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Abstract. The introduced dispersal-foraging game is a combination of prey habi-1

tat selection among two patch types and optimal foraging approaches. Prey’s patch2

preference and forager behavior determine the prey’s survival rate. The forager’s3

energy gain depends on local prey density in both types of exhaustible patches and4

on leaving time.5

We introduce two game solution concepts. The static solution combines the ideal6

free distribution of the prey with optimal foraging theory. The dynamical solution7

is given by a game dynamics, describing the behavioral changes of prey and forager.8

We show that (a) each stable equilibrium dynamical solution is always a static9

solution, but not conversely; (b) at an equilibrium dynamical solution, the forager10

can stabilize prey mixed patch use strategy in cases where ideal free distribution11

theory predicts that prey will use only one patch type; (c) when the equilibrium12

dynamical solution is unstable at fixed prey density, stable behavior cycles occur13

where neither forager nor prey keep a fixed behavior.14
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1 Introduction15

Although the foraging strategy of prey under predation risk is well studied (e.g.16

Brown and Kotler 2004), the predator’s role is not as thoroughly investigated (Lima17

2002). This is in spite of the fact that predation is an interaction between quite18

counter-interested species: prey and predator. We consider an optimal foraging19

predator (shortly forager) and a prey dispersing among patches. In order to guar-20

antee that competition for food between prey does not mask the effect of predation,21

we assume this food competition can be neglected. Our aim is to introduce a game22

along with an appropriate solution concept for this ecological situation. We combine23

optimal foraging theory with ideal free distribution (IFD), considering one forager24

individual and its one prey species dispersing in two different patch types.25

We start from the following two basic optimal foraging models: In the prey-26

choose model (Charnov 1976a), the forager chooses among prey with different han-27

dling times, and the zero-one-rule holds (when the more profitable prey is abundant,28

the forager ignores the other prey type; when the first type is less abundant, then29

the forages uses both prey types). This model is strictly based on the idea of Holling30

functional response (Holling 1959): the handling times of different prey have a cru-31

cial effect on the number of killed prey. In the patch-use model (Charnov 1976b), the32

forager chooses the leaving time from an exhausted patch, and Charnov’s marginal33

value theorem is valid (forager leaves the patch at that time where its energy intake34

rate once in the patch matches its energy intake rate from all patches). In this mod-35

el, the leaving time (which is the analogue of the handling time in the first Charnov36

model) is a strategy of forager and so the function response is slightly generalized as37

it now depends on the patch leaving times as well as the density of prey. These two38

models combine to form a single optimal foraging model (Stephens and Krebs 1986;39

McNamara et al. 1993) whose theory is mainly built on Holling type II functional40

response (Stephens and Krebs 1986). At the first glance, the zero-one-rule and the41

Charnov’s marginal value theorem appear quite different. However, our basic in-42
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tuition is that both are consequences of one basic rule (see rule of time average in43

Section 3.1, cf. McNamara 1982).44

The IFD aims to understand species distribution in several patches under the45

assumption that moving between patches is time and energy free (Fretwell and46

Lucas 1969; Krivan et al. 2008). The IFD is characterized as a distribution where47

individual fitnesses in all occupied patches are equal and at least as high as in any48

unoccupied patch (e.g. Abrams et al. 2007). Although originally the IFD considered49

species’ fitness based on the resource levels in each patch, we assume prey fitness50

is determined by predation risk in the different types of patches (e.g. Cressman51

et al. 2004). In these models, the stability of the IFD is determined by concavity or52

convexity. Specifically, if the functional response at current prey density is concave53

(e.g. either Holling II or Holling III with high prey density), then the prey will use54

only one patch type. If the functional response is convex (Holling III with small prey55

density), the prey use both type of patches (see e.g. Cressman and Garay 2009).56

In our model, the optimal forager is pitted against the prey’s optimal distribu-57

tion. Since the predator and its prey have counteracting interests, game theory is58

required to find the common optimal behavior (Cressman and Garay 2011). Op-59

timal foraging theory and IFD are based on the assumption that the other species60

(i.e. prey and forager, respectively) has fixed behavior. In the natural union of these61

models, we seek a solution of this game so that both models hold at the same time.62

This solution is strictly based on the assumption that only one player can change63

its behavior at a time (see the static solution concept based on Nash Equilibrium64

(NE) in Section 3).65

However, the forager and its prey can adjust their behaviors to the opponent’s66

current strategy immediately (e.g. Juliana et al. 2011; Katz et al. 2010, 2013). In67

other words, in biology we cannot assume that only one player changes its strategy68

while the other player’s strategy is fixed. It may seem unimportant whether it is69

only one or both players who can change strategy at a given time. But, mathe-70
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matically, these cases are quite different as we will see. From the biomathematical71

perspective, it is then reasonable to describe the changing behaviors of players by a72

game dynamics, in which players change strategy according to its opponent strat-73

egy either one at a same time or simultaneously (see dynamical solution concepts74

in Section 4). Using behavior dynamics has three theoretical consequences: First,75

from a game theoretical point of view, the game solution concept of Nash is slightly76

generalized.77

Secondly, from the biological point of view, behavioral cycles are possible in78

game dynamics whereas static solutions can predict only equilibrium outcomes. For79

instance, in the classical battle-of-the-sexes game (Hofbauer and Sigmund 1998), be-80

havioral cycles occur when the NE is a mixed strategy. That behavioral cycles based81

on changing population densities have an important role in the study of species’ co-82

existence among patches is also well-known by many researchers (a partial list is83

Abrams 2010; Abrams and Matsuda 2004; Abrams et al. 2007; Cressman and Kri-84

van 2013; Cressman et al. 2004; Fryxell and Lundberg 1994, 1998). The novelty of85

the present paper is the introduction of a new game between the optimal forager and86

its dispersing prey in a short enough time scale that changes in prey density can be87

ignored (as is assumed in optimal foraging theory). The behavioral cycles we find at88

fixed density generalize those in cellular automata models of spatial predator-prey89

dynamics (e.g. Molina et al. 2013) when the interaction is local and the system is90

not well mixed.91

Lastly, the dynamical solution concept predicts that the forager can stabilize92

prey mixed patch use in cases where the static solution concept (given by standard93

IFD theory under the assumption that forager does not change its fixed mixed patch94

preference) predicts that prey use only one patch. The reasoning is as follows; if95

prey use only one type of patch, then an optimal forager, by changing its behavior,96

will only use this type too. Thus, prey survival rate is maximal in the other patch97

type and so the prey can use this patch type as a “refuge”. Thus the prey will98
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use the second patch type as well (see results in Section 5). This line of reasoning99

suggests using experiments and/or field observations to check which game-theoretic100

solution concept (i.e. static or dynamic) is valid.101

In Section 2, we introduce a mechanistic prey dispersal and predator enter-102

and-leave game, called the Dispersal-Foraging Game (DFG). In Sections 3 and 4,103

we study two solution concepts for DFG. We then compare these solution concepts104

(Section 5) before the final Discussion section.105

2 Dispersal-foraging game106

To build the DFG model among different types of patches, the possible behaviors107

(i.e. strategies) of both the forager and its prey must be described as well as the108

effects that these behavioral choices have on individual fitnesses (i.e. payoffs). These109

concepts are based on the system habitat and the foraging time duration.110

Habitat : Consider a system that consists of two types of patches with y1 (re-111

spectively, y2) the number of patches of type A1 (respectively, A2). We assume112

that different types of patches are well-mixed (in particular, the different types are113

not geographically segregated) and so, by a random walk, the forager encounters a114

random series of patches with relative frequencies d1 =
y1

y1+y2
and d2 =

y2
y1+y2

for the115

two types. The reader may think of the prey occupying two host plant species that116

are scattered randomly in a forest (i.e. each plant is then a patch). The patch types117

then determine different ecological conditions for the foraging process.118

Foraging time duration: Foraging time duration is denoted by T . This time119

interval T is considerably shorter than the reproduction time of prey. Furthermore,120

the forager is certain to survive but can only visit a small percentage of the y1 + y2121

patches. In fact, T is short enough that the strategic decisions taken by the forager122

and prey have constant fitness consequences throughout this time interval (i.e. the123

consequences are independent of when the decisions occur). More details of this are124
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given in the following discussion of behaviors and payoffs. We emphasize that this125

time independence is the Basic Condition needed for the derivation of the payoff126

functions.127

Prey behavior : To satisfy Charnov’s assumption that the forager’s energy gain128

from a given patch is an increasing function of time spent there, we assume that129

prey do not flee to other patches during forager attacks. Before the forager arrives,130

prey occupy the patches. Let x denote the total number of prey and s be the average131

patch preference strategy of the whole prey population (i.e. sx and (1− s) x prey132

are in patches of type A1 and A2, respectively). For simplicity, assume the local prey133

density x1 in each type A1 patch is the same (i.e. x1 =
sx
y1
) and the prey density in134

each type A2 patch is exactly x2 =
(1−s)x

y2
. In particular, we do not consider random135

prey distribution within a given patch type (e.g. Iwasa et al. 1981; Stewart-Oaten136

1982).137

Thus, the prey strategy, characterized by the choice 0 ≤ s ≤ 1, is straightfor-138

ward. The same cannot be said for the forager. To emphasize the game-theoretic139

aspect of our model, we will make simplifying assumptions on its possible behaviors140

in the following.141

Forager behavior : The foraging process involves several steps. In the first step,142

the forager spends time τ0 finding a patch at an energy cost c. We assume that143

the forager does not visit the same patch twice in time period T ; and the patch144

encounter probabilities will not depend on the foraging strategy (i.e. d1 and d2 are145

constant encounter probabilities with patch A1 and A2, respectively).146

Following the standard assumption in classical optimal foraging theory (e.g.147

Stephens and Krebs 1986 p. 17), on finding a patch, assume the forager immedi-148

ately recognizes the patch type. The forager then makes two conditional decisions:149

whether to enter the recognized patch or not and how long to stay in the chosen150

patch. a) “Enter strategy”: Let pi ∈ [0, 1] , i = 1, 2 denote the probability to en-151

ter an encountered Ai patch (cf. Charnov 1976a,b) “Leave strategy”: Let τi ≥ 0,152
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i = 1, 2 denote the time period spent by the forager once an Ai patch is entered (cf.153

Charnov 1976b).154

We now have the possible behaviors of the forager and its prey and are in155

a position to determine the forager’s fitness by finding its expected energy intake156

during time T . Specifically, the prey population has strategy s ∈ [0, 1] and the157

forager’s strategy is (p, τ) where p := (p1, p2) ∈ [0, 1] × [0, 1] and τ := (τ1, τ2) ∈158

[0, T ] × [0, T ]. These are indicated in the Dispersal-Foraging Game tree of Figure159

1. This tree also includes the information necessary to calculate fitness (see also160

Cressman et al. (2014) who develop a general method based on such decision trees).161

162

Payoff function for forager : Since optimal foraging theory postulates that the163

forager maximizes its average net energy intake per unit time (Turelli et al. 1982),164

forager payoff is taken as this intake rate. When the forager enters an Ai patch,165

the net energy gain from the prey, gi(xi, τi), depends on the local prey density xi166

there and the amount of time τi that the forager spends in this patch. Biologically167

reasonable properties of this function are that it is increasing in both xi and τi and168

that gi(xi, 0) = gi(0, τi) = 0 (Stephens and Krebs 1986).169

For fixed behavior and encounter probabilities, Figure 1 provides the activity170

distribution. For example, if the forager encounters an A1 patch and enters it,171

this activity occurs with probability d1p1; etc. Since we assume that the players’172

strategies, s ∈ [0, 1] , pi ∈ [0, 1] , τi ≥ 0, the parameters di, x, and the gain functions173

gi (i = 1, 2) do not change during time T , the expected time duration E(τ) of an174

activity chosen at random is given by175

E(τ) = τ0 + d1p1τ1 + d2p2τ2. (1)

The corresponding calculation of the expected energy intake of an activity chosen176

at random simplifies to177

E(G) = d1p1g1(s, x, τ1) + d2p2g2(s, x, τ2)− c, (2)



10

d1 d2

Find A1, x1(s)

p1 1−p1

Find A2, x2(s)

p2 1−p2

Activities Use A1 Not Use A1 Use A2 Not Use A2

Probability d1p1 d1(1− p1) d2p2 d2(1− p2)
Time duration τ0 + τ1 τ0 τ0 + τ2 τ0
Energy intake g1(x1(s), τ1)− c −c g2(x2(s), τ2)− c −c

Figure 1: With fixed strategies of the “players”, the tree of the game contains all

information to calculate the payoff of the forager. At the first level, di denotes the

probability that forager finds patch Ai, where the local density of prey xi(s) depends

on the average patch preference (s) of the whole prey population. At the second

level, pi denotes the enter strategy of forager into patch Ai. This tree generates

the activity distribution of forager. Each endpoint of the tree corresponds to one

activity. One observer can collect the probability of each activity, the time duration

of each activity (depending on the forager’s leaving strategy τi) and energy intake

of each activity. Based on this information, we can calculate the strategy dependent

functional response and so, the net energy intake rate of forager.

where c is the fixed energy cost of finding a patch. Based on our Basic Condition178

that encounter (and thus activity) probabilities do not change during T , Garay and179

Móri (2010), using Wald’s equality (Wald 1944), show that the forager’s expected180

payoff function is (see Appendix A)181

Ψ(s; p, τ) :=
E(G)

E(τ)
=

d1p1g1(s, x, τ1) + d2p2g2(s, x, τ2)− c

τ0 + d1p1τ1 + d2p2τ2
. (3)

This is the average net energy intake rate of a randomly chosen activity (i.e. the182

average net energy intake per average time duration of one activity). We emphasize183
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that the Basic Condition holds under the assumptions of our patch model (i.e. no184

further simplifying assumptions are needed) since the probability of finding a patch185

does not depend on the forager’s strategy and the forager never visits the same patch186

twice. Hence, the proportion of patch types among visited and among non-visited187

patches is the same and also unchanged during T . We note that if the energy unit188

is defined as the energy gain from one prey and the cost c is negligible, then Ψ is a189

functional response.190

Clearly, staying longer in a given patch increases the food gain from this patch191

type and also increases the expected time duration E(τ) even though it decreases192

the number of searches during T . The main point is that, from (1) and (2), staying193

longer can change E(G) and E(τ) simultaneously and so it is unclear whether such194

a choice is to the forager’s benefit. Similar qualitative effects result from changing195

other strategies as well (even the prey strategy!).196

Payoff functions for prey : While the forager is trying to optimize its intake rate,197

prey want to avoid being killed. For simplicity, assume prey are only killed by the198

forager (i.e. without the forager, each prey is certain to survive in a given patch).199

If we further assume that individual prey fitness in the two patch types differ only200

through their interactions with the forager, then the payoff of an individual prey can201

be measured by its survival probability (cf. Garay and Varga 2011). To this end,202

let α be the forager’s energy intake when one prey is killed. (Here we ignore the203

possibility that there may also be an energy cost of foraging, which is often assumed204

to increase linearly with respect to time spent in the patch (Stephens and Krebs205

1986) ). Thus gi(s,x,τi)
α

gives the average number of prey killed in an encountered Ai206

patch. Moreover, by another application of Wald’s equality, the expected number of207

prey in Ai patches killed per unit time is dipi
τ0+d1p1τ1+d2p2τ2

gi(s,x,τ2)
α

and so the individual208
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survival rate of prey in an Ai patch (i.e. their payoff) is then209

χ1(s, x; p, τ) = 1− d1p1
τ0 + d1p1τ1 + d2p2τ2

g1(s, x, τ1)
αxs
y1

(4)

χ2(s, x; p, τ) = 1− d2p2
τ0 + d1p1τ1 + d2p2τ2

g2(s, x, τ2)
αx(1−s)

y2

.

It is important to point out here that there is an essential difference between210

prey and forager payoff functions, χi and Ψ respectively. Specifically, whereas the211

forager’s payoff does not depend on another forager’s strategy and so the forager212

optimizes its behavior given prey strategy s, the survival rate of a given prey type213

depends on the strategies used by other prey, i.e. for the prey, we have a population214

game (cf. Broom and Rychtar 2013).215

The above prey and predator behaviors together with their payoff functions216

define the DFG as a union of IFD and Charnov’s two models of optimal foraging217

theory. The assumptions underlying DFG and these components are identical. More218

precisely, if we fix the predator behavior, then we get back the IFD from DFG, and if219

we fix the prey behavior we get back the optimal foraging model from DFG. Now the220

theoretical problem arises: What is the solution concept for DFG? We investigate221

two possibilities in Sections 3 and 4, respectively, when prey and their predator222

cannot change their strategies at the same time, and when these strategies change223

simultaneously.224

3 Static solution concepts based on Nash paradig-225

m226

The Nash equilibrium (NE) is a solution concept for games involving two (or more)227

players, in which no player can gain by changing his own strategy while the other228

player keeps his strategy fixed. Following the Nash paradigm, let us assume that229
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either only prey or only forager can change its strategy at a particular time. Then,230

the strategy pair s∗ and (p∗, τ ∗) is a static solution, if the following two conditions,231

(5) and (6), hold.232

a) Solution for prey : With forager strategy fixed at (p∗, τ ∗), the prey are engaged233

in a single-species habitat selection game (Cressman et al. 2004). (Cressman et al.234

2004). As stated in the Introduction, s∗ is an IFD (as introduced by Fretwell and235

Lucas (1969) Fretwell & Lucas(1969) before its connection with evolutionary game236

theory was recognized) if (i) prey payoffs in all occupied patches are the same and237

(ii) this payoff is at least as high as that in any unoccupied patch. That is,238

χi(s
∗, x, p∗, τ ∗) ≥ χj(s

∗, x, p∗, τ ∗) (5)

for all i, j whenever a patch of type Ai is occupied. With predator strategy fixed at239

(p∗, τ ∗), condition (5) is equivalent to s∗ being a NE of the prey habitat selection240

game as shown by Cressman and Krivan (2006). That is, an IFD s∗ is a NE.241

Applying the IFD definition to our two-patch model, prey may use both patch242

types at the IFD if the survival rate is the same in both. In general, however,243

equality in survival rate of prey does not imply that forager’s gain from different244

patches are also equal. For instance, the prey patch preference does not take account245

varying searching costs of the forager in different patches.246

b) Solution for forager : When prey strategy is fixed at s∗, the predator is faced247

with an optimization problem since its payoff only depends on its own strategy. The248

NE is then the classical optimization solution (p∗, τ ∗) (Stephens and Krebs 1986)249

called the optimal foraging strategy. That is, for any other strategy (p, τ) we have250

Ψ(s∗; p∗, τ ∗) ≥ Ψ(s∗; p, τ). (6)

The static solution concept that combines (5) and (6) seems natural since it simply251

unifies, under Nash paradigm, the IFD concept from the prey habitat selection game252

with the forager optimal foraging strategy.253
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Appendix C provides insight into the stability properties of the static solution254

IFD concept for the prey. We find that if both gain functions are convex in s255

(like Holling III at small prey density), there is a unique mixed IFD and it is an256

evolutionarily stable strategy (ESS). Thus prey use both patch types. On the other257

hand, if both gain functions are concave in s (like Holling II), then there is at least258

one IFD that is also an ESS with all prey using only one patch type. There may259

also be a mixed IFD but this cannot be an ESS since it is not stable.260

For the remainder of this section, we further examine the static solution concept261

for the forager.262

3.1 Forager’s rule of time average based on Nash equilibri-263

um264

Let us consider the problem as generally as possible in the context of optimal foraging265

theory: Denote by σ1 ∈ S1 and σ2 ∈ S2 strategy choices of two players. In our case,266

player one (the forager) has a multi-dimensional strategy set S1 and player two is the267

prey. The forager optimizes its energy intake rate. Formally, to define this rate, we268

have to consider two functions: T (σ1, σ2) is the average time duration and G (σ1, σ2)269

is the average energy intake when the players use the strategy pair (σ1, σ2). The270

payoff function of the forager is then Γ1 (σ1, σ2) := G(σ1,σ2)
T (σ1,σ2)

. Since we concentrate271

here on the NE behavior of the forager, the payoff function Γ2 for the second player272

can be arbitrary and its strategy fixed at σ∗
2. If the optimal foraging behavior σ∗

1273

is unique (for example, the inequality in (6) is strict), the forager’s payoff decreases274

whenever its strategy changes, while the other player’s strategy is fixed (formally275

Γ1 (σ
∗
1, σ

∗
2) > Γ1 (σ1, σ

∗
2) , for σ1 ̸= σ∗

1). In game-theoretic terms, (σ∗
1, σ

∗
2) is a strict276

NE with respect to the behavior of player one.277

If the forager changes its strategy, there are two consequences: intake changes278

by DG (σ1) := G (σ1, σ
∗
2)− G (σ∗

1, σ
∗
2); and time duration changes by DT (σ1) :=279

T (σ1, σ
∗
2) − T (σ∗

1, σ
∗
2), simultaneously. In Appendix B, an elementary proof shows280
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that (σ∗
1, σ

∗
2) is a strict NE (with respect to forager behavior) if and only if281

DG (σ1)T (σ∗
1, σ

∗
2) < DT (σ1)G (σ∗

1, σ
∗
2) (7)

for any other forager strategy σ1. In particular, if there is no difference in the time282

duration of strategies σ1 and σ∗
1 (i.e. DT (σ1) = 0), then the energy intake must283

be higher at the strict NE. We note that (7) is a version McNamara’s potential284

function (1982) : “the expected future gain on a patch minus the expected loss due285

to lost time: time which could be spent on other patches foraging at mean rate”.286

From (7), we have the following two rules:287

”+Rule of time average” If the forager’s strategy change increases the time288

duration (i.e. DT (σ1) > 0), the average intake rate
G(σ∗

1 ,σ
∗
2)

T(σ∗
1 ,σ

∗
2)

at the NE is greater289

than the ratio of the change in intake to the change in time duration. Formally,290

G (σ∗
1, σ

∗
2)

T (σ∗
1, σ

∗
2)

>
DG (σ1)

DT (σ1)
(8)

for all σ1 with DT (σ1) > 0.291

“–Rule of time average” If the forager’s strategy change decreases the time292

duration (i.e. DT (σ1) < 0), the average intake rate
G(σ∗

1 ,σ
∗
2)

T(σ∗
1 ,σ

∗
2)

at the NE is less than293

the ratio of the change in intake to the change in time duration. Formally,294

G (σ∗
1, σ

∗
2)

T (σ∗
1, σ

∗
2)

<
DG (σ1)

DT (σ1)
(9)

for all σ1 with DT (σ1) < 0.295

In the following two Remarks, we show that the zero-one rule and Charnov’s296

marginal value theorem are valid at the forager’s NE (p∗, τ ∗) of the dispersal-foraging297

game. These results follow from considering NE behavior with respect to p∗ and τ ∗298

respectively, assuming prey behavior is fixed at their NE strategy s∗.299

Remark 1 (Zero-one rule). If the forager encounters an Ai type patch, it is300

faced with the question: use or not this patch? That is, it must decide on p∗i . If it301
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does use the patch, it spends time τ ∗i there. A straightforward calculation shows that302

changing its strategy to pi results in
DG(pi,τ

∗
i )

DT (pi,τ∗i )
=

gi(s
∗,x,τ∗i )

τ∗i
. Since this is independent303

of the choice of pi, the rule of time average (8) yields304

p∗i = 1 if
gi(s

∗, xi, τ
∗
i )

τ ∗i
> Ψ(s∗, p∗, τ ∗). (10)

That is, an encountered patch Ai is used with probability 1 if the resultant energy305

intake rate once in this patch is greater than the forager energy intake rate from all306

patches. Similarly, p∗i = 0 if the inequality in (10) is reversed. This is the well-known307

zero-one rule (Charnov 1976a) that either a given patch type is always entered when308

encountered or never entered.309

Remark 2 (Marginal value theorem). Consider a forager who has spend310

τi in an Ai patch (thus p∗i = 1) and has collected energy gi(s
∗, x, τi) from there.311

Now the question of the forager is: leave or not from this patch? If the forager312

spends extra time in this used patch, an easy calculation shows that DT = di∆τi313

and DG = di [gi(s
∗, x, τi +∆τi)− gi(s

∗, x, , τi)]. Using (8) we find that the forager314

does not leave if gi(s
∗,x,τi+∆τi)−gi(s

∗,x,τi)
∆τi

> Ψ(s∗; p∗, τ ∗) which implies the well-known315

Charnov’s marginal value theorem (Charnov 1976b):316

d

dτi
gi(s

∗, x, τ ∗i ) = Ψ(s∗; p∗, τ ∗). (11)

That is, the forager leaves the patch at that time where its energy intake rate once317

in the patch matches its energy intake rate from all patches.318

4 Dynamic solution concept based on game dy-319

namics320

The above static solution concept (and its dynamic characterization in Appendix C)321

is based on the assumption that only one player can change its strategy at a time.322
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There are three problems with this approach. The first is that it assumes there is a323

separation of time scales between behavioral changes by prey compared to that of324

the predator. In biology, there is no general reason for ruling out that these counter325

interested agents change their strategies on the same time scale. Secondly, random326

perturbation cannot be excluded in biology and so no “player” keeps his strategy327

unchanged. Thirdly, forager and prey can adjust their behaviors to the opponent’s328

current strategy immediately (see e.g. Juliana et al. 2011; Katz et al. 2010, 2013).329

Hence, solutions given by the Nash paradigm need to be examined to see if they330

correspond to the expected outcome of the real biological system. This situation331

can be treated by game dynamics that describe the behavior changes of prey and332

forager, leading to the following concept.333

Game dynamic solution concept: a strategy pair (or a behavior cycle) is a dy-334

namic solution if it is locally asymptotically stable with respect to a game dynamics335

describing the behavior changes of prey and forager.336

Since DFG game is a mixture of evolutionary and classical games, we must337

combine two different type of game dynamics. For the prey species we use the repli-338

cator dynamics (Hofbauer and Sigmund 1998; Garay 2003) whereby the proportion339

of prey in a given patch increases if and only if prey have higher payoff in this patch.340

ṡ = s(1− s) [χ1(s, x; p, τ)− χ2(s, x; p, τ)] . (12)

From Appendix C, an IFD s∗ will be stable with respect to (12) at fixed (p, τ) if341

and only if it is an ESS of the prey habitat selection game.342

Secondly, we focus on the dynamic stability of the forager’s NE behavior, when343

the prey strategy is fixed at s. Since there is only one forager, the classical adaptive344

dynamics cannot be applied (specifically, adaptive dynamics is either based on pop-345

ulation structure (Dieckmann and Law 1996; Vincent and Brown 2005) or relative346

advantage (Hofbauer and Sigmund 1998)). For this reason, we use the following347
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partial adaptive dynamics (Garay 2002) which moves the foraging strategy in the348

direction of higher predator payoff.349

ṗ1 = p1(1− p1)
∂Ψ(s, p1, p2, τ1, τ2)

∂p1
(13)

ṗ2 = p2 (1− p2)
∂Ψ(s, p1, p2, τ1, τ2)

∂p2
(14)

τ̇1 = τ1
∂Ψ(s, p1, p2,τ1, τ2)

∂τ1
(15)

τ̇2 = τ2
∂Ψ(s, p1, p2, τ1, τ2)

∂τ2
(16)

In Appendix C, we show that optimal foraging behavior (p∗, τ ∗) at fixed s cor-350

responds exactly to a locally asymptotically stable rest point under this predator351

dynamics.352

However, it is important to emphasize that the above combined predator-prey353

dynamics describes the way the counter-interested “players” (prey population and354

forager) simultaneously change their strategies according to the opponents’ current355

strategies. The game dynamic solution is then a locally asymptotically stable rest356

point (s∗, p∗, τ ∗) of (12), (13), (14), (15) and (16). In cases where such a rest point357

does not exist but a stable behavior cycle emerges, this cycle is also considered a358

solution to the game dynamics.359

5 Results: Comparison of the two solution con-360

cepts361

To compare the static and dynamic solution concepts, we concentrate on the sit-362

uation when both patches are used by prey and by forager. That is, we assume363

that p1 = p2 = 1 and consider the rest points (s∗, τ ∗1 , τ
∗
2 ) of (12), (15) and (16) with364

0 < s∗ < 1, and τ ∗1 , τ
∗
2 both positive. The combined dynamics is then365
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ṡ = s(1− s) [χ1 − χ2]

τ̇1 =
τ1d1
E(τ)

(
d

dτ1
g1 −Ψ

)
(17)

τ̇2 =
τ2d2
E(τ)

(
d

dτ2
g2 −Ψ

)
.

It is clear that, if (s∗, τ ∗1 , τ
∗
2 ) is a dynamic solution of DFG, then s∗ a static solution366

for the prey (i.e. it satisfies inequality (5) since χ1 = χ2 at (s
∗, τ ∗1 , τ

∗
2 )). However, as367

we will see in the following two sections that use Holling type III and II functional368

responses respectively with respect to prey density in each patch type, the converse369

is not true. These results rely on the convexity/concavity of the gain gi(xi(s), τi) in370

patch i as a function of patch density xi(s) and as a function of patch leaving time371

τi.372

As a partial summary of the results we obtain, if gi(xi(s), τi) is convex in xi(s)373

at s∗ and locally concave in τ1 and τ2 at (τ ∗1 , τ
∗
2 ), then s∗ is stable (i.e. an ESS)374

for the prey dynamics (12) and (τ ∗1 , τ
∗
2 ) is stable for the predator adaptive dynamics375

(15) and (16). Global concavity in τ1 and τ2 implies (τ ∗1 , τ
∗
2 ) is the optimal foraging376

behavior when prey strategy is fixed at s∗. On the other hand, if gi(xi(s), τi) is377

concave in xi(s), then s∗ is an unstable for the prey dynamics (12). These dynamic378

stability results assume that only one player changes its strategy at a time whereas379

the dynamic solution concept allows both predator and prey to change strategies380

at the same time. The consequences of this are examined in the following two381

subsection.382

5.1 Holling III gain functions383

If the energy gain gi(xi(s), τi) is a convex function of patch density xi(s) for i = 1, 2384

as occurs for Holling III functional responses when prey density in patch type i385

is low, then prey payoff is a decreasing function of its density in each patch (i.e.386
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gi(xi(s),τi)
xi(s)

is an increasing function of xi(s)). In this case, Fretwell and Lucas (1969)387

show that there will be a unique IFD. In fact, Cressman and Krivan (2006) prove388

this IFD is an ESS. Intuitively, if the forager’s strategy does not change, then the389

stability of the prey rest point is guaranteed by the following: if the local prey390

density decreases in patch A1 and increases in patch A2 then the individual survival391

rate in patch A1 increases and in patch A2 decreases, and vice versa. In other words,392

if a prey individual moves to the other patch, then its survival rate decreases. The393

IFD is then a stable equilibrium of the prey dynamics (12) for fixed patch leaving394

times τ1 and τ2 of the predator. For large prey density in both patch types, this395

is no longer the case as we will see in the following subsection on Holling II gain396

functions.397

For the predator dynamics, we have an optimization problem in the patch leav-398

ing times τ1 and τ2 (see Appendix C). Since both leaving times τ ∗1 and τ ∗2 are positive,399

local asymptotic stability with respect to perturbations in the predator population400

(i.e. stability under the predator dynamics (15) and (16)) is equivalent to the preda-401

tor gain functions gi(xi(s), τi) in both patches being concave in the leaving times402

at the equilibrium (s∗, τ ∗1 , τ
∗
2 ) (i.e. gi(xi(s), τi) is locally concave in τi for i = 1, 2).403

Conversely, if these gain functions are globally concave in patch leaving time, then a404

stable rest point of the predator dynamics corresponds to optimal foraging behavior.405

Gain functions of the form gi(xi, τi) = aix
2
i τi/(x

2
i + aixiτi + ai) with ai positive406

are typical Holling III functional responses in prey density xi (i.e. convex in the local407

prey density xi when xi is small and become concave for larger xi) that increase to408

the saturated consumption level of aiτi at large prey density. They are also globally409

concave in leaving time τi with all prey consumed if the predator stays in this patch410

type sufficiently long. Thus, if (s∗, τ ∗1 , τ
∗
2 ) is a rest point of the (17), then the prey411

NE s∗ is an ESS for small values of x but not an ESS for large values of x when the412

forager strategy is fixed at (τ ∗1 , τ
∗
2 ) as shown in Figure 2a. In fact, for the parameters413

chosen in this figure, there are two interior ESSs (blue curves) for large x. These,414
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however, are not associated with equilibria of DFG since the equilibrium forager415

strategy corresponding to these values of s is not (τ ∗1 , τ
∗
2 ).416

There is consistency with these NE results and the stability of (s∗, τ ∗1 , τ
∗
2 ) under417

(17) in that the game dynamic solution is a stable equilibrium for small values of x418

and a stable limit cycle for large x (Figure 2b). That is, this bifurcation diagram is419

qualitatively what is expected in that the static solution concept (s∗, τ ∗1 , τ
∗
2 ) is locally420

asymptotically stable for small x and unstable for large x. However, the transition421

value of x from stability to instability of s∗ (found numerically to be x = 1.3 in Figure422

2a) is different than the transition value of x = 1.66 from stability to instability of423

(s∗, τ ∗1 , τ
∗
2 ) in Figure 2b. Specifically, for intermediate total population size x, we424

find (s∗, τ ∗1 , τ
∗
2 ) is stable under (17) even though the static prey solution would be425

unstable without the stabilizing effect of the forager’s behavior. In these cases, there426

is a discrepancy between the static solution concept and the game dynamic solution.427

Observe that, in cases where stable behavior cycles emerge as the game dynamic428

solution, neither prey nor forager keep a fixed behavior but instead each replies to429

the actual behavior of the other. Furthermore, as can be shown numerically, the430

average prey behavior over one behavioral cycle is different than the equilibrium431

value s∗, an outcome that contrasts with known results (Hofbauer and Sigmund432

1998) for population density cycles in predator-prey interactions based on Lotka-433

Volterra models and for the behavioral cycles of the classical battle-of-the-sexes434

game.435

5.2 Holling II gain functions436

Now suppose that prey payoff is an increasing function of its density in each type437

of patch (e.g. gi(xi(s), τi) are concave functions of xi(s) for i = 1, 2 as occurs for438

Holling II functional responses). Then prey survival in patch type i is at a maximum439

if all prey are in this patch. Thus, there is at least one IFD with all prey in the same440

patch type and this is also an ESS (see Appendix C). There may also be a second441
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Figure 2: Trajectories of the game dynamics for typical Holling III gain functions

of the form gi(xi, τi) = aix
2
i τi/(x

2
i + aixiτi + ai) where a1 = 0.3 and a2 = 0.5. (a)

The prey replicator dynamics with predator strategy fixed at (τ ∗1 , τ
∗
2 ) as a function

of x. The interior equilibrium s∗ is globally stable until x = 1.3 (blue solid curve)

and then becomes unstable for x > 1.3 (dashed red curve), in which case the prey

evolve to different mixed equilibria of (12) (i.e. the solid blue curves) that are locally

asymptotically stable but do not correspond to rest points of (17). (b) For x < 1.66,

trajectories of (17) approach the equilibrium (s∗, τ ∗1 , τ
∗
2 ) on the solid black curve

with mixed NE s∗. For larger x, the trajectories approach a stable limit cycle (i.e.

one of the solid blue curves) and the equilibrium (s∗, τ ∗1 , τ
∗
2 ) is unstable (indicated

by one of the points on the dotted red curve). Thus, for intermediate values of x

(i.e. 1.3 < x < 1.66), (s∗, τ ∗1 , τ
∗
2 ) is stable even though s∗ is an unstable NE of the

prey habitat selection game. Other parameters y1 = y2 = 1, α = 0.5, τ0 = 0.4, d1 =

d2 =
1
2
, c = 0.
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ESS with all prey in the other patch type. In this latter case, there will be a third442

IFD with prey in both patch types (corresponding to (s∗, τ ∗1 , τ
∗
2 )) but this will not be443

an ESS since, intuitively, concavity means that, at this IFD, if a prey moves to the444

other patch, then its survival rate increases. That is, although the IFD with prey in445

both patch types is a NE, it is not stable with respect to perturbations in the prey446

population (i.e. it is not stable under the prey dynamics (12)). This phenomenon447

is discussed by Fretwell and Lucas (1969) and raises the question whether such an448

s∗ should be considered an IFD (see Appendix C).449

Gain functions of the form gi(xi, τi) = aixiτi/(xi + aiτi + 1) with ai positive are450

typical Holling II functional responses in prey density xi (i.e. globally concave in xi)451

that increase to the saturated consumption level of aiτi at large prey density. Thus,452

if (s∗, τ ∗1 , τ
∗
2 ) is a rest point of the (17), then the prey NE s∗ is not an ESS when453

the forager strategy is fixed at (τ ∗1 , τ
∗
2 ) (see Figure 3a). In fact, for the parameters454

chosen in this figure, there are two ESSs, both of which have all prey in one patch455

type. On the other hand, as in Section 5.1, these gain functions are globally concave456

in leaving time τi with all prey consumed if the predator stays in this patch type457

sufficiently long. That is, (τ ∗1 , τ
∗
2 ) is a stable rest point of the predator dynamics458

when prey strategy is fixed at s∗.459

From the above discussion, we expect (s∗, τ ∗1 , τ
∗
2 ) to be unstable under (17).460

However, as seen in Figure 3b, (s∗, τ ∗1 , τ
∗
2 ) is in fact stable under (17) (i.e. it is a461

game dynamic solution) for large total population size x. This example shows more462

clearly than Figure 2 that a game dynamic equilibrium solution may not be a stable463

static solution for the prey population (i.e. s∗ may not be stable for (12)). We464

can say that forager behavior stabilizes the mixed prey distributions, since if the465

forager’s strategies are fixed then the prey population will use only one patch.466
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Figure 3: Trajectories of the game dynamics for typical Holling II gain functions of

the form gi(xi, τi) = aixiτi/(xi+aiτi+1) where a1 = 0.9 and a2 = 0.8. (a) The prey

dynamics with predator strategy fixed at (τ ∗1 , τ
∗
2 ) as a function of x. The interior

equilibrium s∗ is unstable (dashed red curve) and the prey evolve to all be in one

patch (i.e. the blue lines that are locally asymptotically stable). (b) Bifurcation

diagram with respect to total prey population size x for the game dynamics (17).

For small values of x, trajectories of (17) approach a stable limit cycle (i.e. one of

the solid blue curves). In particular, the equilibrium (s∗, τ ∗1 , τ
∗
2 ) on the dotted red

curve with mixed NE s∗ is not stable (which is consistent with the instability of

s∗ for the static prey solution concept in panel a). On the other hand, for larger

values of x, trajectories of (17) approach the stable equilibrium (s∗, τ ∗1 , τ
∗
2 ) on the

solid black curve, a result that is unexpected from the static solution concept. Other

parameters y1 = y2 = 1, α = 0.8, τ0 = 0.4, d1 = d2 =
1
2
, c = 0.
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6 Discussion467

The Dispersal-Foraging Game is the union of optimal foraging theory and the IFD,468

where a prey’s payoff function is its survival rate and the forager’s payoff is the469

number of prey killed per unit time. We studied two different solution concepts470

for DFG. The static NE concept (Section 3) is an equilibrium (s∗, τ ∗1 , τ
∗
2 ) that is a471

straightforward union of requirements that s∗ be an IFD of the prey habitat selection472

game and that, at this IFD, the predator adopts its optimal foraging behavior.473

The dynamic concept looks for a stable solution of the game dynamics (either an474

asymptotically stable rest point or a stable cycle of (17)). A fundamental difference475

between these static and dynamic solution concepts is that the Nash assumption476

(i.e. only one player can change its strategy at a time) implicitly precludes the477

possibility of behavior cyclic solutions.478

The game-theoretic NE condition is especially important when applied to the479

predator’s behavior. Specifically, we showed how this leads to the rule of time480

averages: the optimal predator behavior involves those activities that ensure larger481

time average intake than the time average of all activities. Both the zero-one-rule and482

Charnov’s marginal value theorem of optimal foraging theory then follow directly483

from our rule of time averages.484

Furthermore, since the static solution is a rest point of the combined predator-485

prey game dynamics, there are cases when both solution concepts give the same486

prediction: i.e.. when the NE is locally asymptotically stable with respect to the487

game dynamics.488

However, we have also shown that the two solution concepts can be quite dif-489

ferent. As an important example, when both gain functions are concave in patch490

prey density (like Holling II), then the static solution predicts that prey use only491

one patch type, whereas the game dynamic solution predicts mixed habitat use (see492

Figure 3b where either the combined dynamics leads to a stable equilibrium or to a493

stable limit cycle). The intuitive reason for this outcome is that, when prey use only494
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one patch type, the forager consequently also concentrates on this patch. This leads495

to the other patch becoming a prey “refuge” prey based on the forager’s behavior496

and so prey start to use this patch as well. Similar discrepancies between the two497

solution concepts arise for Holling III gain functions (see Figure 2).498

In practice, the dynamical solution can guarantee that the prey use both patch499

types more often than classical approaches based on the IFD.500

We also emphasize that the behavioral cycles we observe in our models based501

on prey IFD and predator optimal foraging occur at fixed density. This shows502

that, not only should we expect cycling in predator-prey population sizes over long503

periods of time, game-theoretic reasoning predicts individual behavior often cycles504

over short time intervals when population size can be assumed to be fixed. Our505

observations illustrate that total prey density displays a “behavior bifurcation effect”506

in the sense that by increasing density, stable behavior equilibrium becomes stable507

behavior cycles (Figure 3), or vice versa (Figure 2). This phenomenon is parallel508

with the “paradox of enrichment” known in population ecology (Rosenzweig 1971),509

where increasing the carrying capacity of prey causes a bifurcation.510

It should also be noted that, although the bifurcations from stable equilibrium511

behavior to stable cyclic behavior that we observed use total prey density as the512

bifurcation parameter, bifurcations occur in other model parameters as well.513

Below we recall some biological considerations and examples which serve to514

justify our dynamical solution concept.515

Firstly, we agree with Lima (2002) that “ ... some failures of standard optimal516

diet theory” (Sih and Christensen 2001), and standard IFD theory (e.g. Julliar517

2000) “might be explicable in terms of a predator-prey game.” The dynamic concept518

provides new insights into these prey-predator systems, where prey behavior and519

the forager’s strategies together determine a high killing rate, and neither optimal520

foraging theory nor IFD fit with observations. These issues also arise in applied521

ecology. Specifically, it is generally acknowledged that optimal foraging theory and522
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IFD are important for biological control of pests (Mills and Wajnberg 2008). The523

utilization of phytoseiid predatory mites as biological control agents is widespread524

(Vila and Cabello 2014). However, the dispersion of spider mites (e.g. Tetranychus525

urticae) between patches is not an IFD, since the reproductive success varies between526

habitats (Julliar 2000). At the same time, predatory mites of Phytoseiidae (Acari)527

have not adapted to optimal foraging (Konakandla 2006; Gontijo et al. 2010; Maeda528

2010 ; van der Hammen et al. 2012). In the following two examples the above pest-529

predator system exists with habitat heterogeneity. First, in the USA, apple orchards530

in Utah, whose total ground vegetation cover was at least 50%, had predatory mite531

populations that sufficed to keep pest mites below their damaging levels (Alston532

1994). Second, spider mites (Tetranychus kanzawai) in deciduous fruit tree orchards533

in Japan usually overwinter on ground vegetation. In the spring, they first increase534

their populations on the vegetation, and then move onto fruit trees. The predator535

P. persimilis, released onto groundcover, may eliminate spider mites before they536

migrate onto fruit trees (Takahashi et al. 1998; Takafuji and Amano 2001). In537

similar situations, it can be tested by field trials whether game theory leads to a538

deeper understanding of predation, especially whether stable behavior cycles should539

occur when optimal foraging theory and/or IFD do not predict observed behavior.540

Finally, Holling II functional responses are very common in nature (e.g. Hassell541

et al. 1976) and so the shape of the gain function used in Figure 3 is quite realistic. In542

this case, prey use only one patch type at classic IFD/ESS, whereas the forager can543

stabilize the prey’s mixed habitat use at the game dynamic solution. The existence544

of such examples is a strong argument to justify the dynamic solution concept.545
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7 Appendix550

In the Appendix, we only consider non-degenerate gain functions. In particular, we551

assume that ∂2

∂s2
gi(s, x, τi) ̸= 0 and ∂2

∂τ2i
gi(s, x, τi) ̸= 0.552

8 Appendix A: Derivation of functional response553

with fixed prey’s and forager’s strategies554

Following Holling (1959), we calculate the average amount of food consumed by555

the predator during a time period T . The functional response is defined by a time556

average during a foraging time duration T . Garay and Móri (2010) show that the557

average number of j-th activity Zj during T is558

E(Zj) =
T

E(τ)
Pj (18)

where Pj denotes the probability of the j-th activity. The intuitive background of559

(18) is the following. If, during time period T , the encounter probabilities do not560

change, then the average time of one activity is the expected time, E(τ), of an561

activity chosen at random. Thus, the average expected number of activities during562

T is T
E(τ)

, and according to the assumption of independent repetitions, Pj is the part563

of the expected activity that belongs the j-th one. It is straightforward to obtain564

the payoff function (3) from this.565

Another mathematical derivation of functional response and/or intake rate is566

based on renewal theory (e.g. Johns and Miller 1963) that uses the limit as the567

time duration tends to infinity. Although this does not match with our assumptions568

on T , other authors consider renewal cycles with short renewal time period (e.g.569

McNamara 1985; McNamara and Houston 1999). An issue then arises: if used570

patches are quickly renewed (e.g. renewal time is shorter than the searching time),571

the forager will optimize energy intake by staying in the richest patch type once one572
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is encountered and so obtain an expected payoff greater than (3) by also decreasing573

the total searching time during T .574

9 Appendix B: Rule of time average for forager575

Consider a two-person formal game (S1, S2; Γ1; Γ2), where the payoff function of the576

first player is defined as a time average of income, formally Γ1 (σ1, σ2) := G(σ1,σ2)
T (σ1,σ2)

,577

where time duration function T : (σ1, σ2) → R gives the time duration corresponding578

to the players’ decisions; and income function G : (σ1, σ2) → R gives income deter-579

mined by these decisions as well. The well known strict Nash equilibrium condition580

(Hofbauer and Sigmund 1998) is the following: for all (σ1, σ2) ̸= (σ∗
1, σ

∗
2)581

Γ1 (σ
∗
1, σ

∗
2) > Γ1 (σ1, σ

∗
2)

Γ2 (σ
∗
1, σ

∗
2) > Γ2 (σ

∗
1, σ2) .

From now on, we will concentrate exclusively on the time average payoff function582

Γ1 of the first player and introduce the following notation DG (σ1) := G (σ1, σ
∗
2)−583

G (σ∗
1, σ

∗
2) and DT (σ1) := T (σ1, σ

∗
2)− T (σ∗

1, σ
∗
2).584

Equation (7) in the main text is equivalent to each of the following inequalities585

(G (σ1, σ
∗
2)−G (σ∗

1, σ
∗
2))T (σ∗

1, σ
∗
2) < (T (σ1, σ

∗
2)− T (σ∗

1, σ
∗
2))G (σ∗

1, σ
∗
2)

G (σ1, σ
∗
2)T (σ∗

1, σ
∗
2) < T (σ1, σ

∗
2)G (σ∗

1, σ
∗
2)

G (σ1, σ
∗
2)

T (σ1, σ∗
2)

<
G (σ∗

1, σ
∗
2)

T (σ∗
1, σ

∗
2)

Γ1 (σ1, σ
∗
2) < Γ1 (σ

∗
1, σ

∗
2) .

That is, (σ∗
1, σ

∗
2) is a strict NE if and only if DG (σ1)T (σ∗

1, σ
∗
2) < DT (σ1)G (σ∗

1, σ
∗
2)586

holds for all σ1 ̸= σ∗
1. Furthermore, if DT (σ1) > 0 (i.e. T (σ1, σ

∗
2) > T (σ∗

1, σ
∗
2) > 0),587

then
G(σ∗

1 ,σ
∗
2)

T(σ∗
1 ,σ

∗
2)

> DG(σ1)
DT (σ1)

and, similarly, if DT (σ1) < 0 (i.e. T (σ∗
1, σ

∗
2) > T (σ1, σ

∗
2) >588

0), then
G(σ∗

1 ,σ
∗
2)

T(σ∗
1 ,σ

∗
2)

< DG(σ1)
DT (σ1)

. That is, we have589
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Case 1. If T (σ1, σ
∗
2) > T (σ∗

1, σ
∗
2) > 0 then

G(σ∗
1 ,σ

∗
2)

T(σ∗
1 ,σ

∗
2)

> DG(σ1)
DT (σ1)

590

Case 2. If T (σ∗
1, σ

∗
2) > T (σ1, σ

∗
2) > 0 then

G(σ∗
1 ,σ

∗
2)

T(σ∗
1 ,σ

∗
2)

< DG(σ1)
DT (σ1)

591

and these correspond to the +Rule of time average and −Rule of time average592

respectively as stated in the main text.593



31

10 Appendix C: Dynamical characterization of stat-594

ic solution of DFG595

Now the question arises: What kind of stability property does the static solution596

concept possess, under the basic Nash assumption that one player can change it-597

s strategy while the other keeps its strategy at equilibrium)? The following two598

subsections consider this question for the prey and the predator respectively.599

10.1 Prey solution600

In Section 4, we claim that an IFD s∗ for the prey population at fixed predator601

strategy (p∗, τ ∗) will be stable with respect to the replicator equation,602

ṡ = s(1− s) [χ1(s, x; p
∗, τ ∗)− χ2(s, x; p

∗, τ ∗)] , (19)

if and only if it is an ESS of the prey habitat selection game.603

When there are two patch types, this game (Cressman et al. 2004) has two604

pure strategies; namely, choose patch Ai (which we label strategy Ai) for i = 1, 2.605

The payoff to strategy Ai is the survival probability χi(s, x, p, τ) when the prey606

population has strategy s. Then, the expected payoff of an individual prey who uses607

strategy s′ (i.e. a prey that spends s′ and 1 − s′ of its time in A1 and A2 patches608

respectively) is609

Φs′ (s) ≡ s′χ1(s, x, p
∗, τ ∗) + (1− s′)χ2(s, x, p

∗, τ ∗). (20)

s∗ is an ESS (Maynard Smith 1982) if a resident prey population using strate-610

gy s∗ cannot be invaded by a small mutant subpopulation using strategy s′. If ε611

is the proportion of the mutant subpopulation, then the resident-mutant system612

has proportion (1 − ε)s∗ + εs′ of the prey in patch A1. The mutant cannot in-613

vade if its payoff is less than that of s∗ whenever ε is sufficiently small (i.e. if614

Φs′ ((1− ε)s∗ + εs′) < Φs∗ ((1− ε)s∗ + εs′)). From (20), this is equivalent to615

(s′ − s∗) (χ1((1− ε)s∗ + εs′, x, p∗, τ ∗)− χ2((1− ε)s∗ + εs′, x, p∗, τ ∗)) < 0 (21)
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for all ε sufficiently small.616

We first consider the case when 0 < s∗ < 1. From (21), χ1(s
∗, x, p∗, τ ∗) =617

χ2(s
∗, x, p∗, τ ∗) (i.e. s∗ is an IFD/NE since prey have the same survival probability618

in both occupied patches). Furthermore, this NE will be an ESS if and only if619

∂

∂s
(χ1(s, x, p

∗, τ ∗)− χ2(s, x, p
∗, τ ∗)) < 0. (22)

(Note that the degenerate condition where this derivative is 0 is assumed not to620

occur.) Since (22) is equivalent to the linearization of (19) at s∗ having negative621

eigenvalue (i.e. s∗(1 − s∗) ∂
∂s

(χ1(s, x, p
∗, τ ∗)− χ2(s, x, p

∗, τ ∗)) |s=s∗< 0), s∗ is stable622

if and only if it is an ESS.623

Next, suppose s∗ = 1. Then s′ < s∗ and so (21) will be true if and only if624

χ1(1, x, p
∗, τ ∗) > χ2(1, x, p

∗, τ ∗) (where the degenerate condition χ1(1, x, p
∗, τ ∗) =625

χ2(1, x, p
∗, τ ∗) is assumed not to occur). That is, s∗ is an ESS if and only if it626

is a strict NE. It is also clear that ṡ > 0 for s close to s∗ = 1 if and only if627

χ1(1, x, p
∗, τ ∗) > χ2(1, x, p

∗, τ ∗). The analogous results hold for s∗ = 0 and so, for628

all 0 ≤ s∗ ≤ 1, s∗ is an ESS if and only if it is stable under the replicator equation.629

From (4),

∂

∂s
χ1(s, x, p

∗, τ ∗) = − d1p
∗
1

τ0 + d1p∗1τ
∗
1 + d2p∗2τ

∗
2

y1
αx

(
∂g1(s, x, τ

∗
1 )

∂s
− g1(s, x, τ

∗
1 )

s

)
for 0 < s ≤ 1. Since g1(0, x, τ

∗
1 ) = 0,

g1(s,x,τ∗1 )

s
is the slope of the line from the origin630

to (s, g1(s, x, τ
∗
1 )) and so ∂

∂s
χ1(s, x, p

∗, τ ∗) < 0 if
g1(s,x,τ∗1 )

s
is an increasing function of631

s (i.e. if g1(s, x, τ
∗
1 ) is a convex function of s). Similarly, if g2(s, x, τ

∗
2 ) is a convex632

function of s, ∂
∂s
χ2(s, x, p

∗, τ ∗) > 0 since this is equivalent to
∂g2(s,x,τ∗2 )

∂s
+

g2(s,x,τ∗2 )

1−s
< 0.633

Thus, if both gain functions are convex in s, there is a unique IFD and it is an ESS.634

On the other hand, if both gain functions are concave in s, then ∂
∂s
χ1(s, x, p

∗, τ ∗) >635

0 and ∂
∂s
χ2(s, x, p

∗, τ ∗) < 0 for all 0 < s < 1. If χ1(1, x, p
∗, τ ∗) > χ2(1, x, p

∗, τ ∗),636

then s∗ = 1 is an ESS. Otherwise χ1(0, x, p
∗, τ ∗) < χ1(1, x, p

∗, τ ∗) ≤ χ2(1, x, p
∗, τ ∗) <637

χ2(0, x, p
∗, τ ∗) and so s∗ = 0 is an ESS. If both χ1(1, x, p

∗, τ ∗) > χ2(1, x, p
∗, τ ∗) and638
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χ1(0, x, p
∗, τ ∗) < χ2(0, x, p

∗, τ ∗), both pure strategies are ESSs and there is a unique639

0 < s∗ < 1 for which χ1(s
∗, x, p∗, τ ∗) = χ2(s

∗, x, p∗, τ ∗). This s∗ is an IFD but640

not an ESS since ∂
∂s

(χ1(s, x, p
∗, τ ∗)− χ2(s, x, p

∗, τ ∗)) > 0 at s∗. It should be noted641

here that some authors (Krivan et al. 2008) question whether this latter unstable642

s∗ should be called an IFD. Consequences for the expected prey behavior in such643

circumstances have been considered by Morris (2002) and more recently by Krivan644

(2014) and Tran and Cressman (2015).645

10.2 Predator solution646

At fixed prey strategy s∗, the predator faces an optimization problem. From the647

predator dynamics (13-16), dΨ(s∗;p,τ)
dt

is given by648

∂Ψ(s∗; p, τ)

∂p1

dp1
dt

+
∂Ψ(s∗; p, τ)

∂p2

dp2
dt

+
∂Ψ(s∗; p, τ)

∂τ1

dτ1
dt

+
∂Ψ(s∗; p, τ)

∂τ2

dτ2
dt

= p1(1− p1)

(
∂Ψ(s∗; p, τ)

∂p1

)2

+ p2(1− p2)

(
∂Ψ(s∗; p, τ)

∂p2

)2

+τ1

(
∂Ψ(s∗; p, τ)

∂τ1

)2

+ τ2

(
∂Ψ(s∗; p, τ)

∂τ2

)2

≥ 0.

That is, Ψ(s∗; p, τ) is a Lyapunov function for this dynamics and so every tra-649

jectory converges to E ≡ {(p, τ) | dΨ(s∗;p,τ)
dt

= 0} (Hofbauer and Sigmund 1998).650

Moreover, any strict local maximum of Ψ(s∗; p, τ) is a locally asymptotically stable651

rest point and any (connected) set of local maxima is locally asymptotically stable.652

In particular, the set of strategies corresponding to optimal foraging behavior (i.e.653

{(p∗, τ ∗) | Ψ(s∗; (p∗, τ ∗)) ≥ Ψ(s∗; p, τ) for all (p, τ)}) is locally asymptotically stable.654

To provide more details for the stability of the predator dynamics, notice that E655

consists of the set of rest points of the predator dynamics at fixed prey strategy s∗.656
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Consider the following partial derivatives of Ψ(s∗; p, τ) = d1p1g1(s∗,x,τ1)+d2p2g2(s∗,x,τ2)−c
τ0+d1p1τ1+d2p2τ2

,657

∂Ψ(s∗; p, τ)

∂p1
=

d1g1(s
∗, x, τ1) (τ0 + d2p2τ2)− (d2p2g2(s

∗, x, τ2)− c) d1τ1

(τ0 + d1p1τ1 + d2p2τ2)
2 (23)

∂Ψ(s∗; p, τ)

∂τ1
=

 d1p1
∂g1(s∗,x,τ1)

∂τ1
(τ0 + d1p1τ1 + d2p2τ2)

− (d1p1g1(s
∗, x, τ1) + d2p2g2(s

∗, x, τ2)− c) d1p1


(τ0 + d1p1τ1 + d2p2τ2)

2

=
d1p1

τ0 + d1p1τ1 + d2p2τ2

[
∂g1(s

∗, x, τ1)

∂τ1
−Ψ(s∗; p, τ)

]
. (24)

All points with p∗ = (p∗1, p
∗
2) = (0, 0) are rest points in E. However, these all658

correspond to the minimum value − c
τ0

of Ψ(s∗; p, τ) (i.e. Ψ(s∗; (p∗, τ)) ≤ Ψ(s∗; p, τ)659

if for all (p, τ)). Thus, no trajectory converges to this subset of E unless the initial660

value of Ψ(s∗; p, τ) is also at this minimum.661

Now suppose that, at some point in E, p∗ = (p∗1, p
∗
2) = (p∗1, 0) with p∗1 ̸= 0.662

Since the sign of ∂Ψ(s∗;p,τ)
∂p1

in (23) does not depend on p1, the zero-one rule ap-663

plies and so p∗1 = 1 (since p∗1 ̸= 0). Then (p∗, τ) for some τ is in E if and only if664

τ1
∂Ψ(s∗;p,τ)

∂τ1
= 0. Since τ1 = 0 again corresponds to the minimum value of Ψ(s∗; p, τ),665

stability of (p∗, τ ∗) implies that τ ∗1 > 0. Then, from (24), ∂g1(s∗,x,τ1)
∂τ1

= Ψ(s∗; p∗, τ)666

(i.e. Charnov’s marginal value theorem (11) holds in patch 1). Moreover, stabil-667

ity on this boundary implies that ∂2Ψ(s∗;p,τ)
∂τ21

< 0 at (p∗, τ ∗). Furthermore, from668

(24), τ ∗1
∂2Ψ(s∗;p,τ)

∂τ21
=

d1p∗1
τ0+d1p∗1τ

∗
1+d2p∗2τ

∗
2

∂2g1(s∗,x,τ1)
∂τ21

at (p∗, τ ∗) since ∂Ψ(s∗;p,τ)
∂τ1

= 0 and669

∂g1(s∗,x,τ1)
∂τ1

− Ψ(s∗; p, τ) = 0 there. Thus, if this (p∗, τ ∗) is stable, the gain function670

g1(s
∗, x, τi) is concave in τ1. A similar argument applies when p∗ = (p∗1, p

∗
2) = (0, p∗2)671

with p∗2 ̸= 0.672

Finally, consider a point (p∗, τ ∗) in E where the zero-one rule implies that

p∗ = (p∗1, p
∗
2) = (1, 1). If τ ∗i = 0 for some i = 1, 2, then (p∗, τ ∗) is equivalent to

a point in E with p∗i = 0 and so the analysis of the preceding paragraph applies.

Thus, we assume that the patch leaving times τ ∗i are both positive from now on.
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The linearization of (13-16) is
−∂Ψ(s∗;p,τ)

∂p1
0 0 0

0 −∂Ψ(s∗;p,τ)
∂p2

0 0

∗ ∗ τ ∗1
∂2Ψ(s∗;p,τ)

∂τ21
0

∗ ∗ 0 τ ∗2
∂2Ψ(s∗;p,τ)

∂τ22


where all partial derivatives are evaluated at (p∗, τ ∗). (Here, we use the facts that673

∂2Ψ(s∗;p,τ)
∂τ1∂τ2

= − d1
τ0+d1τ∗1+d2τ∗2

∂Ψ(s∗;p,τ)
∂τ2

= 0 at (p∗, τ ∗) and that the entries indicated by674

an asterisk (*) are not needed for the analysis). From the zero-one rule, ∂Ψ(s∗;p,τ)
∂p1

> 0675

and ∂Ψ(s∗;p,τ)
∂p2

> 0. Thus, all eigenvalues are negative at (p∗, τ ∗) if and only if676

τ ∗i
∂2Ψ(s∗;p,τ)

∂τ2i
< 0 for i = 1, 2. That is, (p∗, τ ∗) is locally asymptotically stable if and677

only if both gain functions gi(s
∗, x, τi) are concave in τi. In particular, this will be678

true if (p∗, τ ∗) is the absolute maximum value of Ψ(s∗; p, τ) (i.e. the optimal foraging679

behavior when prey strategy is fixed at s∗). (Note that we are assuming that the680

degenerate condition ∂2Ψ(s∗;p,τ)
∂τ2i

= 0 does not occur.)681
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