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Abstract – Course material of basic control theory has 

been overviewed and updated recently at the Faculty of 

Electrical Engineering and Informatics, BME. In the 

theoretical material the concept of the YOULA 

parameterization has been introduced which gives a new 

insight into controller design. New lecture notes were 

written both for the theoretical material and for the 

MATLAB laboratory exercises. An example demonstrates 

the design procedure and the robustifying effect of the 

filters in case of plant/model mismatch. 
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1. Introduction 

 

At the Faculty of Electrical Engineering and Informatics, 

Budapest University of Technology and Economics, control 

theory is taught as a basic discipline for all students 

specialized in informatics. The subject offers fundamental 

knowledge in analysis and design of continuous and sampled 

data control systems. The course material has been 

overviewed and updated recently. Newer ideas for controller 

design as YOULA parameterization has also been introduced 

which gives a new insight into controller design. It is shown 

that control algorithms like PID, dead-beat and Smith 

predictor control can be considered as special cases of 

YOULA parameterization. New university lecture notes were 

written providing the theoretical material [1, 2] and the 

related MATLAB exercises. 

 

2. Understanding control concepts, introducing the idea 

of YOULA parameterization 

 

In the sequel it will be shown how the concept of closed-

loop control is introduced and how it is related then to the 

YOULA parameterization [1]. Control theory deals with the 

analysis and design of closed loop control systems. The 

main control structure is based on negative feedback. The 

goal in control of physical plants is to track the output signal 

according to a reference signal and to reject the effect of the 

disturbances. There are requirements set to the performance 

of the control system. First it has to be stable, then, it has to 

meet the quality specifications set for steady-state accuracy, 

dynamic properties such as overshoot, settling time, etc. The 

control signal has to be inside its technical limits. The 

control system has to be not very sensitive to measurement 

noises and to plant/model mismatch. It has to be also 

technically realizable and eligible to economical and other 

(e.g. environmental protection) viewpoints. 

  

The control is realized through negative feedback if the 

input signal (the manipulated variable) of the process is 

affected by the difference of the measured output signal and 

its desired prescribed value. The measured output value is 

generally noisy because of the noise zy  acting on the 

measurement equipment. Based on the error signal e the 

controller C generates the manipulated variable u, which 

modifies the output signal of the process P. The process 

itself is supposed to be stable. The output signal of the 

process is changing according to the dynamics of the control 

circuit until it reaches its desired value. The block-diagram 

of the closed-loop control system is given in Fig. 1. Often 

the reference signal is filtered by a precompensator element 

of transfer function F (denoted by dotted line in the figure). 
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Fig.1. Closed-loop control circuit 

 

If the disturbances and the measurement noise are not 

considered and the filter is supposed to be unity (F=1), then 

the open loop circuit shown in Fig. 2. is equivalent to Fig. 1. 

regarding reference signal tracking. 

 

1

C
Q

CP



P

niy noy

yr u

 
 

Fig.2. Equivalent open-loop structure 

 

Here Q is the YOULA  parameter. The classical 

YOULA parameterization gives a very simple way for open-

loop stable processes when the regulator can be analytically 

designed by explicit formulas. The YOULA parameter is, as a 

matter of fact, a stable (by definition), regular transfer 

function.  
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where 
 
C s  is a stabilizing regulator, and 

 
P s  is the 

transfer function of the stable process. 

 

The open-loop structure shown in Fig. 2. ensures reference 

signal tracking but does not reject the effect of disturbances.  

To ensure disturbance rejection as well the open-loop 

control structure is extended by IMC according to Fig.3. 
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Fig. 3. YOULA parameterized control system with IMC 

 

Fig. 4. shows an equivalent block diagram supposing that 

the model is equal to the system, P P . In this usual 

feedback structure the controller C is expressed by the Q 

YOULA parameter. 
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Fig. 4. The usual feedback system with the YOULA 

parameter in the controller 

 

If the process P is stable, then all stable Q controllers ensure 

stable control system. Similar relationships are obtained for 

discrete systems as well where instead of the transfer 

functions the pulse transfer functions are considered.  

 

The best reference signal tracking, when the output signal is 

exactly equal to the reference signal could be reached if the 

YOULA parameter is the inverse of the transfer function of 

the process: Q  P1 . 

 

But generally this condition cannot be fulfilled. The dead 

time of the process cannot be inverted as its inverse is not 

realizable. It is also not realizable if the numerator of the 

inverse is of higher degree than that of its denominator. 

Right side zeros of the transfer function cannot be inverted 

either, as they will produce unstable poles in the controller. 

For discrete systems zeros outside of the unit circle cannot 

be inverted, and cancellation of zeros which lie on the left 

side of the unit circle (or in the undesired part of the unit 

circle) is to be avoided as their inversion would cause 

intersampling oscillation. 

Therefore Q can be only the inverse of the invertible part of 

the transfer function of the plant. Let us separate the plant 

transfer function to the invertible  P s  and the 

noninvertible  P s
 
factors, where the latter contains also 

the dead time. 

 

P s  P s P s  
 

Then Q  P
1 . The gain of P s  

has to be 1 as this 

determines the static gain in the forward path. Fig. 5. shows 

now the IMC control structure. 
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Fig. 5. Realizable YOULA parameterized IMC control 

structure 

 

In this configuration the dynamics of reference signal 

tracking and disturbance rejection is the same. 
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Fig. 6. YOULA parameterized control with filters 

 

If different dynamics are required (e.g., disturbance 

rejection has to be faster than reference signal tracking), 

then reference and disturbance filters can be used with unity 

gain as shown in Fig. 6. This structure is called 2DF (two-

degree-of-freedom) structure. 

 

Equivalent structures are shown in Figs. 7. and 8. 
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Fig. 7. Equivalent YOULA parameterized IMC control 

system 



 

 

 

 

Now the YOULA parameter is Q  RnP
1 . 
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Fig, 8. Equivalent YOULA parameterized control system 

 

The series controller is 

  

C 
R

n
P


1

1 R
n
P


. For discrete systems 

the relationships are similar with the  z -transforms. 

 

Besides ensuring different dynamics for reference signal 

tracking and disturbance rejection another role of the filters 

is to modify the value of the control signal u keeping it 

inside the allowed limits. The filters have also a robustifying 

effect. With their appropriate choice the control system can 

be done less sensitive to plant/model mismatch. 

 

Summarizing the design procedure: The plant transfer 

function has to be separated into its invertible and non-

invertible parts. The reference and disturbance filters have to 

be given as design objectives. The controller can be 

designed in open-loop, ensuring the best realizable reference 

signal tracking. Disturbance rejection is provided by 

enhancing the control by Internal Model Control (IMC) 

structure. The filters have to be chosen considering 

robustifying criteria. 

 

3. Simulation example 

 

The transfer function of the continuous plant is 
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1
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It is sampled, at the input zero order hold is applied. The 

sampling time is 
  
T

s
 5 sec. The corresponding pulse 

transfer function is 
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First a PID controller is designed for pole cancellation 

(cancelling the biggest pole of the system and introducing an 

integrating effect instead, and cancelling also the second 

pole introducing a differentiation instead) and for phase 

margin about 
 


m
 60o . The pulse transfer function of the 

controller is 

 

C z  0.3074
z  0.6065

z 1

z  0.3679

z  

 

Let us design a YOULA controller first without filters, 

Rr  Rn  1 . 

 

Let us separate the pulse transfer function of the plant into 

invertible and non-invertible parts. 
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and the YOULA parameter is 
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With first-order lag element filters  r
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the YOULA parameter is  
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Fig. 9. shows the output and control signal responses for 

PID and YOULA control with no filters and no plant/model 

mismatch. The step reference signal acts at t=0 sec, and a 

step disturbance of 0.5 amplitude acts at t=300 sec. It is seen 

that YOULA control is much faster because of the higher 

control signal. Fig.10. gives the responses with the filters. It 

is seen that in the response of the YOULA parameterized 

controller the dynamics is different for reference signal 

tracking and for disturbance rejection. 

 

Let us consider the control behaviour in case of plant/model 

mismatch. The dead time of the system is 40 sec, while in 

the model 30 sec is considered and the controller has been 

designed based on this model. The PID controller still 

tolerates this uncertainty, but without the filters the YOULA  

controller becomes unstable (Fig. 11.). With the given filters 

its behaviour is acceptable (Fig. 12.). 
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Fig. 9. Output signals (upper figure) and control signals 

(lower figure)  for PID (blue) and YOULA (red) control for 

step input and output disturbance (no filters, no mismatch) 

 

4. Robustification considerations for dead time mismatch 

 

Keviczky and Bányász analyzed the relationship of 

performance and robustness, especially for the case of dead 

time mismatch [3], [4]. In this case the relative model error 

is  
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P

 
is the real process and P

 
is its model. It is supposed that 

the transfer function of the process without the dead time is 

accurately known, P P 
 
and 
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For robust stability 
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With first-order lag disturbance filter with time constant nT  

this condition is expressed as 

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

yPID:        blue
yYOULA:   red
with filters
no mismatch

 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

uPID:        blue
uYOULA:   red
with filters
no mismatch

 
Fig. 10. Output signals (upper figure) and control signals 

(lower figure) for PID (blue) and YOULA (red) control for 

step input and output disturbance (with filters, no mismatch) 
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With TAYLOR expansion of the exponential term a simpler 

robustness condition is obtained as 
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In our example the above condition 
  
1 30 / 40  25 / 40 is 

fulfilled. 

 

Fig. 13. shows the output signal for Tn=8 sec, when the 

required condition is not fulfilled. In this case the output 

signal is oscillatory, the control system does not tolerate the 

mismatch in the dead time. Fig. 14. gives the output signal 

with n 15T   and 40 sec time constants of the disturbance 

filter. In these cases the control performance is improved 

significantly. 
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Fig. 11. With mismatch without filters PID control is stable, 

but the YOULA controller becomes unstable 
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Fig. 12. With mismatch and with filters both PID 

control and the YOULA controller are stable 

 

5. Conclusions 

 

YOULA parameterization is a very effective control 

algorithm for control of stable processes. Keviczky and 

Bányász have researched the structure and several properties 

of this control paradigm. The controller can be designed in 

open loop providing the best realizable reference signal 

tracking, and extending the control system with feedback 

from the internal model (IMC) ensures disturbance rejection. 

Reference and disturbance filters modify the dynamic 

behaviour, thus the transients for reference signal tracking 

and disturbance rejection can be different. Appropriately 

chosen filters robustify the control behaviour in case of 

plant/model mismatch and also affect the maximum value of 

the control signal. It can be shown, that well known 

controllers as PID, dead beat, SMITH predictor are special 

cases of YOULA parameterization.  
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Fig, 13 With n 8T   oscillations appear in the output 

signal 
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Fig.14. With appropriately chosen disturbance filter the 

control behaviour can be accepted 

 

This newer approach has been introduces in control 

education at the Faculty of Electrical Engineering and 

Informatics, BME. The theory is demonstrated through 

examples in the computer labs using software 

MATLAB/SIMULINK. 
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