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Abstract: A finite difference numerical method is investigated for fractional order diffusion problems in one space
dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of
the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The well-
posedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with
the original boundary conditions. Accordingly, a finite difference scheme is constructed for the Neumann problem
using the shifted Grünwald–Letnikov approximation of the fractional order derivatives, which is based on infinite
many basis points. The corresponding matrix is expressed in a closed form and the convergence of an appropriate
implicit Euler scheme is proved.
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1 Introduction

A widely accepted constitutive relation, the first Fick’s law leads to the standard diffusion model. At the same time,
more observations confirmed the presence of super- and subdiffusive dynamics in several phenomena. They range
from the plasma physics [1] through population dynamics [2] and groundwater flows [3] to the anomalous diffusion
of some chemical compounds. These observations inspired the application of the fractional calculus, which has a
long history [4]. An alternative approach for modeling superdiffusion can be given in the framework of the nonlocal
calculus, which has been recently developed, see [5] and [6] for an up-to-date overview with further references.

Many attempts were made for the numerical solution of the space-fractional PDE’s modeling these phenomena.
Most of the methods are based on finite difference discretization. It was pointed out that a non-trivial discretization
of the one-sided fractional derivatives lead to a stable method [7]. This result has been generalized in many aspects:
higher-order methods and multi-dimensional schemes [8, 12] were constructed and analyzed. The approximation
methods can also be applied to several kind of equations containing fractional diffusion operator, see, e.g., [13]
and [14].

Recently, the finite element (Galerkin) discretization was initiated [15] for the fractional diffusion equations and
a composite approach was analyzed [16]. Also, one can apply spectral methods: different kind of orthogonal bases
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can be combined with tau methods [14, 17–19] or with Gauss–Lobatto collocation methods [20]. A furher alternative
to solve fractional diffusion problems numerically is the application of fractional order Laplace transform [21], [22].
The last two approaches can also deliver higher-order spatial accuracy.

The problem which inspired the present research is the following. If a superdiffusive evolution of some density
u is observed on a physical volume then we have information on the density only on the closure of this. On the
other hand, in the mathematical model, nonlocal operators are used, which require the value of u also outside of the
domain. For an accurate finite difference approximation we also need values outside of the domain. In this way, it is
natural to look for an extension of the density u.

The majority of the authors consider homogeneous Dirichlet boundary conditions and assume zero values
outside of the domain. A similar approach is applied in the non-local calculus [6].

At the same time, the homogeneous Neumann boundary conditions have a central importance in the modeling
of real-life phenomena, since this corresponds to zero flux at the boundary. To our best knowledge, there is only
one attempt [23], dealing with the Neumann type boundary condition at the operator level and proposing a matrix
transformation technique.

The main objective of this paper is to develop a finite difference numerical solution for space-fractional diffusion
problems with Neumann boundary conditions. In details, the main steps in the articles are to
– develop a meaningful mathematical approach to model homogeneous Neumann (and Dirichlet) boundary

conditions
– analyze the well-posedness of the corresponding PDE’s
– construct a corresponding finite difference scheme with a full error analysis.

2 Mathematical preliminaries

2.1 Fractional calculus

We summarize some basic notions and properties of the fractional calculus. For more details and examples we refer
to the monographs [24–26] and the recent work [27].

To define an appropriate function space for the fractional order derivatives on the real axis we introduce for
arbitrary a; b 2 R the function spaces

NC.a; b/ D C Œa; b�j.a;b/ and NC.a; b/=R D ff 2 NC.a; b/ W
bZ
a

f D 0g:

With these we define
CI .R/ D fb � a - periodic extension of f : f 2 NC.a; b/=Rg:

Remarks.
1. Functions in CI .R/ are bounded and they are continuous except of the possible discontinuity points faC k.b�
a/ W k 2 Zg.

2. In the points faC k.b � a/ W k 2 Zg we define f to be f.a/Cf.b/
2

.

Definition 2.1. For the exponent ˇ 2 .0; 1/ the fractional order integral operators �1I
ˇ
x and xI

ˇ
1 on the space

CI .R/ are defined with

�1I
ˇ
x f .x/ D

1

�.ˇ/

xZ
�1

f .s/

.x � s/1�ˇ
ds

and

xI
ˇ
1f .x/ D

1

�.ˇ/

1Z
x

f .s/

.s � x/1�ˇ
ds:
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With this, the left and right-sided Riemann–Liouville derivatives of order ˛ 2 RC n Z are given by

RL
�1@

˛
xf .x/ D @

n
x �1I

n�˛
x f .x/

and
RL
x @˛1f .x/ D .�1/

n@nx xI
n�˛
1 f .x/;

where n is the integer with n � 1 < ˛ < n.
Accordingly, for a function f D f0CCf , where f0 2 CI .R/ and Cf is a constant function we define the Riesz

derivative with
@˛
jxjf .x/ D C� .

RL
�1@

˛
xf0.x/C

RL
x @˛1f0.x//;

where C� D � �
2 cos˛ �2

with a given positive constant � .

Remarks.
1. For the simplicity, the constant � – which corresponds to the intensity of the superdiffusive process in the real-life

phenomena – does not appear in the notation @˛
jxj

.
2. In the original definition, the Riemann–Liouville derivatives are given on a bounded interval .a; b/ � R such

that in the above definition �1 and1 are substituted with a and b, respectively. In this case, aI
ˇ
x and xI

ˇ

b

can be defined for the exponent ˇ 2 RC or even for ˇ 2 C with Re ˇ > 0, in case of complex valued functions,
see Section 2.1 in [24]. Moreover, the definition can be extended to be a bounded operator on the function space
L1.a; b/, see Theorem 2.6 in [26]. For an overview of the alternating notations and definitions, we refer to the
review paper [28].

3. An advantage of the above approach is that alternative definitions on the real axis coincide. For instance,
fractional derivatives can be interpreted using the fractional power of the negative Laplacian ��, see Lemma
1 in [29]. This can be introduced via Fourier transform, see Section 2.6 in [26]. For more information and
multidimensional extension of the Riesz derivative see also Section 2.10 in [24]. Note that finite difference
discretizations for Riesz fractional derivatives has been studied also in [30] highlighting its connection with
probabilistic models.

4. We have left open the question for which functions does Definition 2.1 make sense. The general answer requires
the discussion of the Triebel–Lizorkin spaces [31], [26], which is beyond the scope of this paper. Some sufficient
conditions on a bounded interval .a; b/ are also discussed in Lemma 2.2 in [24]. At the same time, we will
approximate the Riesz derivative with finite differences of the fractional integrals and verify that the fractional
integrals make sense on the function space CI .R/.

Lemma 2.2. For each function f 2 CI .R/ and any exponent ˛ 2 .1; 2/ the fractional order integral operators

�1I
2�˛
x f and xI

2�˛
1 f make sense.

Proof. We prove the statement for the right-sided approximation, the left sided can be handled in a similar way. In
concrete terms, we prove that

1Z
x

f .s/

.s � x/˛�1
ds <1: (1)

Obviously, there is a k 2 Z such that aC .b � a/k > x and accordingly,

1Z
x

f .s/

.s � x/˛�1
ds D

aC.b�a/kZ
x

f .s/

.s � x/˛�1
ds C

1Z
aC.b�a/k

f .s/

.s � x/˛�1
ds: (2)

Here, using the condition 0 < ˛�1 < 1 we have that the first term is finite. To estimate the second one, we introduce
the function F W .aC .b � a/k;1/! R with

F.s/ D

sZ
aC.b�a/k

f .s�/ ds�
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such that F 0.s/ D f .s/ on .a C .b � a/k;1/. Also, since f 2 CI .R/, we have that 0 D F.a C .b � a/k/ D

F.aC .b � a/.k C 1// D : : : such that F is bounded.
With this the second term on the right hand side of (2) can be rewritten as

1Z
aC.b�a/k

F 0.s/

.s � x/˛�1
ds D

�
F.s/

.s � x/˛�1

�1
aC.b�a/k

�

1Z
aC.b�a/k

F.s/ � .1 � ˛/

.s � x/˛
ds

D �

1Z
aC.b�a/k

F.s/ � .1 � ˛/

.s � x/˛
ds;

which is also finite since F is bounded and 2 � ˇ > 1. Therefore, (1) is finite, which proves the lemma.

2.2 Fundamental solutions

For the forthcoming analysis, we analyze the Cauchy problem(
@tu.t; x/ D @

˛
jxj
u.t; x/ t 2 RC; x 2 R

u.0; x/ D u0.x/ x 2 R
(3)

with a given initial function u0 2 CI .R/ and ˛ 2 .1; 2�.

Lemma 2.3. The Cauchy problem in (3) has a unique solution and can be given by

u.t; x/ D .ˆ˛;t � u0/.x/; (4)

where ˆ˛;t denotes the fundamental solution corresponding to the Riesz fractional differential operator @˛
jxj

,
furthermore, u.t; �/ 2 C1.R/ for all t 2 RC.

Proof. Applying the spatial Fourier transform F to the equations in (3) we have(
@tFu.t; s/ D �jsj˛Fu.t; s/ t 2 RC; s 2 R
Fu.0; s/ D Fu0.s/ s 2 R;

where we have used the identity F
h
@˛
jxj
u.t; x/

i
.s/ D �jsj˛Fu.t; s/, see [28], p. 38. Therefore, Fu.t; s/ D

e�tjsj
˛Fu0.s/ such that an inverse Fourier transform F�1 implies that

u.t; x/ D F�1.e�tjsj
˛

Fu0.s//.x/ D F�1.e�tjsj
˛

/ � u0.x/:

In this way, the fundamental solution of (3) can be given as

ˆ˛;t .s/ D F�1.e�tjxj
˛

/.s/ D F.e�tjxj
˛

/.s/:

Using the fact that the function to transform is even and the Fourier transform F expf�aj � jg.s/ can be given (see,
e.g., [32], p. 1111) we have

ˆ˛;t .s/ D F.e�tjxj
˛

/.s/ D F.e�tjxje�tjxj
˛�1

/.s/ D F.e�tjxj/.s/ � F.e�tjxj
˛�1

/.s/

D

q
2
�
t

t2 C s2
� F.e�tjxj

˛�1

/.s/:

(5)

Here for any fixed t the real function given by s !

q
2
� t

t2Cs2
is in C1.R/ and also all of its derivatives are in L1.R/.

On the other hand, for ˛ > 1 the real function given with e�tjxj
˛�1

is in L1.R/, therefore F.e�tjxj˛�1/ is bounded
and continuous. Consequently, using (5) the right hand side of the equality

@kˆ˛;t .s/ D @
k

q
2
�
t

t2 C s2
� F.e�tjxj

˛�1

/.s/

makes sense, which gives statement in the lemma.
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2.3 Discretization

The finite difference approximation of the fractional order derivatives is not straightforward. It turns out that an
obvious one-sided finite difference approximation of the one-sided Riemann–Liouville derivatives results in an
unstable method even if an implicit Euler method is applied for the time marching scheme [7]. To stabilize these
schemes, we need to use the translated Grünwald–Letnikov formula, which is given for f 2 C.R/ with

D
˛;p;h

�1;GL
f .x/ D

1

�.�˛/
lim

M!1

1

h˛

MX
kD0

�.k � ˛/

�.k C 1/
f .x � .k � p/h/

D
1

h˛

1X
kD0

gkf .x � .k � p/h/

(6)

and

D
˛;p;h

1;GL
f .x/ D

1

�.�˛/
lim

M!1

1

h˛

MX
kD0

�.k � ˛/

�.k C 1/
f .x C .k � p/h/

D
1

h˛

1X
kD0

gkf .x C .k � p/h/

(7)

depending on the translation parameter p 2 N, the order of the differentiation ˛ 2 .1; 2� and the discretization
parameter h 2 RC, where we used the coefficients

gk D
�.k � ˛/

�.�˛/�.k C 1/
D .�1/k

 
˛

k

!
:

The principle of the two-sided translated discretizations is depicted in Figure 1.

Fig. 1. Basis points for the the left-sided (�) and the right-sided (Þ) translated Grünwald–Letnikov formula (given in (6) and (7))
applied in x with the translation parameter p D 2.

* * * * * * * *Þ Þ Þ Þ Þ Þ Þ Þ
� � � x � 4h x � 3h x � 2h x � h x xC h x C 2h x C 3h x C 4h � � �

These coefficients satisfy the following:

1X
kD0

gk D 0 8 ˛ 2 .1; 2�

g1 D �˛; gj � 0 for j 6D 1:

(8)

We use the same notation for the discrete differential (or difference) operators, i.e. for each v D

.: : : ; v�1; v0; v1; : : : / 2 RZ we writeh
D
˛;p;h

�1;GL
v
i
j
D

1

h˛

1X
kD0

.�1/kgkvjCp�k and
h
D
˛;p;h

1;GL
v
i
j
D

1

h˛

1X
kD0

.�1/kgkvjCk�p; (9)

where the superscript j denotes the j th component.
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Remarks.
1. One can prove [7] that the integrals in (6) and (7) approximate the corresponding Riemann–Liouville derivatives

in the following sense:
RL
�1@

˛
xf .x/ D D

˛;p;h

�1;GL
f .x/CO.h/ (10)

and similarly,
RL
x @˛1f .x/ D D

˛;p;h

1;GL
f .x/CO.h/; (11)

provided that both of the Fourier transform of f and that of RL�1@
˛
xf .x/ and RLx @˛1f .x/ are in L1.R/. We will

point out that in the present framework no such assumption is necessary.
2. Higher-order finite difference approximations can be obtained as a linear combination of first order ones using

different translation parameters. For example, the sum defined by

GL
�1D

˛;p;q

x;h
u.x/ D

2q � ˛

2.p � q/
D
˛;p;h

�1;GL
u.x/C

2p � ˛

2.p � q/
D
˛;p;h

�1;GL
u.x/ (12)

provides a second order accurate approximation of the Riemann–Liouville derivative. Similar statement holds
if �1 is switched to1. For the details, see [12].

3. The nonlocal effect of the differential operators result in full matrices. At the same time, one can save some
computing efforts with an appropriate decomposition of the above matrix [33].

4. An alternative approximation of fractional order elliptic operators (which can be applied in multidimensional
cases) was proposed in [34], which can be a basis also for finite element discretizations.

3 Results

3.1 Extensions

Extensions are not only necessary to have well-posed problems involving nonlocal diffusion operators, but also
essential at the discrete level. In order to have sufficient accuracy in the finite difference approximation near to the
boundary and at the boundary of a nonlocal differential operator, it is necessary to have (virtual) gridpoints outside
of the original computational domain � D .a; b/. This is clearly shown in (6), (7) and (12).

To summarize, the sketch of our approach is the following:
– we extend the problem to R to get rid of the boundary conditions
– we solve the corresponding Cauchy problem (3) (we will approximate this with finite differences)
– we verify that the desired homogeneous Neumann (or homogeneous Dirichlet) boundary conditions are satisfied

for the restriction of the solution.

Definition 3.1. We say that the extension
Q� W L2.�/! CI .R/

is compatible with the homogeneous Neumann (no-flux) or Dirichlet boundary conditions and the operator @˛
jxj

if
the function Qu is the unique solution of the following problem(

@t Qu.t; x/ D @
˛
jxj
Qu.t; x/ t 2 RC; x 2 R

Qu.0; x/ D Qu0.x/ x 2 R

and @x Qu.t; x/ D 0 or Qu.t; x/ D 0 for x 2 @� and t > 0.

In rough terms, one can say that a correct extension of the solution from� is the function which solves the extended
problem on the whole real axis such that the boundary condition on @� is still satisfied.
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3.2 Extension corresponding to homogeneous Dirichlet boundary condition

As a motivation, we use the idea in [35] which is generalized to the case of two absorbing walls. For the simplicity,
the definition is given for functions u W .0; 1/! R.

Definition 3.2. We call the 2-periodic extension of the function

OuD;1.x/ D

(
u.x/ for x 2 .0; 1/

�u.�x/ for x 2 .�1; 0/

the Dirichlet type extension of u and we denote it with OuD .

Remarks.
1. This is sometimes called the odd extension of u and can be obtained first with reflecting the graph of u to .0; 0/

and .1; 0/ 2 R2 to extend it to .�1; 2/ and reflecting this graph further to .�1; 0/ and .2; 0/ 2 R2 to extend it
to .�2; 3/ and continuing this process.

2. A natural physical interpretation of this extension is the following: To ensure zero-concentration at the end
points in the consecutive time steps, we have to force a skew-symmetric concentration profile around 0 and 1.

3. We may define uD.k/ D 0 for k 2 Z but as we will see this is not essential.

A simple calculation shows that we have

OuD.y/ D �OuD.�y/ and OuD.1C y/ D �OuD.1 � y/ y 2 R: (13)

We define similarly the extension OvD 2 RZ of the vector v D .v0; v1; : : : ; vNC1/ 2 RNC2 with v0 D vNC1 D 0:

ŒOvD�j D

8̂̂<̂
:̂
vj j D 0; 1; : : : ; N C 1

�v2.NC1/�j j D N C 2;N C 3; : : : ; 2N C 1

vjC2N j 62 f0; 1; : : : ; 2N C 1g :

(14)

3.3 Extension corresponding to homogeneous Neumann boundary condition

Similarly to the previous case, the definition is given for functions u W .0; 1/! R.

Definition 3.3. We call the 2-periodic extension of the function

OuN ;1.x/ D

(
u.x/ for x 2 .0; 1/

u.�x/ for x 2 .�1; 0/

the Neumann type extension of u and we denote it with OuN .

Remarks.
1. This is sometimes called the even extension of u and can be obtained first with reflecting the graph of u to the

vertical line given with x D 0 to extend it to .�1; 0/ then to the vertical line given with x D 1 to extend it to
.1; 2/ and continuing this process.

2. A natural physical interpretation of this extension is the following: To ensure zero-flux, we force a symmetric
concentration profile around 0 and 1.

A simple calculation shows that

@x Of
N .1C y/ D @x Of

N .1 � y/ and @x Of
N .y/ D @x Of

N .�y/ y 2 R: (15)
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Similar notations are used for the “extended” vector OvN 2 RZ of v D .v0; v1; : : : ; vN / 2 RNC1 which is defined
as follows:

ŒOvN �j D

8̂̂<̂
:̂
vj j D 0; 1; : : : ; N

v�j�1 j D �N � 1;�N; : : : ;�1

vjC2NC2 j 62 f�N � 1; : : : ; 0; : : : ; N g :

(16)

A natural physical interpretation of this extension is that particles are reflected at the boundaries to ensure zero flux.
In this way, we also reflect the concentration profile in the model. The principle of the Neumann extension for a
vector is visualized in Figure 2.

Fig. 2. Entries of the Neumann extension OvN of the vector v D .v0; v1; v2; v3/.

˘

˘

˘

˘ �

�

�

� ˘

˘

˘

˘

v�4 v�3 v�2 v�1 v0 v1 v2 v3 v4 v5 v6 v7

We verify that the above extensions meet the requirements in Definition 3.1.

Lemma 3.4. The extensions OuN and OuD are compatible with the Dirichlet and the Neumann boundary conditions,
respectively and with the differential operator @˛

jxj
.

Proof. According to Lemma 2.3 we can express the solution of(
@tu D @

˛
jxj
u on RC � R

u.0; �/ D OuN

with the convolution
u.t; �/ D ˆ˛;t � Ou

N
D OuN �ˆ˛;t ;

such that
u.t; x/ D

Z
R

OuN .x � y/ˆ˛;t .y/ dy :

Since ˆ˛;t 2 C1.R/, the same holds for u.t; �/. Accordingly, the right and left limit of @xu.t; �/ in 1 coincide.
Using this, (15) and the fact that ˆ˛;t is even we obtain

@xu.t; 1/ D lim
�n!0�

@xu.t; 1 � �n/ D lim
�n!0�

.@x Ou
N
�ˆ˛;t /.1 � �n/

D lim
�n!0�

Z
R

@x Ou
N .1 � �n � y/ˆ˛;t .y/ dy D � lim

�n!0�

Z
R

@x Ou
N .1C �n C y/ˆ˛;t .y/ dy

D � lim
�n!0�

Z
R

@x Ou
N .1C �n C y/ˆ˛;t .�y/ dy

D � lim
�n!0�

Z
R

@x Ou
N .1C �n � y/ˆ˛;t .y/ dy D � lim

�n!0�
.@x Ou

N
�ˆ˛;t /.1C �n/

D � lim
�n!0�

@xu.t; 1C �n/ D �@xu.t; 1/;

which gives that the homogeneous Neumann boundary condition is satisfied in 1. With an obvious modification,
using (15), we can also verify the homogeneous Neumann boundary condition @xu.t; 0/ D 0.
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Similarly, we can express the solution of(
@tu D @

˛
jxj
u on RC � R

u.0; �/ D OuD

with
u.t; x/ D

Z
R

OuD.x � y/ˆ˛;t .y/ dy :

Since ˆ˛;t 2 C1.R/, the same holds for u.t; �/. Accordingly, the right and left limit of u.t; �/ in 1 coincide. Using
this and (13) we obtain

u.t; 1/ D lim
�n!0�

u.t; 1 � �n/ D lim
�n!0�

OuD �ˆ˛;t .1 � �n/

D lim
�n!0�

Z
R

OuD.1 � �n � y/ˆ˛;t .y/ dy D � lim
�n!0�

Z
R

OuD.1C �n C y/ˆ˛;t .y/ dy

D � lim
�n!0�

Z
R

OuD.1C �n C y/ˆ˛;t .�y/ dy D � lim
�n!0�

Z
R

OuD.1C �n � y/ˆ˛;t .y/ dy

D � lim
�n!0�

OuD �ˆ˛;t .1C �n/ D � lim
�n!0�

u.t; 1C �n/ D �u.t; 1/;

which gives that the homogeneous Dirichlet boundary condition is satisfied in 1. With an obvious modification, using
(13), we can verify homogeneous Dirichlet boundary condition also in 0.

In both cases, the equality @tu D @˛jxju is satisfied in .0; 1/ which gives the statement in the lemma.

Using the above extension, we will investigate the numerical solution of the problem(
@tu.t; x/ D @

˛
jxj
uN .t; �/.x/ t 2 .0; T /; x 2 .0; 1/

u.0; x/ D u0 x 2 .0; 1/:
(17)

The following theorem is the basis of our numerical method, which again confirms the favor of the Neumann type
extension.

Theorem 3.5. For any u0 2 C Œ0; 1� the problem in (17) is well-posed, and its unique solution u 2 C1Œ0; 1� satisfies
the boundary conditions @xu.t; 0/ D @xu.t; 1/ D 0.

Proof. We first note that the problem(
@tu.t; x/ D @

˛
jxj
u.t; x/ t 2 .0; T /; x 2 R

u.0; x/ D OuN
0
.x/ x 2 R:

(18)

is well-posed and corresponding to Lemma 3.4 its solution can be given by

u.t; x/ D

Z
R

OuN .x � y/ˆ˛;t .y/ dy :

This implies that

u.t;�x/ D

Z
R

OuN .�x � y/ˆ˛;t .y/ dy D
Z
R

OuN .x C y/ˆ˛;t .�y/ dy D
Z
R

OuN .x � y/ˆ˛;t .y/ dy D u.t; x/:

and
u.t; x C 2/ D

Z
R

OuN .x C 2 � y/ˆ˛;t .y/ dy D
Z
R

OuN .x � y/ˆ˛;t .y/ dy D u.t; x/:

Therefore, the restriction of the solution u of (18) solves the problem in (17). Here we have also used throughout
that for the Neumann extension: uN 2 CI .R/ such that the Riesz derivative @˛

jxj
uN makes sense.
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To prove the uniqueness, we assume that v solves (17). According to (15) we obviously have that the Neumann
extension satisfies

@t Ov
N .t;�x/ D @t Ov

N .t; x/ x 2 R: (19)

To compute the fractional order integral we introduce the function CI .R/ 3 OvN0 D Ov.t; �/
N �

R 1
0
v.t; �/ such that we

have

�.2 � ˛/1I
2�˛
x OvN0 .�x/ D

�xZ
�1

vN
0
.y�/

.�x � y�/˛
dy� C

1Z
�x

vN
0
.y�/

.y� C x/˛
dy�

D

1Z
x

vN
0
.�y/

.�x C y/˛
dy C

xZ
�1

vN
0
.�y/

.�y C x/˛
dy D

1Z
x

vN
0
.y/

.�x C y/˛
dy C

xZ
�1

vN
0
.y/

.�y C x/˛
dy

D �.2 � ˛/1I
2�˛
x OvN0 .x/:

Therefore, we also have
@˛
jxjv

N .t;�x/ D @˛
jxjv

N .t; x/: (20)

Consequently, (19) and (20) imply

@t Ov
N .t;�x/ D @t Ov

N .t; x/ D @˛
jxjv

N .t; x/ D @˛
jxjv

N .t;�x/

and the periodicity obviously gives

@t Ov
N .t; 2C x/ D @t Ov

N .t; x/ D @˛
jxjv

N .t; x/ D @˛
jxjv

N .t; 2C x/

such that the Neumann extension uN solves (18). This, however, has a unique solution, which gives the uniqueness
of the solution of (17).

3.4 Numerical methods

Following the classical method of lines technique we first discretize the spatial variables in the extended problem
and choose a time stepping scheme for the full discretization.

To streamline the forthcoming computations, the interval Œ0; 1� will be transformed to Œ0; ��, where we use the
following grid points:

xj WD �h

�
j C

1

2

�
D �

�
1

2.N C 1/
C

j

N C 1

�
: (21)

un
j

denotes the numerical approximation at time n� in the grid point xj and u.nı; �/ the values of the analytic solution
at time nı in the grid points.

3.4.1 Analysis of a finite difference scheme

For the spatial discretization we use the Grünwald–Letnikov approximations in (9) introducing A˛;h 2

R.NC1/�.NC1/ with
A˛;hu D D˛;1;h�1;GLuN

CD˛;1;h1;GLuN : (22)

This is combined with an implicit Euler time stepping to obtain

unC1
j

� un
j

�
D

h
A˛;hu

nC1
i
j
: (23)

To make the consecutive formulas more accessible, we expand (22) in a concrete example.
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Example. We give the first component of A˛;hv for v D .v0; v1; v2; v3/.

ŒA˛;hv�1 D g0v0 C g1v1 C g2v2 C g3v3 C g4v3 C g5v2 C g6v1 C g7v0 C g8v0 C : : :

C g0v2 C g1v1 C g2v0 C g3v0 C g4v1 C g5v2 C g6v3 C g7v3 C g8v2 C : : : :

In the general case, using (22), (9) and (16) we obtain that

ŒA˛;hv�j D
C�

h˛

0@jC1X
kD0

gkvj�kC1 C

N�jC1X
kD0

gkvkCj�1

C

1X
lD0

0@jCNC2X
kDjC2

gkC2l.NC1/vk�j�2 C

2N�jC2X
kDN�jC2

gkC2l.NC1/v2N�k�jC2

1A
C

1X
lD0

0@ jC2NC3X
kDjCNC3

gkC2l.NC1/v2NCj�kC3 C

3N�jC3X
kD2N�jC3

gkC2l.NC1/vk�2NCj�3

1A1A
j D 1; 2; : : : ; N � 1

(24)

ŒAv�0 D
2C�

h˛
.g0v1 C g1v0

C

1X
lD0

0@NC2X
kD2

gkC2l.NC1/vNC2�k C

2NC3X
kDNC3

gkC2l.NC1/v2N�kC3

1A1A ; (25)

ŒAv�N D
2C�

h˛
.g0vN�1 C g1vN

C

1X
lD0

0@NC2X
kD2

gkC2l.NC1/vN�kC2 C

2NC3X
kDNC3

gkC2l.NC1/vk�N�3

1A1A : (26)

ForK D 2mC1 the corresponding matrix can be given with a slight modification. Observe that all of the coefficients
gi arise once on the right hand side of (24), (25) and (26).

Proposition 3.6. The matrix A˛;h has negative diagonal and non-negative off-diagonal elements.

Proof. Observe that in (24), (25) and (26) the coefficient of vj ; v0 and vN , respectively, is g1, and g1 appears only
here. Therefore, using also (8) we obtain that A has negative diagonals and positive off-diagonals.

We analyze the properties of the matrix A˛;h and the corresponding differential operator.

Lemma 3.7. The eigenvectors of the matrix A˛;h 2 R.NC1/�.NC1/ are given as

vkh D .cos kx0; cos kx1; : : : ; cos kxN�1; cos kxN /T

for each k D 0; 1; 2 : : : ; N with the corresponding eigenvalues

�
�

cos
�
˛
2
�
� � 2

h

�˛
sin˛

k�h

2
� cos

�
k�hC

˛

2
.� � k�h/

�
:

Lemma 3.8. The eigenfunctions of the operator @˛
jxj

on .0; 1/ with homogeneous Neumann boundary conditions are
given by fcos k�xg1kD1 with the corresponding eigenvalues f� � .k�/˛g1kD1.

The technical proofs of these statements are postponed to the Appendix.

Proposition 3.9. The numerical approximation defined in the scheme (23) is consistent with the problem in (17) in
the maximum norm and the order of the consistency is O.�/CO.h/.
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Proof. It is sufficient to prove that the right hand side of (23) provides a first order approximation for the Riesz
derivative of order j˛j. According to the proof of Theorem 3.5 the analytic solution uN of (18) is periodic, smooth
and it satisfies the homogeneous Neumann boundary conditions in 0 and 1. Therefore, its cosine Fourier series is
pointwise convergent:

u.t; x/ D

1X
kD0

Fk cos k�x x 2 .0; 1/; t 2 RC; (27)

where we do not denote the time dependence of the cosine Fourier coefficients Fk .
Using again that u.t; �/ 2 C1.R/ we also have - using the regularity theory of Fourier series - that for any

r 2 N there exists a constant Cr such that

jFk j �
Cr

.k�/r
8k 2 NC: (28)

Using (27) componentwise for t D nı we have that

u.hı; �/ D Œu.nı;
x0

�
/ u.nı;

x1

�
/ : : : u.nı;

xN

�
/�T

D Œ

1X
kD0

Fk cos kx0
1X
kD0

Fk cos kx1 : : :
1X
kD0

Fk cos kxN �T D
1X
kD0

Fkvkh:
(29)

Using Lemma 3.8 for the expansion in (27) and the matrix A˛;h for (29) according to (42) we obtain the following
equality:

@˛
jxju.nı;

xj

�
/ � ŒA˛;hu.nı; �/�j

D

1X
kD0

��.k�/˛Fk cos k�xj �

"
A˛;h

1X
kD0

Fkvkh

#
j

D

1X
kD0

Fk cos k�xj

�
��.k�/˛ �

2C�

h˛
2˛ sin˛

k�h

2
� cos

�
k�hC

˛

2
.� � k�h/

��
D �

1X
kD0

�Fk cos k�xj .k�/˛
 
1 �

 
sin k�h

2

k�h
2

!˛
cos

�
k�hC ˛

2
.� � k�h/

�
cos k�h

2

!
:

(30)

To prove the proposition we first verify that for a mesh-independent constant C the following inequality is valid:ˇ̌̌̌
1 �

�
sin s
s

�˛ �
cos s.˛ � 2/ � sin s.˛ � 2/ tan

˛�

2

�ˇ̌̌̌
� Cs; (31)

which will be applied with s D k�h
2

. We first verify that

h.s/ WD 1 �

�
sin s
s

�˛ �
cos s.˛ � 2/ � sin s.˛ � 2/ tan

˛�

2

�
� Cs; (32)

where lims!0C h.s/ D 0. Therefore, it is sufficient to prove that h0 is bounded on Œ0; �
2
�. Obviously,

h0.s/ D ˛

�
sin s
s

�˛�1 sin s � s � cos s
s2

� .˛ � 2/
h
cos s.˛ � 2/ � sin s.˛ � 2/ tan

˛�

2

i
C

�
sin s
s

�˛ �
.˛ � 2/

�
sin s.˛ � 2/ � cos s.˛ � 2/ tan

˛�

2

��
;

where
lim
0C

s � cos s � sin s
s2

D lim
0C

s sin s
2s

D 0:
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Hence, all components in the expansion of h0.s/ are bounded, which really verifies (32). Using (32) in (30) and
applying (28) we obtain the following estimation:ˇ̌̌

@˛
jxju.nı;

xj

�
/ � ŒA˛;hu.nı; �/�j

ˇ̌̌
�
C

2
h

ˇ̌̌̌
ˇ 1X
kD0

�Fk cos k�xj .k�/˛k�

ˇ̌̌̌
ˇ

�
C � �

2
h

1X
kD0

jFk j.k�/
˛C1

�
C5C � �

2
h

1X
kD1

1

.k�/5
.k�/˛C1 �

C5C � �

2
h

1X
kD1

1

.k�/2
;

(33)

which completes the proof.

Theorem 3.10. The numerical approximation defined in the scheme (23) converges to the solution of (17) in the
maximum norm for ˛ 2 .1; 2� and the order of the convergence is O.�/CO.h/.

Proof. Using Proposition 3.9 we only have to verify the stability of (23). For this, we rewrite it into a linear system

.I � �A˛;h/unC1 D un:

Using Proposition 3.6 we obtain that the diagonal of I��A˛;h is strictly positive and has non-positive off-diagonals.
Moreover, using (24), a simple calculation shows that for the indices j D 1; 2; : : : ; N � 1 we haveh

.I � �A˛;h/ � .1; 1; : : : ; 1/
T
i
j

D 1C
�

h

0BB@˛ � jC1X
kD0
k 6D1

gk �

1X
lD0

jC2CNX
kDjC2

gkC2l.NC1/ �

1X
lD0

jC2NC3X
kDjCNC3

gkC2l.NC1/

1CCA
C
�

h

0BB@˛ � N�jC1X
kD0
k 6D1

gk �

1X
lD0

2N�jC2X
kDN�jC2

gkC2l.NC1/ �

1X
lD0

3N�jC3X
kD2N�jC3

gkC2l.NC1/

1CCA :
(34)

Observe that in the brackets in (34) each coefficient gi ; i 6D 1 appears once (see the Example and the remark after
(26)).

According to (8), we obtain

˛ �

1X
kD0
k 6D1

gk D �

1X
kD0

gk D 0

and therefore, the sum in both brackets on the right hand side of (34) is zero such that the entire right hand side is
one. Using (25) and (26), an obvious modification of (34) gives its positivity both for the indices j D 0 and j D N .
Therefore, h

.I � �A˛;h/ � .1; 1; : : : ; 1/
T
i
j
D 1

is valid for all j D 0; 1; : : : ; N . In this way, .I ��A˛;h/�1 elementwise positive such that k.I ��A˛;h/�1k1 D 1,
and consequently, the scheme in (23) is unconditionally stable.

3.5 Construction of the matrix A˛;h

Whenever the coefficient in the matrix A˛;h are based on an infinite number of grid points, it can be computed in
concrete terms.

For this we introduce B˛;h 2 R.NC1/�.NC1/ with

B˛;h D
�

v0h; v
1
h; : : : ; v

N
h

�
;
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which consists of the eigenvectors of A˛;h, see Lemma 3.7. Then

.I � �A˛;h/B˛;h D
�
.1 � ��1/v0h; .1 � ��1/v

1
h; : : : ; .1 � ��1/v

N
h

�
;

and therefore,
�A˛;h D I �

�
.1 � ��1/v0h; .1 � ��1/v

1
h; : : : ; .1 � ��1/v

N
h

�
B�1˛;h; (35)

where on the right hand side all terms can be computed.

Remark. The statement in Lemma 2.3 offers an alternative to our approach: the numerical solution of the extended
problem can be performed with an accurate approximation of the fundamental solution and taking numerical
convolution. For a two-dimensional approximation of (4) we refer to [36].

3.6 Complexity and extension to higher-order methods

Since we have explored the eigenvectors of A˛;h we do not have to compute its components in practice as a series.
We simply obtain the matrix using (35) such that the extension does not result in extra computational costs.

Higher order methods can be obtained in the same fashion. In the semidiscretization, we should then choose a
higher order spatial approximation, e.g., the one in (12) and the accuracy of the time stepping can also be increased,
e.g., using a Crank–Nicolson scheme. For homogeneous Dirichlet boundary conditions, such a study is performed
(even for the multidimensional case) in [8].

4 Numerical experiments

4.1 A homogeneous model problem

We first investigate the model problem8̂̂<̂
:̂
@tu.t; x/ D 0:25@

1:2
jxj
u.t; x/ x 2 .0; 1/; t 2 .0; 1/

u.0; x/ D x4

4
�
x2

2
x 2 .0; 1/

@xu.t; 0/ D @xu.t; 1/ D 0 t 2 .0; 1/;

(36)

which is converted to the well-posed extended problem8<:@tu.t; x/ D 0:25@1:2jxj u.t; x/ x 2 .0; 1/; t 2 .0; 1/

u.0; x/ D
3x4
4
�
x2

2
N x 2 R:

(37)

The analytic solution of (37) on .0; 1/ � .0; 1
2
/ is

u.t; x/ D �
14

120
C

1X
kD1

.�1/kC1
12

.k�/4
e�

t
4 .k�/

1:2

cos.k�x/ x 2 .0; 1/; t 2 .0; 1/;

which has been computed in the grid points with a high accuracy to verify the convergence of the implicit Euler
method. The results of the computations are summarized in Table 1. We computed the error ke�;hk1 of the
approximation in maximum-norm for various time steps and discretization parameters at the final time t D 1. One
can clearly see the first order convergence which was predicted by the theory, see Theorem 3.10. The convergence
rate was estimated in the consecutive refinement steps using the formula log2

�
ke2�;2hk1
ke�;hk1

�
.
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Table 1. Convergence results for the implicit Euler method in (23) applied to (37)

Grid parameter (h) Time step (�) Error in k � k1-norm Convergence rate

1/2 1/2 1.4 �10�2 ;

1/4 1/4 1.5 �10�2 0.1583
1/8 1/8 1.2 �10�2 0.3342
1/16 1/16 7.8 �10�3 0.6299
1/32 1/32 4.5 �10�3 0.8007
1/64 1/64 2.4 �10�3 0.8952
1/128 1/128 1.3 �10�3 0.9459
1/256 1/256 6.3 �10�4 0.9725
1/512 1/512 3.2 �10�4 0.9861

The model of (fractional order) diffusion predicts that in case of homogeneous Neumann boundary conditions the
total mass should be preserved. Accordingly, in the numerical simulations above, the l1 norm should be constant,
which is an easy consequence of the fact, that the sum of the elements in the columns of A˛;h;1 is zero.

Therefore, we examine the boundary conditions in course of the simulations. For this, we use the second order
accurate approximation

@xu.t; 0/ D
1

2h
.3u.t; 0/ � 4u.t; h/C u.t; 2h// (38)

and the results are shown in Figure 3. For the simplicity, we applied the same number of grid points in the spatial
and the time coordinates. This accurate approximation can be recognized as the numerical equivalent of Lemma 3.4.

Fig. 3. The approximation (38) of the derivative @xu.1; 0/ in the numerical simulations vs. the number of gridpoints.

4.2 An inhomogeneous model problem

Secondly, investigate the model problem8̂̂<̂
:̂
@tu.t; x/ D 0:5 � @

1:6
jxj
u.t; x/C e�t cos�x x 2 .0; 1/; t 2 .0; 1/

u.0; x/ D 2x2 � 4
3
x3 x 2 .0; 1/

@xu.t; 0/ D @xu.t; 1/ D 0 t 2 .0; 1/;

(39)

which is converted to the well-posed extended problem8<:@tu.t; x/ D 0:5 � @1:6jxj u.t; x/C e�t cos�x x 2 .0; 1/; t 2 .0; 1/

u.0; x/ D 42x2 � 4
3
x3N x 2 R:

(40)
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We split the original equation in (39) into two ones as8̂̂<̂
:̂
@tu1.t; x/ D 0:5 � @

1:6
jxj
u1.t; x/ x 2 .0; 1/; t 2 .0; 1/

u1.0; x/ D 2x
2 �

4
3
x3 x 2 .0; 1/

@xu1.t; 0/ D @xu1.t; 1/ D 0 t 2 .0; 1/

and 8̂̂<̂
:̂
@tu2;t�.t; x/ D 0:5 � @

1:6
jxj
u2;t�.t; x/ x 2 .0; 1/; t 2 .0; 1/

u2;t�.0; x/ D e
�t� cos�x x 2 .0; 1/

@xu2;t�.t; 0/ D @xu2;t�.t; 1/ D 0 t 2 .0; 1/;

the analytic solution of which is given as

u1.t; x/ D
1

3
C

1X
kD1

16

.k�/4
e�

t
2 .k�/

1:6

..�1/k � 1/ cos.k�x/ x 2 .0; 1/; t 2 .0; 1/;

and
u2;t�.t; x/ D e

�t1:6� t�2 x 2 .0; 1/; t 2 .0; 1/:

These have been computed in the grid points with a high accuracy to verify the convergence of the implicit Euler
method. Then, according to the Duhamel’s principle (see [37], p. 49) we have

u.t; x/ D u1.t; x/C

tZ
0

u2;t�.t � t
�; x/ dt�:

Accordingly, for the numerical solution at t D 1 we compute first the approximation of u1.t; �/ at the grid points.
Then with the same time steps and spatial accuracy we approximate

u2;0.1; �/; u2;� .1 � �; �/; u2;2� .1 � 2�; x/; : : : ; u2;1.0; x/;

where indeed, the last term is already given. Then a composite trapezoidal numerical integration

u.1; x/ �
�

2
u2;0.1; �/C �.u2;� .1 � �; �/C u2;2� .1 � 2�; x/C � � � C u2;1�� .�; x//C

�

2
u2;1.0; x/

gives the desired approximation in x.
The results of the computations are summarized in Table 2, where in all cases � D 1=1024 such that the

numerical integration does not harm the predicted order of convergence.

Table 2. Convergence results for the implicit Euler method in (23) applied to (39)

Grid parameter (h) Time step (�) Error in k � k1-norm Convergence rate

1/2 1/2 6.2 �10�2 ;

1/4 1/4 3.7 �10�2 0.7384
1/8 1/8 2.1 �10�2 0.8490
1/16 1/16 1.1 �10�3 0.9142
1/32 1/32 5.7 �10�3 0.9535
1/64 1/64 2.9 �10�3 0.9756
1/128 1/128 1.5 �10�3 0.9875
1/256 1/256 7.3 �10�4 0.9937
1/512 1/512 3.7 �10�4 0.9967
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5 Conclusion and future work

In this paper, we have developed and analyzed a finite difference scheme for the numerical solution of one-
dimensional fractional diffusion problems with Neumann type boundary conditions. The main idea is to extend
first the problem to the real line using the boundary data and analyze its numerical solution. Whenever the scheme is
given in R, owing to the periodicity of the extension, one can give the numerical solution of the original problem (on
a bounded domain) in a conventional matrix-vector form. The corresponding method exhibits optimal convergence
rate with respect to the maximum norm. In the analysis we did not need any smoothness assumption. The proposed
method was also implemented: the convergence results have been confirmed in the numerical experiments.

The most exciting questions for the continuation of this work are the multidimensional generalization of this
approach and the treatment of Robin boundary conditions.

Appendix

Proof of Lemma 3.7. We first observe that the Neumann extension is the natural one for vk
h

in the sense thathcvkhN i
j
D cos kxj j 2 Z: (41)

Then according to (22), (41), (21), (6) and (7) we obtainh
A˛;hvkh

i
j
D

1X
lD0

C�

h˛

�
gl

hcvkhN i
jCl�1

C gl

hcvkhN i
j�lC1

�
D
C�

h˛

1X
lD0

gl .cos kxjCl�1 C cos kxj�lC1/

D
C�

h˛

1X
lD0

gl

�
cos k�h

�
j C

1

2
C l � 1/

�
C cos k�h

�
j C

1

2
� .l � 1/

��
D
2C� cos kxj

h˛

1X
lD0

gl cos k�h.l � 1/

D
2C� cos kxj

h˛
R

 
1X
lD0

expf�ik�hggl expfik�hlg

!

D
2C� cos kxj

h˛
R

 
expf�ik�hg

1X
lD0

.�1/l

 
˛

l

!
expfik�hlg

!
D
2C� cos kxj

h˛
R
�
expf�ik�hg.1 � expfik�hg/˛

�
D
2C� cos kxj

h˛
R

�
expf�ik�hg � 2˛ sin˛

k�h

2
�

�
cos

˛

2
.� � k�h/ � i sin

˛

2
.� � k�h/

��
D
2C� cos kxj

h˛
2˛ sin˛

k�h

2
�

�
cos k�h cos

˛

2
.� � k�h/ � sin k�h sin

˛

2
.� � k�h/

�
D
2C� cos kxj

h˛
2˛ sin˛

k�h

2
� cos

�
k�hC

˛

2
.� � k�h/

�

(42)

where we have used the identity

.1 � expfik�hg/˛ D
�
2 sin

k�h

2
�

�
sin

k�h

2
� i cos

k�h

2

��˛
D 2˛ sin˛

k

2
�h �

�
cos

�
�

2
�
k�h

2

�
� i sin

�
�

2
�
k�h

2

��˛
D 2˛ sin˛

k�h

2
�

�
cos

˛

2
.� � k�h/ � i sin

˛

2
.� � k�h/

�
:



598 B.J. Szekeres, F. Izsák

The definition of C� gives then the statement in the lemma.

Proof of Lemma 3.8. In the proof, we use the identities

1Z
0

xn�1 cos bx dx D
�.n/

bn
cos

n�

2
;

1Z
0

xn�1 sin bx dx D
�.n/

bn
sin

n�

2
;

(43)

which can be found in [32], 3.761/9.
Observe that the even extension of the cos.k� �/j.0;1/ function to the real axis is the cos.k� �/ function itself. On

the other hand, as it was pointed out in [29], we can differentiate the integrals in the Riemann–Liouville formula to
obtain

@˛
jxj cos.k�x/ D �

� � .k�/2

2 cos
�
˛�
2

� 0@� xZ
1

cos k�s
.x � s/˛�1

ds �

xZ
1

cos k�s
.s � x/˛�1

ds

1A : (44)

Using (43), the first term can be rewritten as

xZ
�1

cos k�s
.x � s/˛�1

ds D

1Z
0

cos k�.x � y/
y˛�1

dy

D cos k�x

1Z
0

cos k�y
y˛�1

dy C sin k�x

1Z
0

sin k�y
y˛�1

dy

D
�.2 � ˛/

.k�/2�˛

�
cos k�x cos

�.2 � ˛/

2
C sin k�x sin

�.2 � ˛/

2

�
:

A similar computations gives that

1Z
x

cos k�s
.s � x/˛�1

ds D

1Z
0

cos k�.x C y/
y˛�1

dy

D
�.2 � ˛/

.k�/2�˛

�
cos k�x cos

�.2 � ˛/

2
� sin k�x sin

�.2 � ˛/

2

�
:

Therefore, the equality in (44) can be rewritten as

@˛
jxj cos.k�x/ D

� � .k�/2

2 cos
�
˛�
2

�
�.2 � ˛/

�.2 � ˛/

.k�/2�˛
2 cos k�x cos

�.2 � ˛/

2

D
� � .k�/˛

2 cos
�
˛�
2

�2 cos k�x cos
�.2 � ˛/

2
D �� � .k�/˛ cos k�x:

On the other hand, the system fcos k�xg1kD1 is complete in L2.0; 1/ such that no further eigenfunctions can exist.
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