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A B S T R A C T

Novel viral diagnostic tools need to be affordable, fast, accurate and easy to use with sensitivity and speci-
ficity equivalent or superior to current standards. At present, viral diagnostics are based on direct detection
of viral components or indirect detection by measuring antibodies generated in response to viral infec-
tion. While sensitivity of detection and quantification are still important challenges, we expect major
advances from new assay formats and synthetic binding molecules, such as aptamers. Compared to tra-
ditional antibody-based detection, aptamers could provide faster adaptation to continuously evolving
virus strains and higher discriminating capacity between specific virus serotypes. Aptamers are very stable
and easily modifiable, so are ideal molecules for detection and chemical sensing applications. Here, we
review the use of aptasensors for detection of viral pathogens and consider the feasibility of aptasensors
to become standard devices for point-of-care diagnostics of viruses.

© 2015 Published by Elsevier B.V.
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1. Introduction

In general, viral diagnostic tests can be divided into two groups;
they are either developed to detect the virus directly or indirectly;
by determining the host response in particular virus-specific anti-
bodies that are induced upon infection. While the indirect approach
is probably the most common in current diagnostics, it cannot be

used for hemodialysed and immunocompromised patients. Fur-
thermore, the time lag between virus infection and the ability to
detect specific antibodies varies from patient to patient and from
virus to virus. For certain viruses, seroconversion occurs only months
after infection, leading to false-negative results that can have dra-
matic consequences for blood donation or screening of populations
at risk. In other cases, virus-specific antibodies are circulating in the
blood long after the clearance of the virus infection, resulting in false-
positive tests. These limitations can be avoided by direct detection
of the virus (i.e., virus cultivation, antigen detection and nucleic acid-
based detection) (Table 1).
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Virus cultivation is highly specific and can be sensitive, but is
labor-intensive and time consuming (it can take up to 10 days) [1].
Development of the shell-vial-culturing protocol led to a reduc-
tion in turn-around time as a result of the low-speed centrifugation
procedure that facilitates viral entry into cells, but it still takes at
least a day and the sensitivity is limited [2]. In contrast, viral antigen-
detection methods already enable point-of-care tests (POCTs) with
an analysis time of less than 1 h. However, the use of antibodies is
costly and some tests are even less sensitive than virus cultivation
or have high false-positive rates [5].

Nucleic-acid amplification-based detection is currently the stan-
dard diagnostic methodology in many hospitals. The main advantages
are high sensitivity and specificity [8]. In addition to the ability
to quantify the number of viruses using real-time quantitative
PCR (qPCR), isolation of nucleic acids also allows additional anal-
yses, such as sequencing, to gather information on sensitivity to
anti-viral treatment and on the origin of the virus, which is impor-
tant for outbreak management. Quantification of pathogens, in
particular of viruses, is often used to stage disease activity, prog-
nosticate disease progression, monitor efficacy of therapy and
prevent transmission. For example, in the case of HIV, the risk of
progression to AIDS is directly related to the magnitude of the viral
load in plasma. In addition, the number of viruses of an HIV-
infected mother is the strongest risk factor for transmission to the
child during delivery. Another important example is reactivation
of cytomegalovirus (CMV) infections after transplantation, which
negatively impacts the transplantation outcomes leading to
graft versus host disease. In these two examples, quantitative PCR
methods are frequently used to monitor viral load. Although the
PCR is relatively fast, generally 2–4 h, it is commonly performed
in batch in a centralized laboratory and cannot be done near the
patient that leads to increased turn-around time. The clinical rel-
evance of qPCR sensitivity for viral detection is questionable, because
typical viral infections result in large numbers of viral particles.
The quest therefore continues for the ideal diagnostic method that
is affordable, fast, accurate and easy to use outside of centralized
laboratories.

In this respect, recent progress in the development of aptasensors,
using aptamers for selective molecular recognition and applica-
tion to viral-antigen detection is very promising. In this review, we
describe the trends of the emerging field of aptasensors for detec-
tion of human viral pathogens in clinical samples in the context of
the current practice in virus detection (Fig. 1).

2. Requirements for viral diagnostics

Currently, most of the viral diagnostic assays are still con-
ducted in centralized laboratories and processed in batches. This
is an important bottleneck, since it is pivotal to detect the viral agent
as early as possible to guide adequate treatment and to take pre-
ventive measures. Determining the cause of infection solely based
on clinical parameters is quite impossible, while the treatment of
viral and bacterial infections differs significantly. Assay require-
ments for viral diagnostics, such as sensitivity and the possibility

Table 1
Comparison of the available direct methods for the detection of viruses

Method Assay time Assay limit Advantages Disadvantages Ref.

Virus isolation
Conventional cell culturing 3–10 days 1 EID50/mL Sensitive, accurate, broad detection

range, viral isolate available
Time consuming, expertise required,
not sensitive enough for all viruses

[1,2]

Shell vial culturing + immunostaining 1–3 days NA Faster than cell culture, detects
viruses that replicate poorly in cell
culture

Expertise and special equipment
required, less sensitive for RSV and
adenovirus, detection limited to
viruses tested by pre-CPE staining

[1,2]

Antigen detection
Direct immunofluorescence

Assay (DFA)
3 h NA Sensitive, fast In general, less sensitive than

culturing, expertise and special
equipment required

[3]

Immunochromatography lateral flow <10 min NA Fast, specific, cheaper than PCR Poor and variable sensitivity [4]
Membrane-based enzyme

immunoassays
3 h 1.0 ng, 103.5–105 VP Rapid High rate of false positives, less

sensitive than DFA
[5]

Flow cytometry <1 h 2.8 × 106 VP/mL Rapid Less sensitive than culturing, sample
needs purification

[6]

Nucleic acid-based detection
Reverse transcriptase PCR (RT-PCR) 5 h 0.0256 HAU Specific and sensitive Expensive, expertise required, hardly

applicable for POCT testing
[7]

Real-time quantitative PCR (qPCR) 3 h 10 copies/reaction Rapid, specific and sensitive Expensive, expertise required, not
applicable for POCT

[8]

Nucleic acid sequence-based
amplification (NASBA)

6 h 10 copies/μL Specific and sensitive High rate of false positives [9,10]

Reverse transcriptase
loop-mediated isothermal
amplification (RT-LAMP)

40–50 min 0.1 pg total RNA Simple, sensitive, rapid, visual
identification, POC testing

High rate of false positives [11,12]

NA, Not available; EID50, 50% egg infective dose – 1 EID50 is the amount of virus that will infect 50% of inoculated eggs; VP, Virus particles; HAU, Hemagglutination units –
1 HAU is the amount of virus needed to agglutinate an equal volume of standardized red blood cells.

Fig. 1. Trends in the analytical applications of aptamers for virus detection (vir* AND
aptamer AND detect*) [Black] and in the broader field of aptamers selected for viruses
(vir* AND aptamer) [Grey] according to Web of Science (on 3 April 2015). Columns
denote yearly publications, lines represent their cumulative number starting from
1 January 2005].
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for multiplexing and quantification all depend on the purpose of
the application.

In the case of a viral outbreak, sensitivity outweighs any other
assay specification and false negatives should be avoided at any cost.
Also, accuracy and rapidity of diagnosis are crucial for the control
of an outbreak. A recent example is the Ebola virus epidemic in West
Africa; accurate diagnosis in this context is especially important since
early symptoms of Ebola virus disease mimic those of many other
diseases commonly seen in this region, including symptoms asso-
ciated with malaria, typhoid fever, and Lassa fever [13]. A multiplex
capacity is, for example, required in the context of respiratory in-
fections that can commonly be caused by a broad range of different
viruses. For human immunodeficiency virus (HIV) and cytomega-
lovirus (CMV) infections, the viral load is strongly related to disease
and clinical outcome, thus quantification is important to monitor
treatment effectiveness.

The ideal diagnostic method, should be fast, accurate and easy
to use, irrespective of the virus(es) or assay requirements. POCTs
could comply with these unmet needs. Furthermore, it is impor-
tant that the assay is compatible with a large variety of sample
matrices, such as for human diagnostics, nasopharyngeal wash, oro-
pharyngeal swabs, cerebrospinal fluid, stool, urine, and blood. The
design of a POCT starts with the selection of the target. To select
the most suitable viral target, it is vital to understand the anatomy
and the replication cycle of the virus. The virus anatomy can be
divided in three parts:

(1) the genetic material, either RNA or DNA, inside the virus;
(2) a coat consisting of proteins on which surface epitopes es-

sential for attachment and infection are localized; and, for
some viruses,

(3) a lipid bilayer or envelope to protect the protein coat.

In viral diagnostics, the components targeted to detect the virus
are whole virus (virion), nucleic acids and/or viral (Fig. 2). The en-
velope is not targeted, as it has hardly any particular features to
enable selective recognition. Virus-particle quantification is diffi-
cult, due to the lack of proper standards; this problem was recently
alleviated by emerging particle-characterization methods that can
provide virion concentrations in a calibration-free manner by using
the resistive pulse technique [14,15] or optical methods [16]. These

methods have been used to quantify poliovirus, which is one of the
smallest viruses (~26 nm diameter).

During viral reproduction, virions are produced by the host cell,
which expresses every component in excess and not all are inte-
grated in a complete infectious virus. The viral components are
therefore far more abundant than complete virions, so they are the
preferred targets. The viral proteins seem to be better targets, since
nucleic acids are rapidly degraded in a clinical matrix.

3. Virus-specific aptamer selection

Aptamers are short, single-stranded oligonucleotides with a
length of 20–100 nucleotides that adopt unique sequence-dependent
conformations conferring high affinity and specificity in binding a
wide range of non-nucleic acid targets. The conformation of aptamers
relies on base-pair stacking and contains hairpins, bulges, interior
and multi-branch loops, but can also form complex 3D structures
(e.g., the G-quadruplex conformation) [17]. The binding affinity and
specificity of aptamers is similar and, in many cases, superior to
monoclonal antibodies, but aptamers can be more rapidly, repro-
ducibly and cost-effectively generated by a fully in vitro selection
procedure [i.e., Systematic Evolution of Ligands by Exponential En-
richment (SELEX)] [18]. Since the SELEX method does not depend
on living organisms, aptamers can be selected against non-
immunogenic and toxic agents, and they can detect their targets even
in non-physiological conditions [19]. Their fast generation is par-
ticularly attractive to anticipate continuously evolving virus strains.
Moreover, by using counter-selection steps during SELEX, cross-
reacting aptamers can be eliminated so as to result in aptamers with
high discriminating capacity between different virus genotypes. Other
advantages of aptamers can be attributed to their physical-chemical
properties (i.e., they are chemically stable over a wide range of pH,
storage conditions and temperature, and are not as sensitive to
organic solvents as antibodies) [20]. Aptamers can be directionally,
most often terminally, labeled with functional [21–25] or analyti-
cal [26,27] probes without loss of function, while oriented labeling
options for antibodies are limited and can lead to decreased affin-
ity [19]. Further chemical modifications were reported to generate
aptamer probes for diagnostic purposes that are fully resistant to
nuclease enzymes [28]. All these are important steps towards the
development of a new generation of viral diagnostic POCTs.

Over the years, starting in 1990, the SELEX procedure has been
improved with many variations. Suggested improvements or al-
terations include increased variability of targets, target-binding
conditions, different amplification methods or better partitioning
of the non-binders. The success of the aptamer-generation proce-
dure is primarily determined by the applied selection conditions
and the target molecules chosen for selection. The first criterion must
be met because, though aptamers can recognize their targets even
under non-physiological conditions, ligand-aptamer interactions are
very sensitive to the prevailing conditions. To evade this pitfall, the
composition of selection buffer should be as close as possible to the
matrix of real life samples in which the diagnostic exploitation of
the aptamer is intended. Overlooking this condition could lead to
a meaningless selection procedure (i.e., the isolated aptamer works
ideally under optimal, laboratory conditions but is inadequate for
practical application). Seemingly, this factor was ignored during the
selection of many published aptamers, which could limit their di-
agnostic potential.

To raise virus-specific aptamers, the target of selection can be
either a virus-derived protein or the inactivated virus particle. Tra-
ditionally, SELEX uses purified single proteins as ligand for selection
and application of this approach resulted in several virus-selective
aptamers. The protein-ligand-based SELEX methods were exten-
sively discussed in recent reviews [29,30]. When using inactivated
virus particles as the target, isolation (purification) and

Fig. 2. Virus anatomy.
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inactivation of viruses are generally more challenging than pro-
duction of pure proteins and require dedicated laboratories with
strict safety control. These hurdles might explain why only a handful
of whole virus-selected aptamers has been published so far. Nev-
ertheless, one of the earliest studies demonstrated the feasibility
of this approach, i.e., the virus-specific aptamer selection resulted
in RNA oligonucleotides having the capacity to discriminate between
closely-related human-influenza viruses [31]. The authors incu-
bated the RNA pool with an A/Panama strain and separated the virus-
selective oligonucleotides by filtration through a protein-binding
nitrocellulose-acetate membrane. To increase the specificity of the
isolated oligonucleotides, counter selection steps were also intro-
duced using A/Aichi virus preparation. The aptamer obtained
displayed over 15-fold-higher affinity to hemagglutinin compared
with the monoclonal antibody and distinguished the various in-
fluenza viruses. The same procedure (i.e., isolation of aptamer
candidates by passing the virus-oligonucleotide mixture through
nitrocellulose membrane and removing the non–specific binders by
counter selection with related virus) was effectively applied to raising
DNA and RNA aptamers against murine norovirus and human in-
fluenza viruses, respectively [32,33].

Although separation using a membrane is the traditional tech-
nique of SELEX and its usefulness was corroborated by several
studies, immobilization of targets onto beads has become the method
of choice for isolation of selective oligonucleotides. Two recent
publications reported generation of aptamers against magnetic bead-
immobilized human norovirus strains and influenza A/H1N1 virus
[34,35]. Both groups applied viruses captured by monoclonal an-
tibody cross-linked paramagnetic beads as targets of SELEX and
increased the selection pressure by introducing counter-selection
steps with human-stool suspension and close relatives of the target
virus, respectively. The performed enzyme-linked aptamer sorbent
assay (ELASA) demonstrated that the norovirus-specific aptamers
are selective for various strains of this virus. Importantly, the iso-
lated aptamers could detect their target virus even in the clinical
matrix feces [34]. Using this state-of-the-art procedure, influenza-
virus aptamer selection was fully implemented in an integrated
microfluidic chip [35].

Developments in microfluidics brought about the appearance of
SELEX chips in recent years. Due to their high speed, low reagent
need, ease of tuning, and excellent partitioning efficiency, these
devices are expected to become standards in aptamer selection.

Another bead-immobilization-based method, MonoLEX, was pub-
lished for selecting aptamers against a whole virus [36]. The
technique involves an affinity-chromatography step of oligonucle-
otide library with immobilized vaccinia virus followed by subsequent
physical partitioning of the virus-coated resin and PCR amplifica-
tion of the bound aptamers. In contrast to conventional SELEX,
MonoLEX is accomplished in one step instead of iterative selec-
tion cycles.

Immobilization of the targets of aptamer selection has two
adverse consequences:

• stringent counter-selection steps are needed to screen out those
oligonucleotides that bind to the support; and,

• the target immobilization may lead to shielding of desired
epitopes.

Homogeneous SELEX approaches evade these shortcomings, since
they do not require the coupling of the target on a solid support.
The homogenous aptamer-generating protocols are dominated by
capillary electrophoresis-based SELEX (CE-SELEX) and its modifi-
cations [30]. CE-SELEX was applied for the isolation of avian influenza
H9N2 virus-specific aptamers using purified hemagglutinin protein
as target molecule, but conversion of this method for whole-virus-
based selection has not yet been demonstrated [37]. The published,

whole-virus-based aptamer-selection protocols highlight the ne-
cessity of extensive counter-selection steps with the pertinent viruses
and the matrices of prospective analytes. Counter selection is tech-
nically not feasible by CE, so successful CE-SELEX demands target
molecules with extremely high purity. This requirement is hard to
fulfil with virus preparation, which limits the applicability of CE-
SELEX for whole-virus selection.

Recently, a unique reverse manner immobilization method was
described for production of aptamers against whole bovine viral di-
arrhea virus (BVDV). It is known that single-stranded DNA (ssDNA)
can get adsorbed on graphene oxide (GO) sheets and the desorp-
tion can be triggered by conformational change of ssDNA upon target
protein binding [38]. Leveraging this phenomenon, so-called GO-
SELEX was invented and applied successfully for generation of highly-
selective BVDV-specific aptamers (Fig. 3) [39]. In the first step of
the selection, the incubation of oligonucleotide library with the clas-
sical swine-fever virus was followed by addition of GO. The
oligonucleotides that did not bind to the counter targets were ad-
sorbed to the surface of GO and separated by centrifugation, while
oligonucleotides that bound to the counter target were sus-
pended in the binding buffer. Then, the ssDNA was recovered from
the GO with the addition of the target BVDV and amplified by PCR.
Following five rounds of this very stringent selection, highly-
selective aptamers were obtained and used in a surface-plasmon
resonance (SPR)-based sandwich-type assay.

4. Application of aptamers for virus detection

Recently, a whole range of virus-specific aptamers were gener-
ated against vaccinia virus [36,40], dengue virus [41], severe acute
respiratory syndrome (SARS) [42–45], hepatitis C [46–51], human
immunodeficiency virus (HIV) [52–55], apple stem pitting virus
[56–58], bovine viral diarrhea virus [39], norovirus [34,59], rabies
virus [60], hepatitis B [61], Ebola [62] and influenza [31,33,35,63–74].

The use of aptamers in aptasensors often requires immobiliza-
tion of the aptamer strands as well as their labeling to enable
detection. Due to their adaptive recognition mechanism and small
size, aptamers require precaution in their immobilization. The surface
density of aptamer monolayers is often critical and depends on the
target size, as the binding affinity of the surface-confined aptamers
may be influenced by steric hindrance or folding interference, which
may ultimately reduce the sensitivity. Generally, one of the two ends
of the aptamers (3′ or 5′) is modified with functionalities (e.g., -HS,
NH2, or biotin) that allows convenient covalent attachment to dif-
ferent material transducers. The position (3′ or 5′) of the functional
handle seems to affect the sensitivity, but in a hardly predictable
way, as the best position will depend on the aptamer sequence [75].
Most often a linker, such as strand inserts consisting of several thy-
midine (T) units, known to exhibit low, non-specific adsorption, is
incorporated between the recognition unit and the solid support.

For diagnostic applications, targets will be measured in bodily
fluids containing a vast number of nucleases. To avoid degrada-
tion, a broad range of minor modifications to the oligonucleotides
were shown to increase nuclease resistance [76,77]. Beside all the
modifications for stabilization and immobilization, an extensive range
of molecular labels can be attached to RNA and DNA aptamers, some-
times with linker oligonucleotides or spacer molecules in between
to reduce interference with target recognition. Such molecules are
normally used for detection purposes and include fluorophores,
quenchers and quantum dots [78].

Reliable, sensitive transduction of an aptasensor is pivotal for its
functioning. There are many ways of transduction, but the vast ma-
jority transforms bio-recognition processes via a physicochemical
transducer into measurable electrochemical, mass, or optical signal.
Table 2 gives an overview of the recently developed aptamers and
aptasensors in the context of viral pathogens.
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4.1. Aptasensors with optical transduction

At present, the field of aptasensors for viral detection is very much
dominated by optical transduction (e.g., based on measuring flu-
orescence, as well as colorimetric or refraction index related changes).

Fluorescent detection works with a signal-ON or a signal-OFF
mechanism, which relies respectively on increasing or decreasing
the fluorescent signal upon target binding. Signal-ON methods are
much more sensitive, but fluorophores are also very sensitive to en-
vironmental changes and most methods were tested in aqueous
buffers instead of bodily fluids. The nucleic-acid aptamers offer in-
herent fluorescent transduction mechanisms that are hardly possible
with antibody-based recognition, such as the use of molecular beacon
aptamers [83]. It was shown that RNA-aptamer beacons can be made
specific to detect the presence of HIV-1 Tat proteins or its pep-
tides (i.e., enabling them to discriminate RNA-binding proteins) by
using split oligomers derived from RNA Tat aptamer. In the pres-
ence of the target, the two oligomers form a duplex that leads to
the removal of the fluorophore from the vicinity of the quencher,
and consequently to an increase in the fluorescence signal [83].

One-step quantification of viruses was successful by a similar
fluorescence resonance-energy transfer (FRET)-based competitive
binding assay, as demonstrated by the determination of hepatitis
B virus [61]. Cy3 as a FRET donor was covalently attached to the
anti-hepatitis B virus RNA aptamer and Cy5 labeled hepatitis B virus
was the FRET acceptor. The presence of unlabeled target removed
the acceptor from the vicinity of the donor leading to a shift in flu-
orescence in a dose-dependent fashion, which enabled the
determination of the target concentration. This method appeared
40-fold more sensitive than the Abbott Architect assay, which is the
current method for hepatitis B quantification [61].

The need for labeled aptamers, which is a significant cost-
increasing factor of the assay, can be avoided if external signal
reporters are used. A relevant example for such a system was based
on the use of thiazole orange (TO) that fluoresces upon binding to

the G-quadruplexes stabilized by target-aptamer interactions. This
enabled the fluorescence detection of H5N1 influenza virus in human
serum by using a guanine-rich aptamer for the recombinant hem-
agglutinin protein of the virus. An additional sensitivity enhancement
was obtained by immobilizing the aptamers on Ag@SiO2 core-
shell nanoparticles, which acted as a metal-enhanced fluorescence
(MEF)-sensing platform. Thus, a limit of detection (LOD) of 3.5 ng/
mL of the protein target could be realized with an assay time ~30 min
in human serum [67]. A dramatically lower LOD was reported by
Ahn et al. by microarray-based fluorescent detection, though tested
in a less demanding matrix [45]. They developed an RNA aptamer
against the C-terminal region of SARS coronavirus (SARS-CoV) nu-
cleocapsid protein (with a KD of 1.65 nM) and implemented it in
aptamer–antibody hybrid immunoassays [i.e., chemilumines-
cence immunosorbent assay (CLISA) and a nanoarray aptamer chip].
CLISA had an LOD of 20 pg/mL purified nucleocapsid protein, which
was similar to ELISA [84], while the nanoarray aptamer chip had
an even lower LOD of 2 pg/mL. However, the detection of the SARS-
CoV nucleocapsid was still antibody mediated, and, similar to other
immunosorbent assays published [47,51], a relatively long assay
time due to the required labeling made these assays less suitable
for POCT.

SPR has also been often examined for its POCT potential
[36,52,59]. Recently, Bai et al. [74] developed a portable biosensor
based on SPR for the detection of avian influenza virus (AIV), H5N1,
in poultry swabs. They used hemagglutinin as the target to select
a DNA aptamer and subsequently used whole AIV H5N1 particles
as a target to increase the specificity. The DNA aptamer with the
lowest Kd (4.65 nM) was selected and subsequently immobilized on
the gold surface of the sensor. The detection range for poultry-
swab samples containing the virus was 1.28–12.8 hemagglutination
units (HAU). The SPR biosensor was very specific for AIV H5N2 and
displayed only very low signals (<4%) when exposed to six other
non-targeted AIVs. A great advantage of this portable aptasensor,
when compared to more conventional methods, is the relatively short

Fig. 3. Aptamer selection by GO-SELEX. {Reprinted with permission from Elsevier from [39], ©2014}.
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Table 2
Characteristics of aptasensors for human viral diagnostic purposes

Target Aptamer Kd Detection method Transducer Assay time LOD Ref.

SARS coronavirus
Nucleocapsid protein (C-terminal) RNA 1.65 nM Chemiluminescence immunosorbent assay (CLISA) Optical ±8 hours 20 pg/mL [45]
Nucleocapsid protein (C-terminal) RNA 1.65 nM Nanoarray aptamer chip Mass ±6 hours 2 pg/mL [45]
Nucleocapsid protein DNA 4.93 ± 0.30 nM Western blot Optical NA NA [44]

Influenza virus
Hemagglutinin + virion H5N1 DNA 4.65 nM Surface plasmon resonance (SPR) Optical 1.5 hours 0.128 HAU [74]
Hemagglutinin H5N1 DNA 4.65 nM Hydrogel-based quartz crystal microbalance (QCM) Mass 30 minutes 0.0128 HAU [64]
Hemagglutinin H5N1 DNA NA Bio-nanogate Electrochemical 1 hour 2.10−3 HAU [79]
Polyvalent anti-influenza nucleoprotein DNA NA Surface enhanced Raman spectroscopy (SERS) Optical >8 hours 0.1 μg/mL HA [68]
Hemagglutinin type B RNA 28 ± 3 nM Sedimentation Optical >10 minutes 3.108 VP [69]
Hemagglutinin type A RNA 1.6 nM Sedimentation Optical >10 minutes 3.108 VP [69]
Hemagglutinin type B RNA 0.7 and 1.2 ± 0.2 μg mL−1 NA Optical NA NA [33]
Hemagglutinin H1N1 DNA 55.14 ± 22.4 nM Polymerase chain reaction Optical NA 6.4 × 10−3 HA [35]
Rec. Hemagglutinin I H5N1 DNA 15.3 nM Metal-enhanced fluorescence (MEF) Optical 30 minutes 2–3.5 ng/mL [67]
Hemagglutinin H1N1 DNA NA Functionalized conductive polymer Electrochemical <15 minutes 103 PFU/mL [70]

Human norovirus
Capsid protein VP1 DNA NA Surface plasmon resonance (SPR) Optical NA NA [59]

Hepatitis C virus
Envelop protein E2 DNA 1.05 ± 1 nM Enzyme linked aptamer sorbent assay (ELASA) Optical NA NA [51]
Envelop protein E2 DNA 0.8–4.0 nM Enzyme linked aptamer sorbent assay (ELASA) Optical NA 1.25–2.50 × 103 FFU/mL [47]
Envelop protein E2 DNA 0.8–4.0 nM Enzyme linked aptamer sorbent assay (ELASA) Optical NA 3.13–6.25 × 102 FFU/mL [47]
Helicase RNA NA Microcantilever Mass NA 100 pg/mL [49]
Core antigen DNA NA Nucleic acid lateral flow strip Optical 10 minutes 10 pg/mL [80]
Core antigen, NS5 RNA 100 nM Sol–gel chips Optical NA NA [48]
RNA polymerase RNA NA Microbead-based affinity chromatography chip (μ-BACC) Mass NA 9.6 fmol [50]
Core antigen, NS5B RNA 6.3 nM BioLayer Interferometry (BLI) Optical NA 700 pg/mL [46]

Hepatitis B
Surface antigen RNA NA Fluorescence Resonance Energy Transfer (FRET) Optical NA 1.25 mIU/mL [61]

Vaccinia virus
Virion DNA NA Surface plasmon resonance (SPR) Optical NA NA [36]
Virion DNA NA Electrochemical impedance spectrometry (EIS) Electrochemical >1 hour 330 PFU [81]

Dengue virus
Genomic nucleic acids DNA NA Fluorescence Optical NA NA [41]

Human immunodeficiency virus
HIV-1 Tat protein RNA NA Surface plasmon resonance (SPR) Optical NA NA [52]
HIV-1 Tat protein RNA NA Quartz crystal microbalance (QCM) Mass NA 0.25 ppm [52]
HIV-1 Reverse transcriptase DNA NA Affinity capillary electrophoresis/laser-induced fluorescence (CE/LIF) Optical <5 minutes 50 nM [54]
HIV-1 NCp7 RNA NA Solid-state nanopores Electrochemical NA NA [82]
HIV-1 Tat protein RNA NA Diamond field-effect transistor (FET) Electrochemical NA 1 nM [53]

NA, Not available; VP, Virus particles; HAU, Hemagglutination units; HA, Hemagglutinin; PFU, Plaque-forming units; FFU, Focus-forming units; mIU, milli-international units; ppm, parts per million.
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detection time of 1.5 h. At the same time, the system is label-free,
lacks the use of antibodies and can be reused 5–7 times.

Aptamer selection can be performed to obtain a number of
aptamers that bind different proteins or epitopes on a virus, en-
abling the use of sandwich assays to increase the sensitivity and
the selectivity of virus detection. Park et al. have shown that a pair
of aptamers can be selected to whole bovine viral diarrhea virus
type 1 so that the sensitivity of SPR detection can be enhanced by
decorating the surface-bound virus in a subsequent step with a sec-
ondary, gold-nanoparticle (AuNP)-labeled aptamer [39].

SERS was also used as a label-free optical method for the iden-
tification of influenza viruses [68] through detecting the binding
of nucleoproteins of different influenza A and B strains to a poly-
valent anti-influenza DNA aptamer. Incubation with three different
influenza strains (A/Uruguay, A/Brisbane and B/Brisbane) altered the
spectrum in a very distinguishable ways due to the conforma-
tional changes of the aptamer.

A common issue with many optical sensing methodologies, such
as FRET [61], sol-gel chips [48], MEF [67], affinity CE with laser-
induced fluorescence (CE-LIF) [54], and bio-layer interferometry (BLI)
[46], is that they depend on sensitive, but bulky and expensive, read-
out equipment. By contrast, colorimetric aptasensors or lateral-flow
assays that would be more suitable for POCT can be evaluated even
with the naked eye. Apparently, this aspect has so far received less
attention in terms of using aptamers as selective recognition re-
agents. Colorimetric detection based on aggregation of aptamer-
modified AuNPs by virions was explored for influenza virus. The
aggregation was combined with a simple centrifugation step to
enhance visual perception by precipitation of the aggregates.
However, the LOD obtained (108 VP/mL) is at the upper end of the
relevant virus load [69].

Published work on the application of lateral-flow assays with
aptamer-based reagents is also scarce. The few reports available solely
involved the measurement of viral coat proteins [80,85]. For example,
Wang et al. published a competitive lateral-flow assay in which the
amount of gold-conjugated aptamer bound to complementary DNA
in the test line was reduced by competitive binding to the target,
hepatitis C core antigen. Such a test had an LOD of 10 pg/mL when
using a scanner for detection and 100 pg/mL with the naked eye
[80].

4.2. Mass-sensitive aptasensors

Mass-dependent transduction offers label-free detection if the
transducers are modified by selective receptors. Mass-based trans-
duction was realized through the use of quartz-crystal microbalances
(QCMs) with aptamer-modified surfaces, as well as micromechanical
sensors based on resonant microcantilevers [49].

The application of QCMs for aptamer-based detection of viral
components was initiated by Minuni et al. [52,55] through the de-
tection of HIV-1 Tat protein. A comparison with a Tat antibody-
based sensor resulted in higher sensitivity of the aptamer-based
sensors, and good selectivity for both types of sensors, but neither
was adequate to detect Tat protein in real samples.

Wang and Li [64] took advantage of the unique properties of
aptamers over antibodies and created a hydrogel-based QCM
aptasensor for the detection of AIV H5N1. When exposed to the viral
antigen HA of AIV H5N1, the aptamer changed its conformation by
disrupting the hybridization to bind the virus. The QCM sensor de-
tected a decrease of the fundamental frequency of the quartz crystal,
as a result of the mass change on the surface of the resonator [64].
In the proposed construction, the hydrogel-based QCM aptasensor
proved to have an LOD about an order of magnitude lower than a
conventional QCM set-up – 0.0128 HAU compared to 0.128 HAU, re-
spectively. These results made this sensor a promising POCT, suitable
for rapid testing (30 min), easy to use, sensitive and specific for the

diagnosis of AIV H5N1, and able to compete with RT-PCR in terms
of sensitivity.

Micromechanical sensing by using resonating cantilevers was
applied for the detection of hepatitis C virus (HCV) with a sensi-
tivity of 100 pg/mL [16,49]. This method exploited immobilized
aptamers on the top surface of the cantilever and their steric crowd-
ing upon binding to their bulkier targets. The latter created a surface
stress that was detected through the change in the resonant fre-
quency of the microcantilevers. The small size of the microcantilevers
made it easy to facilitate high-throughput multiplex screening, which
was advantageous for the POCT of multiple viruses. However, due
to their susceptibility to environmental conditions, the measure-
ments on the microcantilever are completely executed in a
temperature- and relative humidity-controlled chamber, which
hinders their use for POCT.

4.3. Electrochemical aptasensors

Label-free electrochemical transducers act upon the formation
of the aptamer-target-recognition complex on conductive or semi-
conductive surfaces, which changes the resistance and the
capacitance of the solution-electrode interface. They are easy to
miniaturize and offers LODs in the femtomolar to micromolar range.
The sensitivity of these devices increases when the electrode sep-
aration decreases and nanochips with multiple aptamer sensors
would enable the simultaneous detection of several viruses [86].
A drawback of decreasing the recognition interface is the reduced
number of aptamers that can lead to a reduced dynamic range of
the assay. However, in viral diagnostics, information on viral load
is not always essential to assign proper treatment.

An example of an electrochemical sensor for label-free virus de-
tection was the aptamer-based viability impedimetric sensor for
viruses published by Labib et al. [81]. Using electrochemical-
impedance spectroscopy (EIS) for detection, the sensor had an LOD
of 330 PFU of vaccinia virus. Its unique feature was the capacity to
distinguish viable from non-viable virus particles, but the small
dynamic range, up to 3000 PFU, assay time of more than 1 h, and,
most importantly, requirement for temperature-regulated incuba-
tion, made this method less suitable for POCT [81].

Solid-state nanopores can also make use of label-free electro-
chemical transduction [82]. This label-free real-time detection
method with a single interaction sensitivity relies on formation of
complexes between target and RNA aptamer, which are measured
by the resistive-pulse technique. The principle of this technique was
shown by the detection of HIV-1 virus nucleocapsid protein 7.
However, its main application is foreseen as the characterization
of the relevant biomolecular interactions rather than as a diagnos-
tic tool.

Ruslinda et al. published a diamond field-effect transistor (FET)-
based aptasensor for the detection of HIV-1 Tat protein, de-
monstrating a stable, reusable platform for POCT [53]. Diamond-
FET measures the binding between aptamers and target by detecting
changes in the charge distribution above the diamond surface. In
general, FET-based sensors are simple to fabricate, but miniatur-
ization often leads to fundamental problems in sensing capacity. In
diamond-FET-based techniques, the scalability problems are over-
come and show potential for a handheld device [87]. The results
of the diamond-FET-based aptasensor display stable results mea-
suring the Tat protein in clinical matrices with sensitivity up to 1 nM.
These are impressive, first-time results, and very suitable in situ-
ations with abundant target molecules.

A competition-based electrochemical-detection method is the
bio-nanogate-based biosensor to measure influenza H5N1, published
by Wang et al. [79]. Lactate dehydrogenase (LDH) enzymes are coated
on a glassy-carbon electrode, which is covered by a gold surface con-
taining bio-nanogates. These bio-nanogates will bind the specific
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H5N1 aptamers when present, thereby blocking the access of the
substrate to the immobilized LDH enzyme. However, in viral pres-
ence, the aptamers will interact with the virion, leaving the bio-
nanogates open and inducing substrate conversion. The substrate
conversion was electrochemically measured and resulted in a
LOD of ~2 × 10−3 HAU. Although the method is highly sensitive, the
use of LDH for signal conversion can be greatly influenced by the
type of clinical matrix, as LDH itself is present in most human tissue.

Aptamer-functionalized conductive polymer (PEDOT-OH:TsO) mi-
croelectrodes, published by Kiilerich-Pedersen et al. [70], have high
sensitivity; up to 10 plaque-forming units (pfu) of influenza A (H1N1)
per mL were detected. The detection mechanism is based on mea-
suring changes in the impedance when virions are captured by
immobilized aptamers. The polymer fluidic device consists of four
layers with electrodes and electrical connection patches pat-
terned in PEDOT-OH:TsO, and is inserted in a circular device of
~50 mm in diameter [88]. Testing in the clinical matrix, saliva, led
to a reduction in sensitivity (103 pfu/mL), but it is still well within
the relevant spectrum of the viral load [89]. Since the sample mea-
sured was only 200 μL, the absolute interactions measured can be
as low as 1–2 pfu. In summary, low-cost manufacture, handheld size,
label-free, high sensitivity and assay-time below 15 min make the
functionalized conductive polymer aptasensor promising for use as
a POCT.

5. Outlook

Since the discovery of aptamers, expectations for clinical appli-
cation, in particular, for diagnostic aptasensor development, were
high. However, the use of aptamers in practice is still rare. Proba-
bly the most important scientific reason relates to difficulties in the
selection of highly-selective aptamers for widely different targets
and measurement conditions. Recently, the first promising
aptasensors made their debut in viral diagnostics, which will hope-
fully increase interest in diagnostic aptasensors in the near future.

User parameters, such as a turn-round time of less than 15 min,
portability, robustness and ease of use, are fundamental require-
ments of aptasensor-based POCT. However, the sensitivity, specificity,
and selectivity, as well as quantitative and multiplex capacities, all
depend on the clinical need. There is a strong demand for multi-
plexed diagnostic measurement of pathogens, as disease is often
caused by co-infections.

In this respect several multiplex PCR methods have been devel-
oped for diagnosis of sepsis [90], and respiratory [91] and gastro-
intestinal infections [92]. So far, only a few aptamer-based
applications have shown potential for multiplex measurement of
mixtures of bacteria [93,94]. However, no aptamer-based detec-
tion method has been developed to measure multiple viruses.
Therefore, it is important to define clearly these aspects per case
and to follow an iterative approach to continue redefining assay re-
quirements and selecting the most appropriate targets, aptamers
and aptasensors, all affecting the development of the POCT (Fig. 4).

Despite the seemingly unlimited possibilities for improvement
of sensing technologies, the ultimate goal is to create an accurate,
fast, affordable and easy-to-use detection system suitable for POCT
that is able to become the standard for viral diagnostics. In order
to accomplish this goal, it is important to perform comparative
studies using different aptasensors targeting similar viruses in dif-
ferent matrices.
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