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Abstract: 

 

 Molecular dynamics simulations of the adsorption layer of five different surfactant 

molecules, namely pentanol, octanol, dodecanol, dodecyl trimethyl ammonium chloride, and 

sodium dodecyl sulphate have been performed at the free surface of water at two different 

surface densities, namely 1 mol/m
2
 (corresponding to unsaturated adsorption layer), and 

4 mol/m
2
 (corresponding to saturated adsorption layer), on the canonical ensemble at room 

temperature. The surfactants have been chosen in such a way that the effect of their 

headgroup charge as well as alkyl tail length on the properties of the adsorption layer can be 

separately investigated. The results are analysed in terms of the molecular level structure of 

the adsorption layer; organisation of the different groups and molecules along the 

macroscopic surface normal axis as well as conformation and orientation of the apolar tail is 

investigated in detail. In addition, the roughness of the surface of the aqueous phase is also 

analysed, using the ITIM method for accurately locating the real, capillary wave corrugated 

surface of the aqueous phase.  
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1. Introduction 

 

 Surfactant molecules of various types are of great importance both in science (e.g., 

colloid chemistry, surface science) and in industrial applications (e.g., food technology or 

washing industry). In addition, these kind of molecules, characterised by separate apolar and 

polar or ionic structural units are of key importance also in living systems, e.g., as the main 

constituents of the membrane of all eukaryotic cells. Such molecules are extremely surface 

active; at very low bulk concentration they can already saturate the surface of their aqueous 

solution. The reason for this behaviour is well understood: these molecules can effectively 

reduce the surface tension by aligning at the surface in such a way that their polar groups are 

immersed into the aqueous phase whilst their apolar parts stick out to the vapour phase.  

 Although the general features of the adsorption layer of surfactants are well known, 

much less is known about the details of the structure and dynamics of such layers. Thus, 

questions concerning the time scale of the lateral mobility of the surfactants [1], the 

immersion depth of their polar part into the aqueous phase [2], the role of the headgroup type 

(i.e., ionic, non-ionic, zwitterionic, catanionic, etc.) and the number, length, topology and 

degree of saturation of the apolar tails on the structure and dynamics of the adsorption layer, 

preferred orientation and conformation of the apolar tails and their dependence on the level of 

saturation of the adsorption layer have remained unresolved until recently or are still not fully 

understood.  

 With the recent development of both various surface sensitive experimental methods 

and of fast and easily accessible computers, the molecular level properties of surfactant 

adsorption layers have been studied with increasing intensity in the past two decades both 

experimentally [3-14] and by computer simulation methods [1,2,15-31]. In fact, computer 

simulation studies can well complement experimental investigations since, given that a 

reliable enough model of the real system is used, they can provide a three dimensional insight 

of atomistic resolution into the structure and dynamics of the system to be studied. Thus, the 

adsorption layer of various cationic [1,2,18,19,25,30], anionic [1,2,20,21,24,28-31], 

catanionic [25], zwitterionic [15-17], and non-ionic surfactants [1,2,22-24,26,30] at the 

surface of their aqueous solutions have been studied several times. However, there is still a 

need for systematic comparisons of various structural features, e.g., headgroup type or tail 

length of the surfactants on the properties of their adsorption layers.  

 In this paper we attempt to partly fill this gap by comparing the (molecular level) 

structure of the adsorption layer of five different surfactant molecules, namely pentanol (PA), 
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octanol (OA), dodecanol (DA), dodecyl trimethyl ammonium chloride (DTAC) and sodium 

dodecyl sulphate (SDS), at the surface of their aqueous solutions. Three of these surfactants, 

i.e., PA, OA and DA have the same (alcoholic) headgroup and differ from each other only in 

their apolar chain lengths. On the other hand, DA, DTAC and SDS all have the same dodecyl 

tail, but differ in their headgroups, belonging to non-ionic, cationic and anionic surfactants, 

respectively. The schematic structures of these surfactants are shown in Figure 1. The 

comparisons are made at two different surface densities, namely at 1 mol/m
2
 and 4 mol/m

2
, 

corresponding to highly unsaturated and saturated adsorption layers, respectively. 

 In two of our recent studies we investigated two particular features of these systems in 

detail. Thus, we have shown that the lateral dynamics of these surfactant molecules is very 

fast; it occurs on a time scale comparable with that of the diffusion of the water molecules [1]. 

Hence, describing their adsorption isotherm models assuming localized molecules, such as the 

Langmuir [32-34] or the Frumkin isotherm [34,35] are not applicable. Instead, an adsorption 

isotherm based on mobile adsorbates, such as the Volmer isotherm [34,36,37], has to be used 

for such systems [1]. We have also shown that the headgroups of ionic surfactants are 

immersed into the aqueous phase several molecular layers deep, while those of the alcoholic 

surfactants stay in the outmost molecular layer of the aqueous phase. [2] 

 In the present study we focus our attention on the organisation of the various groups 

along the surface normal axis, orientation and conformation of the alkyl tail, and molecular 

scale roughness of the surface of these systems. The paper is organised as follows. In section 

2 details of the calculations, including both the computer simulations and surface analyses 

performed are given. The obtained results are presented and discussed in detail in section 3. 

Finally, in section 4 the main conclusions of this study are summarised.  

 

2. Computational details 

 

 The computer simulations on which the present study is based have already been 

described in detail in our previous publications [1,2], therefore, they are only briefly reminded 

here. Molecular dynamics simulations of ten different systems, consisting the liquid-vapour 

interface of water, and one of the five surfactant considered (i.e., PA, OA, DA, DTAC or 

SDS) have been performed on the canonical (N,V,T) ensemble at 298 K. For each surfactant, 

the simulation has been repeated with two surface densities, namely 1 mol/m
2
 and 

4 mol/m
2
. The temperature of the system has been controlled by the weak coupling 
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algorithm of Berendsen et al. [38]. The X, Y and Z edges of the basic simulation box have 

been 100.0 Å, 31.41 Å and 31.41 Å, respectively, X being the surface normal axis. The basic 

box has contained 1598 water molecules, 12 or 48 surfactants (in cases of the 1 mol/m
2
 and 

4 mol/m
2
 systems, respectively), arranged in equal number at the two interfaces in the basic 

box, and, in the case of DTAC or SDS, the same number of Cl
-
 or Na

+
 counterions, 

respectively, inside the aqueous phase.  

 The energy of the system has been calculated as the sum of intra- and intermolecular 

contributions. The intramolecular energy term included contributions from the bond angle 

bending and dihedral rotation of the surfactant molecules, described by harmonic and 

Ryckaert-Bellmans [39] potential functions, respectively. The geometry of the water 

molecules as well as surfactant bond lengths have been kept unchanged in the simulations by 

means of the SETTLE [40] and LINCS [41] algorithms, respectively. The intramolecular 

energy term has been calculated as the sum of the Lennard-Jones and Columbic interaction 

energies of all atom pairs, except the ones in 1-2 or 1-3 relative positions. The CH2 and CH3 

groups have been treated as united atoms. All interactions have been truncated to zero beyond 

the group-based cut-off distance of 15 Å; the long range part of the electrostatic interaction 

has been accounted for by Ewald summation in its smooth particle mesh (PME) 

implementation. [42] Surfactants and counterions have been described by the GROMOS force 

field [43,44], the charge distribution of the headgroup of the DTAC ion has been taken from 

Schweighofer and Benjamin [45], whereas water molecules have been modelled by the rigid 

SPC potential [46].  

 Simulations have been performed by the GROMACS 3.3.2 program package [47]. 

Equations of motion have been integrated in 1 fs time steps. The systems have been 

equilibrated for 5 ns. This was followed by the 5 ns long production stage, during which 1000 

equilibrium sample configurations per system, separated by 5 ps long trajectories each, have 

been dumped for the analyses. Equilibrium snapshots of the surface of all the ten systems are 

shown in Figure 2.  

 To determine the molecular scale roughness of the liquid surface one has to properly 

identify the full set of the surface atoms, i.e., the ones that are right at the boundary of the two 

phases. For this purpose, we used the Identification of the Truly Interfacial Molecules (ITIM) 

method [48] with a probe sphere radius of 1.25 Å and a 60 × 60 grid of test lines along the 

interface normal axis X. The size of the atoms has been described by their Lennard-Jones 

distance parameter, . Tail C atoms have been regarded as part of the aqueous phase only if 
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they had a contact water oxygen neighbour, otherwise they were disregarded in the ITIM 

analysis [2]. For this purpose, tail C - water O pairs have been regarded as being in contact 

with each other if their distance was less than 4.5 Å, i.e., the first minimum position of their 

radial distribution function [2]. The position of the interface along the test lines has been 

approximated by the position of the probe sphere once it was stopped along this test line by 

the first atom of the aqueous phase.  

 

3. Results and discussion 

 

3.1. Density profiles  

 To analyse the organisation of the molecules along the surface normal axis, X, we have 

calculated the density profile of the water molecules, headgroups, chain terminal CH3 groups 

and entire alkyl tails of the surfactant molecules, and, in the case of the ionic surfactants, also 

that of the counterions. The profiles obtained in the 1 mol/m
2
 and 4 mol/m

2
 systems are 

shown in Figures 3 and 4, respectively.  

 As is seen, the polar headgroups are indeed inward oriented in every case. Further, 

with the exception of PA, no surfactant molecule entered into the aqueous phase. On the other 

hand, a detectable but still a very small amount of PA has dissolved in the aqueous phase; the 

bulk concentration of PA turns out to be about 0.05 M for both surface densities.  

 It is seen that the distance between the headgroup and tail terminal CH3 density peaks 

increases with increasing chain length, and this increase becomes larger at higher surface 

density. Thus, the distance of the position of these two peaks turns out to be 2.7 Å for PA and 

4.8 Å for DA at 1 mol/m
2
, whilst these values are 3.9 Å and 9.8 Å, respectively, at 

4 mol/m
2
. Further, this distance is larger for the ionic surfactants, being 7.1 – 7.3 Å at 

1 mol/m
2
 and 11.3 Å at 4 mol/m

2
, than for the non-ionic surfactant DA corresponding to 

the same tail length. These findings suggest that (i) in the case of the saturated adsorption 

layer the alkyl tails point straighter to the vapour phase than in the unsaturated layers, and (ii) 

the alkyl tail of the ionic surfactants is either more elongated or points straighter outward than 

that of the non-ionic ones. These points will be addressed further in the next subsection. 

 It is also clear that the headgroup of the two ionic surfactants penetrates deeper into 

the aqueous phase than that of the three alcohols at both surface densities considered. This 

finding is in a clear accordance with our recent result that ionic headgroups are immersed 

several molecular layers deep into the aqueous phase, and hence pull several tail C atoms also 
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into this phase, whereas alcoholic OH groups strongly prefer to stay in the outmost molecular 

layer of the aqueous phase [2]. At 1 mol/m
2
 the counterion density peak is located 1.5 – 2 Å 

farther from the vapour phase than that of the (charged) headgroups, whereas in the case of 

the 4 mol/m
2
 systems the position of the two density peaks coincides, indicating the 

increasing importance of the energetic over the entropic term of the solvation free energy with 

increasing surface density. 

 

3.2. Surface orientation and conformation of the hydrocarbon tails 

 To further investigate the structure of the alkyl tails of the surfactants, we have 

calculated the cosine distribution of the angle , formed by the surface normal vector, X, 

pointing to the vapour phase, and the vector d pointing along the alkyl tail from the chain 

terminal CH3 group to the first headgroup atom (i.e., O, N, and S-O-C bound O for the 

alcohols, DTAC, and SDS, respectively), and also the distribution of the alkyl tail length, 

characterised by the magnitude of the vector d, in all the ten systems simulated. The resulting 

distributions are shown in Figures 5 and 6, respectively. The obtained results confirm our 

conclusions drawn on the basis of the density profiles. Thus, in the case of the unsaturated 

adsorption layer the alkyl chains prefer tilted orientations relative to the macroscopic plane of 

the surface. The tilt angle of the preferred alignment (i.e., the one corresponding to the peak 

position of the P(cos) distribution) relative to the surface plane scatters between 25
o
 and 55

o
, 

in the case of surfactants of the same headgroup this angle being larger for longer tails, and 

for surfactants of the same tail lengths being smaller when the headgroup is charged. In the 

case of the saturated surface (4 mol/m
2
) the tail of all surfactants prefer to point straight (i.e., 

perpendicular to the macroscopic surface plane) away from the aqueous phase; and this 

preference is noticeably stronger for the ionic than for the non-ionic surfactants. 

 The P(d) tail length distribution is clearly bimodal for PA and OA at both surface 

densities considered; a broad peak is followed by a sharp and narrow one at larger distances. 

This second peak gets smaller with increasing tail length and with decreasing surface density. 

Thus, for the surfactants having a dodecyl tail only a small remain of it is seen at 4 mol/m
2
, 

and it turns into a small shoulder at 1 mol/m
2
. This large distance peak corresponds to the 

all-trans, i.e., the longest possible conformation of the tail. Clearly, assuming a given 

gauche/trans ratio of all the tail dihedrals, the longer the alkyl chain gets the smaller is the 

probability that all of its dihedrals are aligned in trans conformation. To confirm this 

assumption we have calculated the ratio of the occasions when a given dihedral is aligned in 
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gauche and trans conformations for all tail dihedrals in all the ten systems simulated. The 

resulting gauche/trans ratio, shown in the insets of Fig. 5, turns out to be about 0.5, 

independent of the type of the surfactant molecule, the position of the dihedral along the 

chain, and the surface density. 

 The main, lower distance peak of the P(d) distribution corresponds to various different 

conformations in which one or more dihedrals of different positions are gauche-aligned. This 

peak is asymmetric; the peak position is located at larger distances than the mean value, in 

accordance with the fact that trans alignment is energetically favourable with respect to the 

gauche one. Also, this peak becomes broader with increasing tail length, reflecting the 

increasing possibilities of the tail conformation.  

 A striking feature of the obtained P(d) distributions is that they are almost 

indistinguishable for surfactants of the same tail length and different headgroups at both 

surface densities. In other words, the surfactant headgroup type has no influence at all on the 

tail conformation. This finding also implies that the increased distance of the headgroup and 

chain terminal CH3 density peaks upon the headgroup gets charged (see Figs. 3 and 4) can 

exclusively be attributed to the straighter surface orientation of the tails of the ionic than those 

of the non-ionic surfactants.  

 Finally, we address here the question whether the orientational and conformational 

preferences are given by the same molecules, or different sets of molecules contribute to the 

observed orientational and conformational preferences. For this purpose, we have calculated 

the bivariate joint distribution of cos and d in all the ten systems simulated. The resulting 

distributions, shown in Figure 7, are always unimodal; the peak shifts to larger d values 

(“upward”) with increasing tail length, to lower cos values (“leftward”) with increasing 

surface density, and it is sharper for ionic than for non-ionic surfactants. These findings 

clearly confirm that the observed orientational and conformational preferences are given by 

the same set of surfactant molecules in every case.  

 

3.3. Surface roughness 

 The interface of two fluid phases, although smooth and planar on the macroscopic 

length scale, is always corrugated by capillary waves on the molecular length scale. The 

characterisation of this roughness is, however, far from being a trivial task. In computer 

simulations the difficulty stems from the fact that such a characterisation requires the 

knowledge of the real, capillary wave corrugated intrinsic surface of the phase of interest (or, 

equivalently, the full list of the atoms that constitute the surface layer of this phase). The 
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recent development of various intrinsic surface analysis methods [48-54] opened up the 

possibility of such investigations in computer simulation studies. However, having the 

intrinsic surface fully known, the characterisation of its roughness is still not an obvious task. 

Clearly, such a characterisation requires the use of at least two independent parameters, i.e., a 

frequency-like and an amplitude-like one. [48] Recently we proposed to fit the mean normal 

distance of two surface points (i.e., their distance along the macroscopic surface normal axis), 

d , as a function of their lateral distance (i.e., distance within the macroscopic plane of the 

surface), l, by the function 

      
la

la
d






 ,     (1) 

 

where  and a are the frequency-like and amplitude-like roughness parameters, respectively 

[55]. More recently we demonstrated that the amplitude parameter defined this way is 

intimately related to the surface tension [56], confirming also the physical relevance of this 

description.  

 To analyse the surface roughness of the ten systems simulated we have determined the 

)(ld  roughness curve and the  and a roughness parameters in the first three atomic layers of 

their aqueous phase. The obtained roughness curves are shown in Figure 8, whereas the  and 

a parameters corresponding to the first layer of the ten systems are summarised in Table 1. 

 As is seen, the roughness curves corresponding to alcoholic surfactants of different 

chain lengths are very similar to each other, although the increase of the hydrocarbon tail 

length is accompanied by a slight decrease of the frequency-like and a small increase of the 

amplitude-like roughness parameter. Also, unlike in the case of homogeneous liquid surfaces 

[57], no tendentious difference is seen between the roughness curves of the subsequent atomic 

layers. The most evident difference between the roughness curves obtained in the different 

systems is clearly that in the case of the saturated surface (4 mol/m
2
) ionic surfactants lead to 

a considerable increase of the surface roughness in terms of the amplitude parameter, a, with 

respect to the alcoholic surfactants. This 40-70% increase of the value of the a parameter is 

related to the aforementioned immersion of the headgroup of the ionic surfactants into the 

aqueous phase: surfactant molecules immersed to a different extent into the aqueous phase 

result in a rougher aqueous surface, and hence in larger amplitude-like parameter values. 
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4. Summary and conclusions 

 

 In this paper we presented a detailed and systematic comparison of the molecular level 

structure of the adsorption layer of various surfactants at the free water surface, both in the 

case of the saturated and unsaturated adsorption layer. Thus, both the alkyl tail length and the 

charge of the headgroup of the surfactants have been varied systematically and independently 

from each other. The results revealed that all surfactants prefer to point straight away from the 

aqueous phase by the apolar tail in the case of the saturated adsorption layer, and this 

preference is stronger if the headgroup of the surfactant bears a net charge. On the other hand, 

when the adsorption layer is unsaturated, the apolar tails prefer tilted alignment relative to the 

macroscopic plane of the surface, and this tilt angle is smaller (i.e., the tail gets closer to the 

surface plane) if the tail is shorter or the headgroup is charged. Apolar tails were found to 

prefer rather elongated conformations, in which only a few dihedrals are gauche-aligned. The 

gauche/trans ratio turned out to be about 0.5, independently from the tail length, headgroup 

type, and position of the given dihedral along the tail. It was also found that, unlike its 

orientation, the conformation of the apolar tail is independent from the headgroup type. We 

found that in the case of the unsaturated layer the counterions prefer to stay a few Angströms 

farther away from the vapour phase than the charged headgroups, whereas in saturated layers 

this difference is washed out by the dominance of the energetic over the entropic factor in 

determining the counterion distribution.  

 We have also performed, to our knowledge, for the first time, a detailed comparative 

analysis of the roughness of the surface of the different systems. The most important 

conclusion drawn in this respect is that in the case of the saturated adsorption layer charged 

surfactants result in a much rougher aqueous surface (at least, in terms of its amplitude) than 

non-ionic ones. This finding is in a clear accordance with our former result, namely that the 

headgroup of the ionic surfactants, unlike that of the alcoholic ones, is immersed several 

molecular layers deep into the aqueous phase. [2] 
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Tables 

 

Table 1. Roughness parameters of the first atomic layer of the aqueous phase in the ten systems 

simulated. 

   surfactant 

1 mol/m
2
  4 mol/m

2
 

 a/Å   a/Å 

PA 1.09 2.70  1.12 2.52 

OA 1.06 2.82  1.09 2.50 

DA 1.03 2.99  1.01 2.73 

DTAC 1.02 2.60  0.94 3.89 

SDS 1.05 2.77  0.95 4.18 
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Figure legends 

 

Fig. 1. Schematic structure of the five surfactant molecules considered. The C, O, H, S and N atoms 

as well as the Na
+
 and Cl

-
 counterions are shown by grey, red, white, yellow, light blue, dark blue 

and green colours, respectively. H atoms linked to C atoms are omitted for clarity. 

 

Fig. 2. Equilibrium snapshot (in top view) of the ten systems, as taken out from the simulations. Top 

row: systems of 1 mol/m
2
 surface density, bottom row: systems of 4 mol/m

2
 surface density. 

Water O, C, surfactant O, surfactant headgroup H, S and N atoms as well as the Na
+
 and Cl

-
 

counterions are shown by green, grey, red, white, yellow, blue, magenta and brown colours, 

respectively. For clarity, water hydrogens as well as surfactant hydrogens chemically linked to a C 

atom are omitted, and surfactant atoms and counterions are shown by space filling representation. 

 

Fig. 3. Density profile of the water molecules (black squares), all the C atoms of the hydrocarbon 

chains (red circles), chain terminal methyl groups (green up triangles), headgroup central atoms (i.e., 

O, N and S for alcohols, DTAC and SDS, respectively; blue down triangles) and counterions (orange 

lines) as calculated in the systems containing PA (top panel), OA (second panel), DA (third panel), 

DTAC (fourth panel) and SDS (bottom panel) at the surface density of 1 mol/m
2
. The scales on the 

left refer to the water, whilst those on the right to all the other profiles. All the profiles shown are 

symmetrised over the two liquid surfaces present in the basic simulation box.  

 

Fig. 4. Density profile of the water molecules (black squares), all the C atoms of the hydrocarbon 

chains (red circles), chain terminal methyl groups (green up triangles), headgroup central atoms (i.e., 

O, N and S for alcohols, DTAC and SDS, respectively; blue down triangles) and counterions (orange 

lines) as calculated in the systems containing PA (top panel), OA (second panel), DA (third panel), 

DTAC (fourth panel) and SDS (bottom panel) at the surface density of 4 mol/m
2
. The scales on the 

left refer to the water and hydrocarbon chain, whilst those on the right to all the other profiles. All 

the profiles shown are symmetrised over the two liquid surfaces present in the basic simulation box. 
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Fig. 5. Cosine distribution of the angle , formed by the vector pointing from the tail terminal CH3 

group to the first headgroup atom, and the surface normal axis pointing away from the aqueous 

phase, as obtained in the systems containing PA (solid black lines), OA (dashed red lines), DA 

(dotted blue lines), DTAC (dash-dotted magenta lines), and SDS (dash-dot-dotted green lines) at the 

surface densities of 1 mol/m
2
 (bottom panel) and 4 mol/m

2
 (top panel). The insets show the 

gauche/trans ratio of the different dihedrals in the different systems.  

 

Fig. 6. Distribution of the alkyl tail length, characterised by the distance d of the tail terminal CH3 

group from the first headgroup atom, as obtained in the systems containing PA (solid black lines), 

OA (dashed red lines), DA (dotted blue lines), DTAC (dash-dotted magenta lines), and SDS (dash-

dot-dotted green lines) at the surface densities of 1 mol/m
2
 (bottom panel) and 4 mol/m

2
 (top 

panel).  

 

Fig. 7. Bivariate distribution of the orientation and length of the alkyl tail, characterised by the 

cosine of the angle  (formed by the vector pointing from the tail terminal CH3 group to the first 

headgroup atom, and the surface normal axis pointing away from the aqueous phase), and the 

distance d of tail terminal CH3 group and first headgroup atom, as obtained in the systems containing 

PA (first column), OA (second column), DA (third column), DTAC (fourth column), and SDS (fifth 

column) at the surface densities of 1 mol/m
2
 (top row) and 4 mol/m

2
 (bottom row). Lighter shades 

of grey indicate higher probabilities. 

 

Fig. 8. Average lateral distance of two surface points as a function of their lateral distance in the 

1 mol/m
2
 (left) and 4 mol/m

2
 (right) systems containing DA (top), DTAC (middle) and SDS 

(bottom). Roughness curves corresponding to the first, second and third layers are marked by black, 

red and blue colours, respectively. The insets compare the roughness curves of the first layer of 

systems containing PA (magenta triangles), OA (green squares) and DA (black circles) in the surface 

densities of 1 mol/m
2
 (left inset) and 4 mol/m

2
 (right inset).  
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Figure 1. 

Abrankó-Rideg et al. 
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Figure 2. 

Abrankó-Rideg et al. 
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Figure 3. 

Abrankó-Rideg et al. 
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Figure 4. 

Abrankó-Rideg et al. 
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Figure 5. 

Abrankó-Rideg et al. 
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Figure 6. 

Abrankó-Rideg et al. 
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Figure 7. 

Abrankó-Rideg et al. 
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Figure 8. 

Abrankó-Rideg et al. 
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