Institute of Microbiology, AS CR, Laboratory of Functional Cytology
Kourová, Hana; Institute of Microbiology, AS CR, Laboratory of Functional Cytology
Nagy, Szilvia; Semmelweis University, Department of Medical Chemistry, Molecular Biology and Pathobiology
Volc, Jindřich; Institute of Microbiology, AS CR, Laboratory of Functional Cytology
Halada, Petr; Institute of Microbiology, AS CR, Laboratory of Molecular Structure
Mészáros, Tamás; Semmelweis University, Department of Medical Chemistry, Molecular Biology and Pathobiology
Meskiene, Irute; University of Vienna, Max F Perutz Laboratories Vienna
Bogre, Laszlo; Royal Holloway, University of London, School of Biological Sciences;
Binarova, Pavla; Institute of Microbiology ASCR, Laboratory of Functional Cytology |
| Key Words: | Arabidopsis, cell division, γ-tubulin, EB1c, microtubules, mitogen-activated protein kinase, MPK6, nitrosative stress |
The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress

Lucie Kohoutová¹, Hana Kourová¹, Szilvia K. Nagy², Jindřich Vole¹, Petr Halada¹, Tamás Mészáros²,³, Irute Meskiene³, László Bögre⁴, and Pavla Binarová¹

¹ Institute of Microbiology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
² Semmelweis University, Department of Medical Chemistry, Molecular Biology and Pathobiology, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
³ Max F. Perutz Laboratories, University of Vienna, Vienna, Austria, and Institute of Biotechnology, University of Vilnius, Lithuania
⁴ Royal Holloway, University of London, School of Biological Sciences, Egham, Surrey, TW20 0EX, United Kingdom
⁵ Technical Analytical Research Group of HAS, Szent Gellért tér 4, H-1111 Budapest, Hungary

Author for correspondence*: Pavla Binarová
Telephone: +420 296 442 130
e-mail: binarova@biomed.cas.cz

Word Counts
Main body of text: 6443/6500
Introduction: 827
Materials and Methods: 1458
Results: 2616
Discussion: 1438
Acknowledgements: 104
Black and white figures: 2 (Figures 1, 4)
Colour figures: 6 (Figures 2, 3, 5-8)
Tables: 0
Supporting information (Fig. S1-S5, Table S1, Methods S1)
Key words: Arabidopsis, cell division, γ-tubulin, EB1c, microtubules, mitogen-activated protein kinase, MPK6, nitrosative stress

Summary

• Stress-activated plant MAP kinase pathways play roles in growth adaptation to the environment by modulating cell division through cytoskeletal regulation, but the mechanisms are poorly understood.
• We performed protein interaction and phosphorylation experiments with cytoskeletal proteins, mass spectrometric identification of MPK6 complexes, and immunofluorescence analyses of the microtubular cytoskeleton of mitotic cells using wild type, mpk6-2 mutant, and plants overexpressing the MAP kinase inactivating phosphatase, AP2C3.
• We showed that MPK6 interacted with γ-tubulin and co-sedimented with plant microtubules polymerized in vitro. It was the active form of MAPK that was enriched with microtubules and followed similar dynamics to γ-tubulin, moving from poles to midzone during the anaphase-to-telophase transition. We found a novel substrate for MPK6, the microtubule plus end protein, EB1c. The mpk6-2 mutant was sensitive to NO₂-Tyr treatment with respect to mitotic abnormalities, and root cells overexpressing AP2C3 showed defects in chromosomal separation and spindle orientation.
• Our data suggest that the active form of MAPK interacts with γ-tubulin on specific subsets of mitotic microtubules during late mitosis. MPK6 phosphorylates EB1c, but not EB1a, and has roles to maintain regular planes of cell division under stress conditions.

Introduction

Mitogen-activated protein kinase (MAPK) cascades provide universal signalling modules that enable physiological adaptations in response to a variety of stress conditions. MAPK signalling is also utilised to regulate development (Xu & Zhang, 2014). Both environmental and developmental inputs may impact on plant growth through the regulation of cell proliferation, differentiation, and cytoskeletal organisation (Sasabe & Machida, 2012). Pivotal targets of MAPKs are transcription factors, but there are also cytoskeletal proteins that these pathways regulate. In plants however, knowledge about MAPK substrates, and specifically on the phosphorylation of cytoskeletal proteins, is limited (Ellis, 2012).
One of the best studied mitotic MAPK signalling pathways is the so called PQR signalling cascade that is controlled by the NACK kinesin and targets MAP65 proteins through MPK4 to regulate cytokinesis (Calderini et al., 1998; Nishihama et al., 2001; Sasabe et al., 2011). In accordance, cells in the mpk4 mutant show aberrant cytokinesis in Arabidopsis (Kosetsu et al., 2010; Beck et al., 2011). Another pathway involves MPK3 and MPK6; single mutants of mpk3 or mpk6 have no major developmental phenotypes or cell division abnormalities, while the mpk3mpk6 double mutant is embryo lethal (Wang et al., 2007). Thus, MPK3 and MPK6 were suggested to have redundant and dose-dependent functions (Xu & Zhang, 2014). In accordance, MPK3 and MPK6 were shown to have overlapping substrate recognition (Popescu et al., 2009; Ellis, 2012; Sorensson et al., 2012), and to play multiple roles including photomorphogenesis (Sethi et al., 2014), specification of cell fate during stomatal development (Wang et al., 2007), regulation of cell proliferation and differentiation in anthers and ovules (Hord et al., 2008; Wang et al., 2008), and regulation of cell proliferation during inflorescence development (Meng et al., 2012). While MPK3 and MPK6 have redundant roles in some processes, they are not interchangeable in others (Wang et al., 2008; Meng et al., 2012). In one of the pathways, MPK6 is part of the YDA and MKK4/MKK5 MAPK signalling downstream of the ERECTA receptor kinases to regulate meristematic development and cell proliferation (Meng et al., 2012). The YDA pathway, through MPK6, also targets MAP65 to regulate cortical microtubules and cytokinesis (Smekalova et al., 2014).

Stress signals are frequently transmitted through the generation of reactive oxygen species (ROS) and MPK6 provides a pivotal signalling route by targeting nitrate reductase 2 to generate NO, which impacts on growth adaptation e.g. root development in Arabidopsis (Wang et al., 2010). Modification of tyrosinated α-tubulin by nitration affects microtubular dynamics and its association with MAPs (Blume et al., 2013). However, whether the regulatory function of MPK6 in NO signalling plays a role in root development by targeting the microtubular cytoskeleton is not known.

MAPK signalling is intricately connected with the cytoskeleton, either directly through the phosphorylation of cytoskeletal proteins, or via interactions with cytoskeletal scaffolding proteins that may bring MAPKs together with their activators, substrates, or components of other pathways (Meister et al., 2013). There are numerous examples in animal and yeast cells for interactions of MAP kinases with microtubular proteins in response to stress or developmental cues. For example MAP kinases regulate microtubular dynamics
during osmotic stress in yeast cells (Hagan, 2008). The role for MAPKs in microtubule assembly and capture on kinetochores was suggested in pig oocytes (Sun et al., 2001). Active ERK kinases were necessary for normal spindle and metaphase plate formation, and for γ-tubulin localisation on spindle poles during maturation of mouse oocytes (Lee et al., 2007). Signalling through ERK is involved in regulating the function of microtubule plus end protein EB1, where an interaction of STIM1 with EB1 is regulated through ERK phosphorylation (Pozo-Guisado et al., 2013).

Despite extensive studies of plant MAPKs and their role in development, only a few substrates have been identified among microtubular proteins (Komis et al., 2011; Sasabe & Machida, 2012). The microtubule-associated proteins, MAP65-1, MAP65-2, and MAP65-3, are the only ones that were experimentally shown to be regulated by MAPK signalling in mitotic plant cells. Phosphorylation of MAP65-1 by MAP kinase in tobacco (Nicotiana tabacum) regulates phragmoplast expansion through microtubule destabilization (Sasabe et al., 2006). Arabidopsis MAP65-1 is phosphorylated both by MPK4 and by MPK6 in vitro (Smertenko et al., 2006). MAP65-2 and MAP65-3 were also shown to be phosphorylated by MPK4 (Kosetsu et al., 2010; Sasabe et al., 2011). MAP65-1 and MAP65-2 have redundant functions in Arabidopsis with MAP65-3 in cytokinesis (Sasabe et al., 2011).

Our biochemical data and cellular analyses of mitotic events show that MPK6 interacts with γ-tubulin and the microtubule plus end protein EB1c. The active form of MAPK is specifically recruited to kinetochore microtubular fibres of the mitotic spindle, and later, to midzone microtubules facing the chromatin, where it localizes together with γ-tubulin. We show that EB1c, but not EB1a, is phosphorylated by MPK6. The analysis of mitosis and cytokinesis in root meristematic cells with overexpression of AP2C3 MAPK phosphatase and the mpk6 mutant uncovered a role for the regulation of chromosomal separation and spindle orientation, and links MPK6 to such functions by NO₂-Tyr treatment.

Materials and Methods

Plant material and cultured cells

Cell suspension cultures of Arabidopsis thaliana ecotype Landsberg erecta (Ler) and EB1c-GFP and Columbia (Col) were grown under continuous darkness at 25 °C as described previously (Drykova et al., 2003). Seedlings of Arabidopsis thaliana (L.) Heynh. ecotype
Columbia, *mpk6-2* (Liu & Zhang, 2004), and AP2C3 oe (Umbrasaite *et al.*, 2010) were grown on half-strength Murashige-Skoog medium (Duchefa Biochemie, Haarlem, Netherlands) supplemented with 0.25 mM MES, pH 5.7, 1% (w/v) agar and 0.5% sucrose under 16 h of light and 8 h of dark. C-terminal GFP fusion of EB1c was prepared by Gateway cloning using pDONR207 and pK7FWG2 destination vector (Karimi *et al.*, 2002). The construct was transformed to cell culture Ler through *Agrobacterium tumefaciens* GV3101 strain.

Immunopurification, gel permeation chromatography, electrophoresis and Western blotting

Protein extracts from *Arabidopsis* cultured cells were prepared as described before (Tomastikova *et al.*, 2012). For seedlings, 25 mM Tris pH 7.5, 75 mM NaCl, 15 mM EGTA, 10 mM MgCl$_2$, 0.1% Tween 20 with the same inhibitors as for cultures was used. Protein samples were solubilized for at least 1 h with 1% Nonidet P-40 (Roche Diagnostics).

Immunopurifications were performed from solubilized protein extracts (~3 mg ml$^{-1}$). Extracts were incubated with primary antibody at 4°C, then Protein A-Agarose beads (Roche Diagnostics) were added and incubated for another 2 hours. After washing with 0.1% Nonidet P-40 in extraction buffer, and 50 mM Tris pH 8.0 with 150 mM NaCl, and finally without salt, elution was done either by 0.1% immunogenic peptide at room temperature or the beads were boiled with Laemmli buffer. Eluates were concentrated on Microcon Ultracel YM-30 (Millipore, Darmstadt, Germany); for proteomics, eluates were pooled from four experiments. Immunopurifications using GFP-TrapA (ChromoTek, Planegg-Martinsried, Germany) were performed according to the manufacturer’s instructions. Lambda protein phosphatase (NEB, P0753) treatment was performed on EB1c-GFP bound on the beads for 40 min at 30°C according to manufacturer’s instructions. Protein samples were separated on 8%, 10%, or 12% SDS-PAGE and transferred to 0.45 µm polyvinylidene fluoride membrane (Immobilon-P, Millipore) or nitrocellulose membrane (Whatman, GE Healthcare) by wet electroblotting and immunodetected with appropriate antibodies. SuperSignal West Pico Chemiluminiscent Substrate (Thermo Scientific, Rockford, Illinois, USA) or ECL Prime Western Blotting System (GE Healthcare) was used according to manufacturer’s instructions. At least three independent experiments were performed; representative Western blots are shown.

Custom polyclonal rabbit antibody against MPK6 (GenScript) was raised against the C-terminal sequence LIYREALAFNPEYQQ (aa 381-395) of MPK6 molecule and affinity-purified on immunogenic peptide, custom polyclonal rabbit antibody AthTU against γ-tubulin

Manuscript submitted to New Phytologist for review
was raised as described in Drykova et al. (2003). Antibodies for immunodetection were used in the following dilutions: anti-AtMPK6 (Sigma) 1:4,000, p-ERK antibody against phosphorylated forms of MPKs Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP (Cell Signaling) 1:2,000, antibody 4B9 (kindly provided by Dr. R. J. Ferl) 1:2,400, anti-MAP65-1 (kindly provided by Prof. P. Hussey) 1:2,000, anti-EB1 (ab50187, Abcam) 1:2,000, DM1A (Sigma) 1:1,000, anti-GCP4 (custom polyclonal rabbit antibody affinity-purified on immunogenic peptide (GenScript) 1:200, anti-GFP (Abcam) 1:4,000, anti-
γ-tubulin AthTU 1:3,000, anti-phospho-Thr (9381, Cell Signaling) 1:1,000. Secondary
horseradish peroxidase conjugated antibodies; anti-mouse and anti-rabbit were diluted 1:7,500 and 1:10,000, respectively (Promega, Madison, USA; Cell Signaling, Danvers, MA, USA; Jackson ImmunoResearch Laboratories, Suffolk, UK).

The microtubule spin-down experiments were performed as described previously (Drykova et al., 2003). For immunopurifications from microtubular pellets obtained by spin-downs, the pellets were resuspended and microtubules were depolymerized on ice in buffer containing Ca\(^{2+}\).

Protein digestion and LC MALDI-TOF mass spectrometry were performed as described in Tomastikova et al., 2012 with slight modifications. For details see Methods S1.

Plasmid construction, \textit{in vitro} transcription and \textit{in vitro} translation

Coding regions of MPK6, \(\gamma\)-tubulin, EB1c, EB1a, and GCP4 were amplified from cDNA library by PCR and transferred into pEU3-NII-HLICNot and pEU3-NII-GLICNot vectors by ligation independent cloning. myc-AtMKK4-GOF was inserted into pEU3-NII-gateway vector by gateway cloning (Nagy & Meszaros, 2014). Plasmids purified from ampicillin-resistant colony were sequenced to confirm the PCR accuracy.

The \textit{in vitro} mRNA synthesis was accomplished by addition of 1 \(\mu\)g of purified, NotI linearized vector according to the manufacturer’s instructions (TranscriptAid T7 High Yield Transcription Kit, Thermo Scientific). The reaction was incubated for 2h at 37°C, precipitated by ammonium acetate/ethanol mixture, dissolved in 1x SUB-AMIX and stored at -80 °C. Quality and quantity of mRNAs was verified on agarose gel electrophoresis. Cell-free translation was carried out in 20.6 \(\mu\)l final volume by addition of 5 \(\mu\)L (15 \(\mu\)g) mRNA, 10 \(\mu\)L WEPRO® (Cell Free Sciences, Matsuyama, Japan) solution, 0.8 \(\mu\)L creatine kinase (1 mg ml\(^{-1}\)
and 5 µL 1x SUB-AMIX. Additional 0.5 µl of myc-AtMKK4GOF mRNA was added to the translation mixture where His6-AtMPK6 was to be activated. The translation solution was underlayed to 206 µL SUB-AMIX in a sterile 96-well plate and the reaction was incubated for 20 hours at 20°C (Nagy & Meszaros, 2014).

Protein purification, phosphatase treatment, TEV protease cleavage

In vitro translated His6-AtMPK6 proteins were purified by affinity chromatography on 10 µl TALON® Magnetic Beads (Clontech, Mountain View, CA, USA). 50 mM sodium phosphate buffer complemented with 10 mM imidazole, 300 mM NaCl, 0.1% Triton-X was used as wash and binding buffer. The resin was washed three times after 1h incubation with total translation mixture at room temperature. TEV protease was affinity purified after bacterial protein expression using pTH24_TEV construct (van den Berg et al., 2006). TEV protease cleavage was performed overnight and at 4 °C with addition of 2.5 µl 20X TEV Buffer (1 M Tris-HCl, pH 8.0, 10 mM EDTA), 0.5 µl 0.1 M DTT, 10 µl TEV protease to affinity purified proteins. In vitro translated GST-γ-tubulin, GST-GCP4, GST-EB1a and, GST-EB1c were purified by affinity chromatography on 25 µl Glutathione Magnetic Beads (Thermo Scientific). 125 mM Tris, 150 mM NaCl, pH 8.0 was used as wash and binding buffer. Phosphatase treatment was carried out with λ Protein Phosphatase (New England Biolabs, Hitchin, UK) for 30 minutes at 30°C.

In vitro kinase assays

For kinase assays 300 and 100 ng in vitro translated, affinity purified substrate and kinase was used, respectively. The assay was carried out in 20 mM Hepes, pH 7.5, 100 µM ATP, 1 mM DTT, 15 mM MgCl2, 5 mM EGTA, 5 µCi [γ-32P]ATP with bead bound GST-γ-tubulin, GST-GCP4, GST-EB1a, and GST-AtEB1c as substrates in 16 µl final volume for 1 hour at room temperature, then stopped by addition of 5× Laemmli SDS buffer. Samples were fractionated on a 10% SDS-PAGE gel. The gel was fixed, stained with Coomassie Blue, dried and analysed by autoradiography.

Drug treatments
APM (amiprophos-methyl, Duchefa Biochemie A0185) or taxol (Paclitaxel, Sigma T7402) were diluted in DMSO and used in working concentrations of 10 µM for 2 h. Stock solution of 20 mM U0126 (Sigma U120) in DMSO was applied to Murashige-Skoog medium for cultured cells (pH 7.0) to working concentration of 20 µM. Cells were pretreated by 20 µM U0126 in thin layer in dark without shaking for 2 h; then transferred to fresh medium with 20 µM U0126 and shaken at 120 rpm for 30 – 40 min before collecting; then they were immediately frozen in liquid nitrogen and processed for biochemistry or for immunofluorescence. Mock treatment was done with DMSO. Working concentration of 0.5 µM NO₂-Tyr (3-nitro-L-tyrosine, Sigma N7389) in 0.5 µM HCl were used in half strenght Murashige-Skoog medium; 0.5 µM HCl was used for the mock treatment.

Microscopy

Immunofluorescence labelling was performed as described earlier (Drykova et al., 2003). Whole-mounts were performed according to Sauer et al. (Sauer et al., 2006). Dilution of antibodies: anti-AtMPK6 (Sigma) 1:1,000-1:2,000, p-ERK (Cell Signaling) 1:500, DM1A (Sigma) 1:2,000, anti-γ-tubulin TU-32 antibody (kindly provided by Dr. P. Dráber, IMG AS CR, Prague) (1:6), anti-AtMPK3 (Sigma) 1:1,000, anti-AtMPK4 (Sigma) 1:2,000, anti-GFP (Roche Diagnostics) 1:1,000, anti-KNOLLE (Rose Biotechnology-Secant Chemicals, Winchendon, MA, USA) 1:6,000, anti-γ-tubulin AthTU 1:2,000, phospho-Histone H3 (Ser10) (Cell Signaling) 1:200. Alexa Fluor 488, Alexa Fluor 594, DyLight 647-conjugated anti-mouse and anti-rabbit antibodies (Jackson ImmunoResearch Laboratories) were diluted 1:600, 1:800, 1:700, respectively. Chromatin was stained by DAPI.

For fluorescence microscopy Olympus IX-81 FV-1000 confocal imaging system with oil immersion objectives 100x/1.45 and 60x/1.35 was used; DAPI ex 405 nm, em 425-460 nm; Alexa488 ex 473 nm, em 485-545 nm; Alexa 594 ex 559 nm, em 575-640 nm; Alexa 647 ex 635 nm, em 655-755 nm. Laser scanning was performed using the sequential multitrack mode to avoid bleed-through. Images were analysed by FV10 ASW2.0 (Olympus, Tokyo, Japan) and prepared in Adobe Photoshop CS4 and Adobe Illustrator CS4 (adobe Systems). For macroscopic images magnifying microscope Leica MZ16F with DFC 320R2 camera and DFC Twain 7.5.0 SW (Leica, Wetzlar, Germany) was used. At least three independent experiments were performed; representative images are shown.
Multiple sequence alignment was done using ClustalW2 (Larkin et al., 2007).

Accession numbers: MPK6 At2g43790, TubG1 At3G61650, EB1A At3g47690, EB1C At5g67270, GCP4 At3g53760, AP2C3 At2g40180

Results

MPK6 is associated with γ-tubulin on microtubules in proliferating cells

To investigate MPK6 protein complexes, we performed immunopurification from extracts of *Arabidopsis* cultured cells in exponential growth phase using anti-MPK6 antibody, and specifically eluted MPK6 complexes using the immunogenic peptide. As a control we used pre-immune serum. We identified proteins by LC-MALDI-TOF mass spectrometry (Table S1). We reproducibly identified γ-tubulin among the proteins in the MPK6 immunoprecipitate, but not in the negative control with pre-immune serum. The association of MPK6 with γ-tubulin was validated on Western blots (Fig. 1a). To confirm the interaction of γ-tubulin with MPK6, we performed reciprocal immunopurification experiments. Using a peptide-purified plant specific γ-tubulin antibody, we found that MPK6 was associated with immunopurified γ-tubulin from extracts of *Arabidopsis* cultured cells (Fig. 1b).

To investigate whether MPK6 was associated with γ-tubulin on microtubules, we polymerized plant microtubules with taxol from extracts of cultured cells and performed spin down assays that we have previously established to show association of γ-tubulin with microtubules (Drykova et al., 2003). The S70 high speed supernatant of a soluble cytoplasmic extract was used for taxol-driven polymerization of microtubules (Fig. 1c). α-Tubulin, together with microtubule associated protein, MAP65-1, as well as the microtubule plus end proteins EB1s, were detected in microtubular pellets but these proteins were undetectable in the negative control where taxol was omitted. As we published earlier (Drykova et al., 2003), γ-tubulin is pelleted with taxol-polymerized plant microtubules, and in accordance, γ-tubulin complex protein GCP4 was also detected in the microtubular fraction (Fig. 1c). The presence of microtubular nucleator proteins γ-tubulin and GCP4, plus end proteins EB1s, and microtubule-associated protein MAP65-1 collectively show efficient polymerization of plant microtubules *in vitro.*
The same microtubular fractions were used to test the association of MPK6 with plant microtubules. As shown in Fig. 1c, a portion of the soluble pool of MPK6 sedimented with taxol-polymerized microtubules. To determine whether active MAPKs were present with microtubules, we used a commercially available antibody directed against active phosphorylated ERK1 (p-ERK) that was shown to recognize the conserved phospho-epitope on the activation loop of plant MAPKs (Umbrasaite et al., 2010). We found a large enrichment of phosphorylated MAPKs in microtubular pellets (Fig. 1c).

To determine whether the microtubule bound γ-tubulin or γ-tubulin complexes interacted with MPK6, we released the γ-tubulin complex by depolymerization of pelleted microtubules and performed immunopurification with peptide-purified antibody against plant γ-tubulin. As shown in Fig. 1d, MPK6 was detected with γ-tubulin immunoprecipitated from the microtubular fraction. We conclude that the active MAPK form is specifically enriched with in vitro polymerized plant microtubules and that MPK6 associates with microtubule-bound γ-tubulin.

MPK6 kinase was localised on mitotic microtubules in root meristematic cells

To gain further insights into the association of MPK6 with microtubules within mitotic cells, we analysed the localisation of MPK6 and p-ERK in Arabidopsis root meristems. Double immunofluorescence labelling showed that the signal for MPK6 was present in the area of the pre-prophase band (PPB; Fig. 2a, arrows), with the metaphase spindle (Fig. 2a, arrowheads), and with the phragmoplast (Fig. 2a, asterisk). The signal for p-ERK was not observed with PPBs (Fig. 2b, arrows), but was present with the spindle (Fig. 2b, arrowhead) and phragmoplast (Fig. 2b, asterisk). In anaphase, MPK6 localised with shortening kinetochore microtubular fibres (Fig. 2c, arrowheads) and was present in the midzone of the anaphase spindle (Fig. 2c, arrow). In contrast, p-ERK labelling was largely associated with shortening kinetochore microtubular fibres on the poles of the anaphase spindle (Fig. 2d, arrowheads).

These immunolocalisation data suggested that the active form of MAPK was associated with specific subsets of mitotic microtubules. To test the correspondence of p-ERK signal and MPK6, we performed Western blotting with wild type Col-0 and mpk6-2 mutant seedlings. We found that a significant portion of p-ERK detected-MAPK corresponds to MPK6 (Fig. S1a). To determine whether MPK6 labelling on mitotic microtubules was specific, we localised two other abundant MAPKs (Fig. S1b). We found that the immunofluorescence...
signal for MPK3 was largely diffuse while the MPK4 signal was detected mainly in the midzone of the anaphase spindle, as was found previously (Beck et al., 2011).

To ascertain whether MPK6 and p-ERK were associated with microtubules, we treated cells with the microtubule stabilizing drug, taxol, and the depolymerization drug, amiprophos methyl (APM). Both MPK6 and p-ERK signals were enriched in dense microtubular arrays of taxol-treated cells (Fig. S2a,b) and became dispersed in the cytoplasm when microtubules were depolymerized by APM (Fig. S2c). As shown in Figs. S2c and d, the signal for p-ERK was enriched in the vicinity of persistent kinetochore microtubular stubs that were abundantly decorated with γ-tubulin (Binarova et al., 2000).

p-ERK is dynamically co-localised with γ-tubulin on kinetochore fibres and in the midzone during the anaphase-to-telophase transition

In animal cells, γ-tubulin is predominantly a centrosomal protein, while, as we described previously (Drykova et al., 2003), it associates in cell cycle-specific patterns with mitotic microtubules in acentrosomal plant cells. Because MPK6 was immunopurified with γ-tubulin and p-ERK labelling showed similar labelling patterns to γ-tubulin on microtubules, we performed double immunofluorescence analyses of MPK6 and p-ERK with γ-tubulin in mitotic cells of *Arabidopsis* roots. As shown in Fig. 2e-g, the signal for p-ERK was present, together with the signal for γ-tubulin, on shortening polar kinetochore microtubular fibres during anaphase and with the phragmoplast in telophase. To analyse the co-localisation of MPK6 and p-ERK with γ-tubulin, we inspected mitotic figures in more detail and derived intensity profiles during anaphase-to-telophase transition. γ-Tubulin predominantly localised with shortening kinetochore fibres on poles of the anaphase spindle, and became gradually more abundant in the vicinity of separated chromatin facing the midzone, where phragmoplast microtubules were known to be nucleated (Binarova et al., 2000). p-ERK followed the γ-tubulin signal with some delay, which was substantiated by the intensity profiles (Fig. 3a-d). In contrast to p-ERK that co-localised with γ-tubulin on kinetochore microtubules of the anaphase spindle, and with early phragmoplast microtubules, the signal for MPK6 was more pronounced in the entire midzone during anaphase and cytokinesis (Fig. 3e,f).

Because of the close association of γ-tubulin with MPK6 and p-ERK, we set out to test whether γ-tubulin can be phosphorylated by MPK6. γ-Tubulin was translated *in vitro* and an *in vitro* kinase assay was carried out with MKK4-activated MPK6. As shown in Fig. 4a, under
the conditions used, we could not detect γ-tubulin phosphorylation by active MPK6. This finding suggested that proteins of γ-tubulin complexes might be potential substrates for MAP kinase signalling. A database search indicated AtGCP4 to be a plausible candidate for MAP kinase phosphorylation, with a docking motif for MAPKs as well as a MAPK phosphorylation site at its N-terminus (http://elm.eu.org). We cloned and translated in vitro GCP4 protein and performed an in vitro kinase assay with activated MPK6. Similarly to γ-tubulin, phosphorylation of GCP4 protein could not be detected (Fig. 4a).

Altogether our data suggest that the active form of MAPK, recognised by p-ERK antibody, specifically enriched with plant microtubules polymerized in vitro, co-localised in cells with γ-tubulin on shortening anaphase kinetochore fibres on poles of the acentrosomal spindle and with a specific subset of phragmoplast microtubules in the vicinity of chromatin during phragmoplast formation. MPK6 is recruited to γ-tubulin or γ-tubulin complexes, but we could not find direct phosphorylation of either γ-tubulin or γ-tubulin complex protein GCP4 with MPK6 in vitro.

MPK6 interacts with and phosphorylates microtubule plus end protein EB1c but not EB1a

Microtubule plus ends proteins, the EB1s, were associated with microtubules polymerized from cell extracts of *Arabidopsis* (Fig. 1c). Furthermore, we found that MPK6 interacted with EB1 proteins immunopurified with anti-EB1 antibody that recognised multiple EB1 family members (Fig. 4b). To test whether plant EB1 proteins were substrates for MPK6, we translated in vitro EB1a and EB1c and carried out a protein kinase assay with activated MPK6. We found that EB1a, similarly to γ-tubulin and GCP4, was not phosphorylated, while EB1c protein was phosphorylated by MPK6 under the same in vitro kinase assay conditions (Fig. 4a). The EB1c is a plant specific subtype of EB1 proteins with distinct nuclear localisation and the knock out mutants showed strong cell division defects (Komaki et al., 2010). EB1c but not EB1a and EB1b has predicted MAP kinase phosphorylation sites and docking motif on C-terminal of the molecule (http://elm.eu.org, http://gps.biocuckoo.org), Fig. S3. We used cells expressing EB1c-GFP as an input for GFP immunopurification and confirmed that MPK6 interacted with EB1c (Fig. 4c). Reciprocally, we could also show that immunoprecipitation with MPK6 led to EB1c-GFP as well as the endogenous EB1c co-immunoprecipitation (Fig. 4d). We found that the immunoprecipitated EB1c-GFP was
phosphorylated on threonine based on the detection with phospho-threonine (p-Thr) antibody. The p-Thr signal was specific as it became diminished by Lamda protein phosphatase treatment (Fig. 4f). Additionally, when the activity of MAP kinases was inhibited by treatment of cells with a selective MEK inhibitor, U0126 (Fig. 4e), we found that the signal for phospho-threonine on EB1c was reduced (Fig. 4f).

We also followed p-ERK and MPK6 localisation with EB1c-GFP protein using double immunolocalisation. In interphase, EB1c-GFP was localized in nuclei, similarly to MPK6, and p-ERK antibody recognized MAP kinases. The EB1c-GFP signal and the signal for the p-ERK decorated metaphase spindle were detected with slight accumulation in the vicinity of the kinetochores, as substantiated by intensity profiles (Fig. 5a). In anaphase, p-ERK and EB1c-GFP co-localised on shortening kinetochore fibres (Fig. 5b). In early telophase, when p-ERK labelling was present mainly on newly formed phragmoplast microtubules adjacent to separated chromatin, EB1c-GFP was localised prominently on the midline of the phragmoplast (Fig. 5c). MPK6 localised with EB1c-GFP in the spindle area (Fig. 5d), and a diffuse MPK6 signal was observed in the midzone during late anaphase and telophase (Fig. 5e,f).

Our data suggest that EB1c co-localises with the active form of MAPK at specific mitotic stages and that EB1c, but not EB1a, is directly phosphorylated by MPK6.

MPK6 is required for regulation of the alignment of cell division upon NO$_2$-Tyr treatment

Reactive oxygen species (ROS) are known to induce rapid activation of MPK6 that activates nitrate reductase 2 (NIA2), leading to increased nitric oxide (NO) production (Wang et al., 2010). The product of NO signalling, nitrated tyrosine N-Tyr, is incorporated into α-tubulin in mammals and plants and disrupts the tyrosination/detyrosination cycle of microtubules required for the regular association and functions of MAPs and molecular motors (Blume et al., 2013). To investigate the connection between NO and MPK6 functions in the regulation of mitotic microtubule organisation, we treated WT and mpk6-2 mutant seedlings with NO$_2$-Tyr as an exogenous source of N-Tyr. We found that treatment of wild type Col-0 seedlings with NO$_2$-Tyr resulted in shortened roots and reduced mitotic activity in the cell division zone, as previously demonstrated (Lipka & Muller, 2014). As shown in Fig. 6a, the mpk6-2 mutant was more sensitive to NO$_2$-Tyr treatment. Immunofluorescence analyses of whole
mount α-tubulin-labelled roots showed that the number of mitotic figures (MF) was more reduced upon long term treatment with 0.5 µM NO$_2$-Tyr in mpk6-2 mutants (10 MF per root, SD = 2.7, n = 24) compared to Col-0 plants (16 MF per root, SD = 7.1, n = 24) (Fig. S4).

Roots grown under NO$_2$-Tyr treatment showed the alignment of spindles to become oblique in wild type Col-0 (Fig. 6c), which is in agreement with published data (Lipka & Muller, 2014). While we could not detect mitotic abnormalities in mpk6-2 mutant plants grown under control conditions (Fig. 6d), the effect of NO$_2$-Tyr on spindle and phragmoplast alignment was enhanced in the mpk6-2 mutant compared to the WT plants (Fig. 6e, Fig. S4). Misaligned spindles and phragmoplasts (9.7 % for Col-0, n = 390 and 15.2 % for mpk6-2 mutant, n = 230), disturbed cell files and enlarged cells were all indicative of defects in microtubulal organization and cell division. Altogether these data showed that the effects of NO$_2$-Tyr on the microtubular cytoskeleton, cell plane alignment and cell division were more pronounced in the mpk6-2 mutant background.

Inactivation of MAPKs through the overexpression of AP2C3 phosphatase resulted in mitotic abnormalities in chromosomal separation and spindle alignment

Overexpression of AP2C3 phosphatase (At2g40180) preferentially inhibits *Arabidopsis* MAPKs MPK3, MPK4, and MPK6 and these seedlings show largely disturbed root development (Fig. 7) as well as cell division defects in the stomatal lineage (Umbrasaite *et al.*, 2010). We looked for cell division defects in the roots of AP2C3 oe plants. Instead of regular cell files typical for the meristematic and transition zones of the WT roots, cell files of AP2C3 oe roots were disrupted, and cells were of various sizes and shapes, often isodiametric and swollen (Fig. 7a). Closer inspection revealed mitotic defects in AP2C3 oe. Chromosomes were not congressed in the metaphase plate (54.4 %, n = 136, p < 0.01) (Fig. 7b,f), and lagging chromosomes were observed in anaphase (58.2 %, n = 55, p < 0.01) (Fig. 7c, arrowhead, f). Chromosomes remained condensed and formed round-shaped masses in the cells that failed to enter telophase (8.4 %, n = 274, p < 0.01) (Fig. 7c, arrow, f). Microtubules, instead of being organised in spindles or phragmoplasts, were randomly arranged in the vicinity of chromatin, and labelling of cytokinetic syntaxin, KNOLLE, revealed complete failure of cell plate formation. Nuclei were often enlarged or lobed (Fig. 7c, asterisk). Both spindles (14.7 %, n = 191, p < 0.01) (Fig. 7d, arrow, f) and phragmoplasts (20.1 %, n = 274, p < 0.01) were misaligned in AP2C3 oe roots (Fig. 7e, arrows, f).
As an alternative approach to reduce MAP kinase activity, we used the selective MEK inhibitor, U0126. Treatment of *Arabidopsis* cells with U0126 reduced phosphorylation of MAP kinases, as detected by p-ERK antibody on Western blot (Fig. 4e, 8a). S70 extracts from U0126 treated cells were used as an input for taxol-driven polymerization of plant microtubules; the spin down assays were performed in the presence of the inhibitor. As shown in Fig. 8a, the p-ERK signal detected with samples of sedimented microtubules was severely reduced in comparison to untreated controls. On the other hand, the detected MAP65-1 signal in microtubular pellets from extracts of U0126 treated cells was stronger (Fig. 8a). This data suggest that the majority of MAP65-1 was bound to microtubules under conditions of reduced MAP kinase activity. Levels of γ-tubulin and EB1 proteins in microtubular pellets did not differ dramatically in U0126 treated samples (Fig. 8a).

We then performed immunofluorescence labelling to analyse microtubular mitotic arrays and cell division in cells where activity of MAP kinases was reduced due to U0126 treatment. Instead of the regular metaphase and anaphase mitotic figures, as shown in Fig. 2, we observed defects of congression of mitotic chromosomes and chromosomal separation defects. Despite abundant microtubules in microtubular kinetochore fibres of long mitotic spindles (Fig. 8b), chromosomes were unattached and free in the cytoplasm (Fig. 8c, arrowheads). γ-Tubulin accumulated on poles (Fig. 8b) and in the vicinity of unattached chromosomes (Fig. 8c). Spindles were elongated and astral microtubules were observed on poles of acentrosomal anaphase spindles, which failed to separate chromosomes (Fig. 8e). Aberrant phragmoplasts with bundled microtubules were present when separated chromatin was already decondensed (Fig 8d, arrow and arrowheads). The γ-tubulin signal with aberrant phragmoplasts was weak and did not show a gradient on phragmoplast microtubules from chromatin to the midzone, as typically found in control anaphase cells (Fig. 3), and accumulated around the nuclei (Fig. 8d). An aberrant telophase with unattached chromosomes negative for mitotic phospho-histone H3 labelling was observed (Fig. 8f).

Altogether these data suggest that inactivation of several MAPKs through the overexpression of the MAPK phosphatase AP2C3 abrogates chromosomal separation and cytokinesis. Similar mitotic defects were observed in cells where MAP kinase activity was inhibited by treatment with the specific MEK inhibitor, U0126.

Discussion
Plant cells are surrounded by a rigid cell wall yet their division in plant meristems is plastic and is continuously tuned by developmental signals and environmental conditions. In acentrosomal plant cells, this is achieved by the flexible assembly, dynamic regulation and interchange of plant-specific mitotic and cytokinetic arrays. How developmental and environmental signals influence the dynamics of plant microtubules, either directly through phosphorylation of microtubules or through phosphorylation of microtubule-associated proteins, is still not well understood. The best studied signalling pathways that respond to developmental and stress signals, and regulate microtubules, are the MAPK pathways, but the identification of cytoskeletal phosphorylated targets in plant cells is so far limited to MAP65-1, MAP65-2, and MAP65-3 (Sasabe et al., 2006; Kosetsu et al., 2010; Sasabe et al., 2011). Our in vitro and in situ data showed that MPK6 is present on microtubules, and the active MAP kinase associates with a specific subset of mitotic and cytokinetic microtubules. In seeking proteins associated with MPK6, by purification of MPK6 protein complexes and mass spectrometric analysis of associated proteins, we identified γ-tubulin, a highly conserved eukaryotic protein with functions in microtubular nucleation as well as with non-canonical functions in the cell cycle and in nuclear processes (Horejsi et al., 2012). We showed that kinetochore-localised γ-tubulin is important for plant spindle organisation (Binarova et al., 2000), and later kinetochore functions of γ-tubulin were also confirmed in animal cells (Mishra et al., 2010). Our finding that MPK6 associates with γ-tubulin was not completely unexpected. For example, mitotic defects observed in mouse oocytes, when p38 MAPK was depleted, indicated that MAPKs are important components of the microtubular organizing centre (Ou et al., 2010). Inhibition of MAP kinase activity reduced the recruitment of γ-tubulin to centrosomes and nucleation activity of the centrosomes (Colello et al., 2012).

We demonstrated that MPK6 is associated with γ-tubulin; however, it remains unclear whether this is a direct interaction. We could not find evidence that MPK6 phosphorylates γ-tubulin in vitro and similarly we did not show phosphorylation for GCP4, a member of the γ-tubulin complex GCP proteins. Although we cannot exclude that MPK6 might regulate other GCPs or another γ-tubulin interacting proteins, our data suggest that a scaffolding role for γ-tubulin might exist in MPK6 signalling to microtubules. γ-Tubulin, in coordination with microtubule plus end proteins or with molecular motors, was shown to function in organisation of the microtubular cytoskeleton during mitosis (Bouissou et al., 2014; Olmsted et al., 2014) and its role in scaffolding of proteins of microtubule plus ends was suggested (Cuschieri et al., 2006). We found that MPK6 not only interacts with γ-
tubulin, but also with EB1 proteins. EB1a and the highly similar EB1b form a subgroup of plant EB1 proteins with conserved roles of tracking plus ends of microtubules, while EB1c is a plant-specific EB1 protein with nuclear localization and strong cell division phenotypes in mutant (Komaki et al., 2010). We found that only EB1c but not EB1a was phosphorylated by MPK6, suggesting that MPK6 through EB1c regulates mitotic division in response to external signals. To learn more about functions of EB1c, we searched for co-expressed genes in available databases (Toufighi et al., 2005). EB1c shows significant co-expression with checkpoint proteins, MAD2 and BUB3. These findings correspond well with the cellular localisation of EB1c on kinetochore fibres and at cytokinetic sites, suggesting functions for EB1c in the regulation of cell division (Van Damme et al., 2004). Mutant analyses indeed showed roles for EB1c in spindle positioning, chromosomal congression and segregation (Komaki et al., 2010). Some of the cell division defects in EB1c mutants are reminiscent of abnormalities that we observed in root cells overexpressing AP2C3, including defects in spindle pole alignment and chromosomal separation. EB1c might be directly regulated through MAPK phosphorylation, and inhibition of this phosphorylation through AP2C3 overexpression has the consequence of defective attachment of kinetochore microtubules to chromosomes. There is a growing body of evidence indicating that functions of EB1 proteins are regulated by phosphorylation in animal cells (Tamura & Draviam, 2012). Moreover, EB1 protein is important for correct attachment of spindle microtubules to kinetochores, and depletion of EB1 in animal cells results in defective spindle positioning, metaphase chromosomal congression and separation in metazoan cells (Draviam et al., 2006).

MAP kinase signalling at cytokinesis involves the well-characterised NACK-PQR MAPK pathway that targets MAP65 proteins for phosphorylation (Calderini et al., 1998; Sasabe et al., 2011). Phosphorylation of MAP65-1 by MAP kinases regulates its microtubule bundling function and ensures phragmoplast microtubule dynamics required for phragmoplast expansion and cytokinesis progression (Sasabe et al., 2006). We identified through inducible silencing a role for γ-tubulin in late mitotic events (Binarova et al., 2006). It is suggested that there are other microtubule-associated substrates of the cytokinetic MAPK pathway (Sasabe & Machida, 2012); however, whether this pathway also targets γ-tubulin complexes or EB1c for regulation is not known. While the single mpk6-2 mutant develops normally under our control conditions, simultaneous inactivation of MPK3, MPK4 and MPK6 through the overexpression of AP2C3 MAPK phosphatase led to strong cell division defects including spindle positioning, chromosomal congression, separation and misalignment of the cell.
division sites. This indicates synergistic and partially overlapping mitotic functions for MPK3, MPK4 and MPK6. These data were supported by our observation of similar types of aberrant mitotic figures in cells where MAP kinase activity was reduced by specific MEK inhibitor U0126 treatment.

MPK6 was suggested to associate with membrane vesicles (Muller et al., 2010) and the pathway downstream of YODA was shown to affect cortical microtubule organisation and auxin biosynthesis (Smekalova et al., 2014). YODA is part of a meristematic developmental pathway downstream of the ERECTA receptor-like kinase, which activates MKK4/MKK5 and then MPK3/MPK6 to regulate cell proliferation and plant architecture (Meng et al., 2012). MPK6 has an inhibitory effect on cell proliferation, as indicated by enlarged seeds and faster growing roots of the mpk6 mutant (Lopez-Bucio et al., 2014). Thus MPK6 might impact not only on microtubular organisation, but also on cell cycle progression. In agreement, it was shown that inactivation of MAPKs through the over-expression of AP2C3 led to over-proliferation of stomatal lineage cells and to increased CDK activity (Umbrasaite et al., 2010).

MPK6 is a part of multiple MAPK signalling pathways in plants that are involved in both developmental and stress signalling. Of special interest is the activation of MPK6 by ROS (Wang et al., 2013). ROS activated MPK6 phosphorylates nitrate reductase NIA2, leading to an increase in NO production (Wang et al., 2010). Nitrosative stress induces depolymerization of microtubules in mammalian cells (Laguinge et al., 2004); mild nitrosative stress due to treatment with NO2-Tyr, a source of exogenous N-tyrosine, affects microtubule organisation in Arabidopsis plants (Lipka & Muller, 2014). Nitration of tyrosine on α-tubulin may change the tyrosination/detyrosination cycle of microtubules with an impact on kinesin or MAPs interactions with microtubules (Blume et al., 2013). Previously, it was reported that the mpk6 mutant is more sensitive to NO donors concerning root development (Wang et al., 2010) and now we show that there is an altered sensitivity to maintaining the cell division plane upon NO2-Tyr treatment in this mutant, compared to wild type. This suggests that tyrosine nitration regulating microtubule organization and the MPK6 pathway act on a common mechanism to regulate cell division. Activation of the MPK6 pathway upon stress might play an important role in limiting the disruption of microtubular organisation. NIA2, a target of MPK6 signalling under ROS stress (Wang et al., 2010), was shown to interact with 14-3-3ω in proteomic studies and in a yeast two hybrid assay (Kanamaru et al., 1999; Chang et al., 2009).
identified 14-3-3ω protein as an interactor in proliferating Arabidopsis cells (Table S1). We validated this interaction by Western blot (Fig. S5). Because 14-3-3 proteins function as adaptors between phosphorylated proteins and specific cellular compartments or protein complexes (Gokirmak et al., 2010), 14-3-3ω might provide a central adapter mechanism for MPK6 both towards substrates and for localisation on microtubules. It is possible that active MPK6 is brought to the γ-tubulin complexes or other microtubular substrates through interactions with 14-3-3ω.

MPK6 is a multifunctional MAPK utilised both in developmental and stress responses. It is not clear whether this versatility is due to its participation in many different pathways and complexes or if the same module is used in different contexts. Identification of novel interactors and phosphorylated substrates will be essential to address these questions. Our data show that γ-tubulin complexes and EB1c protein are two novel partners for MPK6 signalling and we show that MPK6 plays important roles in regulating the mitotic cytoskeleton and plane of cell division, particularly under stress.

Acknowledgements

The work was supported by Grant from Grant Agency of the Czech Republic P501-12-2333 to PB, Grant MSMT Kontakt 7AMB13AT013 to PB and IM, CH-3-ŠMM-01/10 to IM, Grant OTKA NN111085 to TM. Authors contribution: LK biochemistry, microscopy, phenotype analysis, manuscript preparation, HK cloning, biochemistry, microscopy, SKN cloning, in vitro translation and phosphorylation, JV biochemistry, PH proteomics, TM in vitro translation, IM cloning, transformation, LB designing of experiments, data interpretation and manuscript preparation, PB designing of experiments, data interpretation and manuscript preparation. We thank to Prof. R. J. Ferl (Univ. of Florida) for 4B9 antibody. We also thank to Gabriela Kočárová for technical assistance.

References

Draviam VM, Shapiro I, Aldridge B, Sorger PK. 2006. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. *The EMBO journal* **25**(12): 2814-2827.

Ou XH, Li S, Xu BZ, Wang ZB, Quan S, Li M, Zhang QH, Ouyang YC, Schatten H, Xing FQ, et al. 2010. p38alpha MAPK is a MTOC-associated protein regulating spindle

Figure legends

Fig. 1 MPK6 is present with microtubules and associates with γ-tubulin

(a) γ-Tubulin co-purified with MPK6. MPK6 IP – eluate after immunoprecipitation with anti-MPK6 antibody, PS IP – control eluate using pre-immune serum, IN – extract S20; (b) MPK6 co-purified with γ-tubulin. γ-Tub IP – immunoprecipitate using anti-γ-tubulin antibody; PS IP – control immunoprecipitate using pre-immune serum, IN – extract S20; (a, b) Western blots probed with anti-γ-tubulin and anti-MPK6 antibody. (c) MPK6 and p-ERK were pulled down with *in vitro* taxol-polymerized plant microtubules. Plant microtubules were polymerized from high speed supernatant S70 (IN) by taxol-driven polymerization and analysed by antibodies against α-tubulin, MAP65-1, EB1, γ-tubulin, GCP4 protein, MPK6, and p-ERK. S/MT + Tax: supernatant/microtubular pellet after taxol treatment and without supplementing the assay with taxol (S/MT – Tax). (d) MPK6 co-purified with γ-tubulin when proteins pulled down with plant microtubules were used as an input (IN = MT + Tax). γ-Tub IP – immunoprecipitate using anti-γ-tubulin antibody, PS IP – control immunoprecipitate using pre-immune serum. Western blots probed with anti-MPK6 and anti-γ-tubulin antibody.

Fig. 2 Localisation of MPK6 and γ-tubulin with mitotic microtubules

(a-g) Whole mount immunofluorescence labelling of dividing cells of *Arabidopsis* root. (a) MPK6 signal on pre-prophase band (arrows), with metaphase spindles (arrowheads), and with phragmoplast area (asterisk). (b) Signal for p-ERK with metaphase spindles (arrowheads) and with phragmoplast area (asterisk), but hardly with pre-prophase bands (arrows). (c) While MPK6 besides its kinetochore fibres localisation (arrowheads) was also in midzone (arrow), (d) signal for p-ERK in anaphase was mainly on shortening kinetochore fibres (arrowheads). (e) Signal for p-ERK localised on shortening kinetochore fibres with γ-tubulin in anaphase. (f) In telophase, both p-ERK signal and γ-tubulin were present on the remnants of kinetochore
microtubules and with early phragmoplast. (g) Later in cytokinesis, p-ERK signal was in the phragmoplast area. Bars (a-g), 5 μm.

Fig. 3 Signal for p-ERK follows dynamic localisation of γ-tubulin in anaphase/telophase transition

(a) In anaphase, p-ERK signal localised with γ-tubulin on shortening kinetochore fibres (arrowheads), while γ-tubulin was also partially on newly forming phragmoplast microtubules (arrows). (b) In later anaphase, p-ERK signal translocate to γ-tubulin positive area on newly forming phragmoplast (arrows) but compared to γ-tubulin the signal for p-ERK was less intense (intensity profile). (c) In telophase, both p-ERK signal and γ-tubulin were present on the remnants of kinetochore microtubules (arrowheads) and stained early phragmoplast but p-ERK signal delayed behind γ-tubulin signal in newly formed phragmoplast as shown by intensity profile. (d) Later in telophase, both p-ERK signal and γ-tubulin on the remnants of kinetochore microtubules gradually diminished and both proteins were located with early phragmoplast (arrows) as shown by intensity profile. (e) In anaphase, MPK6 signal strong in midzone (arrow), weaker signal with shortening kinetochore fibres (arrowheads). (f) In telophase, MPK6 signal was present mainly in midzone in phragmoplast area. Double immunofluorescence labelling of *Arabidopsis* cells: p-ERK (red), MPK6 (red), γ-tubulin (green), DNA stained by DAPI (blue). Intensity profiles: x axis shows length in μm (number 1 indicates start of the line used for measurement corresponding to point 0); y axis shows relative intensity; red line for p-ERK or MPK6, respectively, green line for γ-tubulin. Bars (a-f), 5 μm.

Fig. 4 MPK6 phosphorylates and interacts with microtubule plus end protein EB1c

(a) Phosphorylation of EB1c *in vitro* by MKK4-activated MPK6. EB1c, was phosphorylated by active MPK6 *in vitro*, while EB1a, γ-tubulin, and GCP4 were not phosphorylated. Autoradiograph and Coomassie-stained gel are shown. (b) MPK6 co-purified with endogenous EB1s. EB1 IP – immunoprecipitate using anti-EB1 antibody, PS IP – control immunoprecipitate using pre-immune serum, IN – extract S20; Western blot probed with anti-MPK6 antibody. (c) MPK6 co-purified with EB1c-GFP. IN – extract from EB1c-GFP cell culture, EB1c-GFP IP – immunoprecipitate using GFP trap from EB1c-GFP cell culture, ctrl IP – control immunoprecipitate from Ler culture; Western blots probed with anti-MPK6 and anti-EB1 antibody. (d) EB1c-GFP and endogenous EB1c co-purified with MPK6. MPK6 IP –
eluate after immunoprecipitation with anti-MPK6 antibody from EB1c-GFP cell culture; PS
IP – control eluate using pre-immune serum, IN – extract S20; Western blots probed with
anti-EB1 and anti-GFP antibody. (e) Reduction of p-ERK signal after U0126 treatment in
extract S20 from Arabidopsis cell culture. Western blot probed with p-ERK antibody. (f)
EB1c-GFP immunopurified from EB1c-GFP cell culture extract is phosphorylated and its
phosphorylation is reduced after U0126 treatment. Purified EB1c-GFP without (-) and with
(+) lambda protein phosphatase (lambda PP) treatment; EB1c-GFP purified from cell culture
without U0126 (-) and with U0126 treatment (+). Western blots probed with anti-p-Thr
antibody.

Fig. 5 Localisation of p-ERK and MPK6 with microtubule plus end protein EB1c

(a) In metaphase, EB1c-GFP signal was with spindle and prominent near to kinetochores
(arrows) where it partially localised with p-ERK signal (see intensity profile). (b) In late
anaphase, p-ERK and EB1c-GFP localised together on shortening kinetochore fibres
(arrowheads); while EB1c-GFP signal was accumulated in midline of newly forming
phragmoplast (arrow), p-ERK was near to chromatin on newly formed phragmoplast. (c) In
telophase, both p-ERK signal and EB1c-GFP were present on the remnants of kinetochore
microtubules (arrowheads); EB1c-GFP was localised in phragmoplast midline (arrow) and
p-ERK with phragmoplast microtubules facing to separated chromatin. (d) In metaphase,
MPK6 and EB1c-GFP were within spindle and near to kinetochores. (e, f) In late anaphase
and telophase, MPK6 signal was in midzone and with shortening kinetochore fibres
(arrowheads). Double immunofluorescence labelling of Arabidopsis cells: EB1c-GFP (green),
p-ERK (red), MPK6 (red), DNA stained by DAPI (blue). Intensity profiles: x axis shows
length in µm (number 1 indicates start of the line used for measurement corresponding to
point 0); y axis shows relative intensity; red line for p-ERK or MPK6, respectively, green line
for EB1c-GFP. Bars (a-f), 5 µm.

**Fig. 6 A root development is more affected after NO$_2$-Tyr treatment in mpk6-2 mutants
compared to WT plants**

(a) Representative images of 11-d-old WT Col-0 and mpk6-2 mutants grown on control
medium or on 0.5 µM NO$_2$-Tyr supplemented medium. NO$_2$-Tyr treatment affected root
development: primary roots growth was retarded in WT Col-0 and stronger effect was
observed in mpk6-2 mutants. (b-e) Whole mount immunofluorescence labelling: α-tubulin
(green), DAPI (blue) of 11-d-old control WT and mpk6-2 seedlings and NO₂-Tyr treated WT and mpk6-2 seedlings. (b) Regular files with mitotic spindle and phragmoplast in WT Col-0 control. (c) Obliqued mitotic spindle in WT Col-0 grown on NO₂-Tyr. Compare to mpk6-2 grown under control conditions (d), disturbed cell files, misaligned spindles (arrow) and phragmoplast (arrowhead) were observed in mpk6-2 seedlings grown under NO₂-Tyr (e). Bars (b-e), 5 µm.

Fig. 7 Mitotic and cytokinetic defects in dividing cells of roots of AP2C3 oe plants
(a-e) Whole mount immunofluorescence labelling of 7-d-old AP2C3 plants. (a) Typical examples of the WT and AP2C3 oe primary roots. Clusters of dividing cells with misaligned cell plates (arrowheads), irregular cell files, and multinuclear cell (arrow) observed in AP2C3 roots. (b) Impaired chromosome congression in metaphase (arrowhead). (c) Anaphase with lagging chromosome (arrowhead), aberrant anaphase/telophase with two clusters of condensed chromosomes surrounded by microtubules (arrow), lobed nucleus (asterisk). (d) Misaligned anaphase spindle (arrow) and phragmoplast (e, arrow). α-tubulin (green), KNOLLE (red), DAPI (blue). (f) Percentage of aberrant mitosis and phragmoplasts in AP2C3 oe roots: AP2C3 oe (blue bars), WT (red bars), n under bars represents number of analysed figures, error bars indicate SD, ** indicates significant difference between WT and AP2C3 for the category at p < 0.01. Bars (a), 20 µm; (b-e), 5 µm.

Fig. 8 Treatment of Arabidopsis cells with MEK inhibitor U0126 reduced levels of p-ERK labelled active MAP kinases with polymerized microtubules and induced mitotic defects
(a) Signal for p-ERK was reduced on microtubules polymerized in vitro from U0126 treated cells. Western blots were probed with antibodies against α-tubulin, p-ERK, MAP65-1, MPK6, EB1, and γ-tubulin. (b-f) Immunofluorescence labelling showing aberrant chromosome congression and separation in U0126 treated Arabidopsis cells (b) Long spindle with thick kinetochore fibres (arrows) and γ-tubulin accumulated on the poles. (c) Another z-stack of the spindle from (b) showing failure of chromosome congression and unattached chromosomes (arrowheads). (d) Cells with highly bundled phragmoplast microtubules (arrow) and with only weak signal for γ-tubulin and nuclei with already decondensed chromatin (arrowheads). (e) Aberant anaphase spindle with long bundled astral microtubules (arrow) and lagging chromosomes (arrowheads). (f) Telophase with escaped lagged chromosomes (arrows). α-
tubulin (green), γ-tubulin (red) or phospho-Histone H3 (red), DNA stained by DAPI (blue).

Bars (b-f), 5 µm.

Supporting Information

Fig. S1 Antibody p-ERK recognises predominantly MPK6 on Western blots and in Arabidopsis cells

Fig. S2 MPK6 and p-ERK labelling in Taxol and APM treated cells

Fig. S3 Multiple sequence alignment of Arabidopsis EB1 proteins

Fig. S4 Mitotic activity and alignment of spindle and phragmoplast is more affected after NO$_2$-Tyr treatment in 10-d-old mpk6-2 mutants compared to WT Col-0

Fig. S5 14-3-3ω co-purified with MPK6

Table S1 Proteins co-purified with MPK6 from Arabidopsis proliferating cultured cells identification by LC-MALDI-TOF mass spectrometry

Methods S1 Protein digestion and LC MALDI-TOF mass spectrometry
Fig 1
120x117mm (300 x 300 DPI)
Fig2
129x120mm (300 x 300 DPI)
Fig 3
133x160mm (300 x 300 DPI)
Fig5
124x138mm (300 x 300 DPI)
Fig 6
142x118mm (300 x 300 DPI)
Fig 7
197x244mm (300 x 300 DPI)
Fig 8
83x184mm (300 x 300 DPI)