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Abstract 

A detailed kinetic analysis of two schemes, one involving coupled consecutive processes and 

another featuring parallel reactions and decay of ???, is presented here using Taylor series 

expansion. It is shown that both of these schemes are easily confused with the reversible 

second order reaction in a routine kinetic study. The kinetic traces predicted by both schemes 

are sufficiently close to pseudo-first order curves so that it is practically impossible to identify 

the deviations based on data with the usual experimental errors, which was also demonstrated 

by fitting simulated theoretical curves to exponential functions. The dependence of the 

pseudo-first order rate constants on the concentration of the excess reagent features the same 

trend as in the case of a reversible reaction: a straight line with an intercept is observed. This 

analysis emphasizes that the reversible nature of reactions should be demonstrated by direct 

equilibrium studies, kinetic observations alone might be misleading. 
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Introduction 

Statistical kinetics is a phenomenon when certain coincidences in the values of rate constants 

and other parameters make the kinetic behavior of a multi-step process indistinguishable from 

a single-step scheme.1,2 A notable and well understood case is based on two consecutive first 

order reactions:   

 CBA ba  kk          (1) 

If this reaction is monitored by absorbance measurements, the time dependence of the 

absorbance signal is given by the following equation:1,2 
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In this formula, c0 is the initial concentration of A, whereas A, B and C are the molar 

absorptivities of species A, B, and C at the wavelength of the detection. Equation 2 describes 

a double exponential function, but certain parameter coincidences may transform it to a single 

exponential behavior.  One of such coincidences is B = C, which makes the second term 

undetectable in equation 2. Another coincidence, (A  B)ka = (A  C)kb, results in 0 as the 

multiplying factor before the first term. These coincidences may seem rare, but they are quite 

common (and also valid at the entire useful wavelength range) in practice when multiple 

equivalent reaction centers and absorbing moieties are involved. Experimental examples of 

this phenomenon can be found both in the recent and older chemical literature.3-11 

 It should be emphasized that in the classic cases of statistical kinetics,1-11 there are no 

approximations or experimental limitations involved, it is the exact mathematical solution of 

the scheme that may be misleading in experimental studies because of the coincidences. 

However, there is another and arguably much more common reason why a kinetic curve could 

be misidentified as a simpler one: the usual experimental errors in measuring the absorbance 

or other features of the reactive system  may make two mathematically distinct types of 



kinetic curves in distinguishable. This effect is sometimes deliberately taken advantage of: the 

classical example is to use a high excess of each reagent except one to create pseudo-first 

order conditions.2 

 This paper will give a detailed mathematical and statistical analysis of two reaction 

schemes that give kinetically, at least seemingly, indistinguishable results from the well-

known reversible second order reaction1,2: 

          (3) 

The usual approach is that one of the reagents (e.g. B) is used in large excess in order to detect 

pseudo-first order curves, whose observed rate constants (kobs) are determined as a function of 

the concentration of the excess reagent B. The expected dependence is given as follows: 

   kkk [B]obs          (4) 

If the plot of kobs vs. [B] gives a straight line with an intercept, this is understood as a 

validation of the scheme. Rate constant k+ is calculated from the slope of the plot and k is the 

intercept. 

 In the recent literature, two cases have been identified when the procedure described in 

the previous paragraph was successful, yet the possibility of a reversible second order reaction 

was ruled out based on independent experimental observations or plausible chemical 

considerations.12-14 In both cases, numerical integration of alternative kinetic schemes was 

used to show that other interpretations of the experimental data are also in agreement with the 

kinetic observations. The present study identifies the sources of the coincidences leading to 

this interesting phenomenon and also analyzes what parameter values (rate constants and 

initial concentrations) are typically required for distinguishing the kinetic schemes on the 

basis of kinetic data. 

 

Results and Discussion 



Theoretical Background. The calculations presented here will use Taylor series expansion 

for the mathematical analysis of kinetic curves.15 This is also a possible method for numerical 

integration of kinetic schemes.2 According to Taylor’s theorem, the value of a differentiable 

function f(t) at any value of t can be calculated as an infinite sum (called the Taylor series) 

using the derivatives of the function at t = 0. A possible form of this theorem is given as 

follows: 
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Taylor’s theorem has very diverse applications in science. In chemical kinetics, the rate 

equation gives the first derivate of a concentration-time trace as the function of the 

concentrations. This fact offers an advantageous way to derive the Taylor series of a 

concentration time trace even if the trace itself cannot be given by a closed-form function. 

 

Coupled Consecutive Reactions. The first of the two kinetic schemes analyzed here features 

an initial first order reaction, the product of which reacts with the initial reagent in a 

consecutive, second order step. 
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The rate equations defined for this scheme are given as follows: 
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In practice, this scheme was proposed to interpret kinetic findings in the redox reaction 

between thiocyanate ion and peroxomonosulfate ion under conditions when thiocyante ion is 

used in large excess.14 Therefore, in that particular example, A was HSO5
, B was HOSCN, 

whereas C meant decomposition products in general. In fact, some earlier observations in the 

same process were proposed to be interpreted by the reversible scheme given in Equation 3.16-

18 However, this scheme is clearly ruled out by both thermodynamic considerations and 

experimental evidence about the non-equilibrium nature of the process.14 

 It seems that the rate equations given in Eq. 7 do not have in easily accessible closed-

form solution, although analytical solutions for a number of similar two-step schemes have 

been published recently.19 In cases like this, occasionally it is useful to seek a solution that 

gives one of the concentrations as a function of the other rather than time.2 In the present case, 

A is only consumed in reactions and never produced, which means that its concentrations is a 

monotonously decreasing function of time. Therefore, it seems useful to seek the 

concentration of B as a function of the concentration of A. A change in the independent 

variable in Eq. 7 leads to the following single differential equation: 
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Notably, this is still an autonomous equation (because [A] does not appear on the right side), 

so it is also a separable and can be solved readily by simple integration. Before presenting the 

full solution, it needs to be remarked that Eq. 8 clearly implies that [B] increases 

monotonously as a function of time (it cannot have a maximum) if its initial concentration is 0 

and the concentration [B] = k1/k2 is a stationary point. When [B]0 = 0 (note that subscript will 

keep refer to time, as the final goal of the calculations is obtaining the time dependence), the 

concentration of B can never exceed k1/k2. The actual solution of Eq. 8 for the concentration 

of species A is easily stated: 
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Eq. 9 connects the concentrations of [A] and [B] in a way that features only a single 

parameter, which is the rate constant ratio k1/k2. This rate constant ratio has the dimension of 

concentration, so it can be scaled to the initial concentration of [A]. Therefore, Figure 1 shows 

typical plots of [A] vs. [B] for a number of different k1/(k2[A]0) ratios (this expression can also 

be thought of as a dimensionless version of the ratio of the two rate constants). The 

concentrations on the x and y axes are also scaled with the initial concentration of species A 

([A]0) and [B]0 = 0 is assumed. Figure 1 clearly shows that the final concentration of B (i.e. 

the one at [A] = 0) increases as the k1/(k2[A]0) increases. This final concentration can in fact 

be determined analytically as well by inverting the formula Eq. 9. For this operation, the use 

of the Lambert W function19 (abbreviated simply as W here), the inverse of the xex function, is 

necessary. The final formula obtained for [B] is as follows:  
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The Taylor series expansion for the time dependence of the concentration of B is given in 

detail in the Supporting information as Derivation I. The most important results are 

summarized in Table 1, which shows the value and the first four derivatives of [B] at t = 0, 

which are the first five terms in the Taylor series expansion as shown in Eq. 5. Based on the 

data in Table 1, it can be shown that [B] is quite well approximated by the following function, 

which describes a pseudo-first order kinetic curve: 
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Table 1 also shows the first five terms of the Taylor series expansion of this exponential 

function. It is clear that the first four terms are identical to the first four terms of the Taylor 

series of the exact solution, and the difference between the fifth terms is also quite minor. 



This indicates a high degree of similarity between the functions. Indeed, in this sense, Eq. 11, 

which describes a pseudo-first order kinetic curve with kobs = k1 + k2[A]0, is very close to the 

exact solution of rate equation 7. More proof of the similarity will be given in the next 

paragraphs. 

 The end point ([B]) of the approximation curve described by Eq. 11 is simply the 

multiplication term k1[A]0/(k1 + k2[A]0). Figure 2 presents a comparison between the exact 

end point (as given Eq. 10) and the approximated point as a function of the scaled ratio of the 

rate constants, k1/(k2[A]0). The maximum difference between the two quantities is 4.1% 

when k1/(k2[A]0) is about 0.6. 4% is not much larger than the average error of concentration 

determination methods, so it could be argued that the approximate formula (at least for the 

final concentration) works reasonably well in the entire region of possible parameter values. 

 Further tests of the approximations were carried out by numerically integrating the rate 

equations given in Eq. 7. The process of scaling was used in these calculations:2 time was 

measured in units of 1/k1 and concentration was measured in the units of [A]0. This process is 

analogous to using dimensionless time and concentrations, and the benefit is that the number 

of parameters that need to be considered in the calculations is decreased without sacrificing 

the general nature of the considerations. In fact, when scaled kinetic traces are calculated, the 

only parameter remaining in the scheme described in Eq. 6 is the dimensionless parameter 

k1/(k2[A]0), which is usually called a shape parameter.2 During the numerical integration, 7001 

points were calculated between t = 0 and t = 7/k1 using the software Scientist.21 This selection 

ensured that the concentration practically reached its final value and also gave sufficient time 

resolution for the simulated curves. Examples of simulated kinetic traces are given in Figure 

S1 of the Supporting Information. These simulated curves were then fitted to an exponential 

function using the non-linear least squares algorithm also in the software Scientist: 

 EAe tk   obs
fit[B]          (12) 



The typical residuals as a function of time obtained in this exponential fit are shown in Figure 

3 for a number of different values of the shape parameter k1/(k2[A]0). In agreement with the 

relative errors of endpoint given in Figure 2, the largest residuals occur around k1/(k2[A]0) = 

0.5, but even these relatively high residuals are quite small in absolute terms, so even in the 

worst case, the fit would most probably be accepted for all practical purposes. The goodness 

of the exponential fit was further characterized by the square root of the average of the 

squared residuals: 
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The dependence of this average deviation of the value of the shape parameter k1/(k2[A]0) is 

shown in Figure 4. For comparison, the quantity [B]/[A]0S is also displayed in this graph, 

which gives the average deviations relative to [B] rather than [A]0. In both curves, a 

maximum is seen between 0.1 and 1, which represents the conditions under which the fit to an 

exponential curve is the worst. However, the maximum values of S or [B]/[A]0S on the y 

axis are lower than 102, which clearly show that the average deviation of the exponential fits 

are below 1% under all conditions.  

 Figure 4 also displays kobs/k1 as a function of k1/(k2[A]0). The points in this series show 

the fitted kobs values, whereas the straight line corresponds to kobs = k1 + k2[A]0, which is 

expected based on the approximation given in Eq. 11. In this case, the agreement of the 

individual points and the straight lines show how good the approximation k1 + k2[A]0 for the 

fitted pseudo-first order rate constant (kobs) is. Remarkably, there is a noticeable deviation in 

the region 0.01 < k1/(k2[A]0) < 1, which may occasionally exceed 10% of the kobs value. This 

observation, considered together with the previous conclusions, demonstrates  that the kinetic 

scheme given in Eq. 6 always gives rise to curves that cannot be distinguished experimentally 



from an exponential curve, but the approximation of the pseudo-first order rate constant given 

in Eq. 11 may be more than 10% off under certain conditions.  

 Some further indicators of the acceptability of the pseudo-first order fit were also 

monitored. These are the fitted value of the concentration of B at the beginning and end of the 

curve.  

 EtEAt  )([B])0([B] fitfit       (14) 

Figures S2 and S3 in the Supporting Information shows the difference between these fitted 

values from the exactly known values of [B]0 (= 0) and [B] as a function of k1/(k2[A]0). It is 

seen that [B]fit(t = ) is always in excellent agreement with [B] and the maximum difference 

between [B]fit(t = ) and  is about 5% of the value of [A]0. Again, these values and graphs 

imply that describing the concentration change of B as an exponential curve is a highly 

acceptable assumption given the usual experimental errors of concentration determination. 

Finally, Figure S4 in the Supporting Information compares the curves calculated by numerical 

integration, by the approximation formula in Eq. 11 and by the exponential fitting under on 

particular set of conditions. As expected Eq. 11 gives a very good approximation of the 

beginning of the actual concentration of B, but estimating the end point is less reliable by this 

formula. 

 It is also notable that the co-incidence of the Taylor series expansion only occurs for 

the concentration of B. For the concentration of A and P, the deviation from a pseudo-first 

order curve is much larger and would probably be detectable in experiments as well. Indeed, 

in the cited experimental example, the spectrophotometric detection were selective to species 

B (HOSCN).14,16-18 

 Now turning to the possibility of misidentifying scheme: suppose that the process A  

B in the scheme of Eq. 6 is in fact a pseudo-first order process, which involves the reaction of 

A with an excess reagent R. In this case, the first order rate constant of the first process is 



given as k1 = k2nd[R]. Therefore, a coupled consecutive reaction would be expected to give an 

experimental curve that is very close to exponential with kobs = k2nd[R] + k2[A]0. Unless the 

experimenter is careful enough to design experiments with varied initial concentrations of A 

(which is the deficiency reagent!), it is very easy to reach the erroneous conclusion that the 

reaction is reversible with a forward rate constant of k2nd and a reverse rate constant of k2[A]0. 

In fact, an analysis of the final concentrations of B could further strengthen this conclusion, as 

the approximation formula in Eq. 11 shows that such an evaluation would yield practically the 

same equilibrium constant for the supposed equilibrium process (k2nd/k2[A]0) as the ratio of 

the forward and reverse rate constants. 

 

Parallel Reaction and Decay. The second model we consider in this article involves an 

adduct formation and parallel decay of one of the reactants. The earlier published 

experimental example is the ligand substitution reaction between the vitamin B12 derivative 

aquacobalamin/hydroxycobalamin (H2OCbl+/HOCbl) and secondary amine NONOates, R2N-

NONOates.12-13 The latter reagents (the “ligand”) was confirmed to undergo a decomposition, 

a process that was termed “silent killer” later13 because it does not change the observed 

absorbance values. The scheme itself is as follows:  
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In the experimental example,12 C was the ligand, whereas D was the metal-containing species 

H2OCbl+/HOCbl. The rate equations based on this scheme are given as follows: 
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Again, this is a kinetic model for which a closed form analytical solution has not been found 

yet.13 However, an analysis similar to the one presented for the previous scheme is possible 

here as well. It is clear that both the concentrations of C and D are monotonous functions of 

time, so it may be meaningful to seek the concentration of D as a function of the 

concentration of C. The differential equation obtained is as follows: 
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Again, this is an autonomous and separable differential equation, whose solution is 

particularly easily sated for [C]: 

 
04

3
00

[D]

[D]
ln[D][D][C][C]

k

k
        (18) 

Scaling of the kinetic curves is possible similarly to the previous case. A convenient time unit 

is 1/(k4[C]0), whereas a convenient concentration scale is provided by [D]0. Another possible 

time unit would be 1/k3, but this is not particularly useful in this case as the concentration of D 

will be of the main interest. This scaling now leaves two shape parameters: [C]0/[D]0 and 

k4[D]0/k3. Because the original experimental example used a large excess of the ligand (C 

here), and indeed the most interesting features of this system are demonstrated at an initial 

excess of C, most analysis in this paper was done for [C]0/[D]0  1. It is notable that the 

concentration of C always goes down to zero by the end of the process because of its first-

order decay, but it is possible for some D to remain intact by the end. This can also be clearly 

observed in Figure 5, where a few typical curves for [C] vs. [D] are given under a number of 

different parameter values. 

 Again, the final concentration of D is of interest in this system. The exact analytical 

formula for this can be given similarly to Eq. 10, using the Lambert W function: 
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Similarly to the previous scheme, the rate equations shown in Eq. 16 facilitate the calculation 

of the derivatives of the concentration of D at t = 0. This is detailed in the Supporting 

information as Derivation 2, and the most important final results, which are the first four 

terms of the Taylor series expansion, are displayed in Table 2. At this time, Table 2 also 

shows the first four terms of the Taylor series expansion of the following exponential 

function: 
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It can be seen that the first three terms in the Taylor series expansion of the two functions are 

identical, and the difference between the fourth terms is also minor. Therefore, analogously to 

the previous case, this implies a considerably degree of similarity of these functions. This is in 

agreement with the conclusions of a previous paper that was based on the numerical 

integration of the rate equation in Eq. 16. REF!!! However, the fact that the first difference is 

seen in the fourth term rather than the fifth indicates that the similarity may be more limited 

than in the case of coupled consecutive reactions. 

 As in the previous case, it is instructive to compare the actual exact final 

concentrations of D (as shown in Eq. 19) with the approximation values provided by Eq. 20. 

This is done in Figure 6. Because the system has two shape parameters, the dependence with 

respect to both of these parameters should be studied. Figure 6 displays what is in effect a 

contour plot: the two shape parameters are given on the two axes, and four regions are 

identified in this graph where the difference between the exact and [D] values is smaller than 

0.1%; between 0.1%, and 1%; between 1% and 10%; and greater than 10%. The region where 

the deviation exceeds 10% represents conditions where Eq. 20 does not approximate the exact 

solution of rate equation 16 well. These conditions are characterized by 1 < k4[C]0/k3 < 10 or 

the simultaneous inequities [C]0/[D]0 < 10 and k3/(k4[D]0) < 1. 



 To obtain more information about the usefulness of the approximation formula in Eq. 

20, detailed analysis similar to the one described for the previous case was carried out. The 

software Scientist21 was first used to solve Eq. 16 numerically. Again 7001 points were 

generated in the time domain between t = 0 and t = 10/(k4[C]0). Some simulated kinetic traces 

are show in Figure S5 of the Supporting Information. The kinetic curves generated by 

numerical integration were then fitted to an exponential function using the non-linear least 

squares algorithm also in the software Scientist: 

 EAe tk   obs
fit[D]          (21) 

Figure 7 gives the residuals of this fit for a number of selected cases. These residuals are in 

general somewhat larger than those in the previous case, which is in agreement with the fact 

that the Taylor series expansions compare better in Table 1 than in Table 2. However, the 

maximum residuals are still about 5%, which is not very large. The tendency of the residuals 

also resembles the theoretical residual shapes of second order processes, which are studied at 

large excess at one of the reagents and evaluated by exponential fitting.2 The average 

deviation, SD, of the fit was defined in a way that is somewhat different from the previous 

case: 
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The dependence of SD on the two shape parameters is shown in Figure 8. This plot gives SD as 

a function of k4[D]0/k3 for eight different values of [C]0/[D]0. All eight curves show a 

maximum, which represent about 1% average deviation for the entire fit, roughly at k4[D]0/k3 

= 3[D]0/[C]0, i.e. k4[C]0/k3 = 3. The region of maximum average fit error is exactly the same 

as the center of the area featuring the highest error in Figure 6. It is to be noted that even 

though Figure 6 displays an estimation error for the final concentration of D in excess of 10% 

(which is probably unacceptable), Figure 8 clearly shows that the average deviation of the 



exponential fit are about 1% even in the worst cases. The very similar shape of the curves in 

Figure 8 and the symmetry of Figure 6 also imply that the goodness of the approximation 

given in Eq. 20 can be assessed based solely on the value of the combination parameter 

k4[C]0/k3. The approximation works worst when k4[C]0/k3 is about 3, and gets gradually better 

as the parameters move from this condition. 

 The analysis shows that this scheme of parallel reaction and decay also has a high 

potential to be confused with the scheme shown in Eq. 3. When C is used in high excess over 

D, curves very close to pseudo-first order are detected with kobs = k3 + k4[C]0 + k4[D]0. 

Because of the large excess of reagent C, the dependence of kobs on [D]0 (again, the deficiency 

reagent) is very difficult to pick up experimentally. Therefore, k4 would be interpreted as the 

rate constant of the reaction between C and D, which is correct, but the k3 term would be 

misidentified as the first order rate constant of the reverse reaction. 

 

Conclusion 

The results in this paper shows that the two kinetic schemes considered here, coupled 

consecutive processes and parallel reaction and decay, are indeed very difficult to distinguish 

from the reversible second order process based solely on kinetic data. The analysis here shows 

that designing experiments with varied concentrations of the deficiency reagent might serve 

as a clue in the first case, whereas the deviation from the pseudo-first order behavior at 

k4[C]0/k3 = 3 in the second case might be substantial enough for experimental detection. In 

both cases, a direct equilibrium test of the reversible nature of the process, i.e. trying to shift 

the equilibrium back toward the initial substances, would clearly challenge the validity of the 

scheme given in Eq. 3. Therefore, it is concluded that such equilibrium tests should be carried 

out in every case to prove the reversible nature of the process. 
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Table 1 Terms in the Taylor series expansion for the case of coupled consecutive reaction shown in Eq. 6. 

at t = 0 From rate equation (Eq. 7) From approximation (Eq. 11) Difference 

value 0 0 0 

1st derivative k1[A]0 k1[A]0 0 

2nd derivative k1
2[A]0  k1k2[A]0

2 k1[A]0(k1 + k2[A]0) 0 

3rd derivative k1
3[A]0 + 2k1

2k2[A]0
2 + k1k2

2[A]0
3  k1[A]0(k1 + k2[A]0)

2 0 

4th derivative k1
4[A]03k1

3k2[A]0
2 k1

2k2
2[A]0

3 k1k2
3[A]0

4 k1[A]0(k1 + k2[A]0)
3 2k1

2k2
2[A]0

3 

 



 

Table 2 Terms in the Taylor series expansion for the case of parallel reaction and decay shown in Eq. 15.  

at t = 0 From rate equation (Eq. 16) From approximation (Eq. 20) Difference 

value [D]0 [D]0 0 

1st derivative k4[C]0[D]0 k4[C]0[D]0 0 

2nd derivative k3k4[C]0[D]0+ k4
2[C]0[D]0

2+ k4
2[C]0

2[D]0 k4[C]0[D]0(k3 + k4[C]0 + k4[D]0) 0 

3rd derivative k3
2k4[C]0[D]0 2k3k4

2[C]0[D]0
23k3k4

2[C]0
2[D]0  

k4
3[C]0[D]0

3 4k4
3[C]0

2[D]0
2 k4

3[C]0
3[D]0 

k4[C]0[D]0(k3 + k4[C]0 + k4[D]0)
2 k3k4

2[C]0
2[D]0+ 

2k4
3[C]0

2[D]0
2 

 



 

Figure 1 Scaled concentration of species A as a function of the scaled concentration of 
species B in the scheme shown in Eq. 6. The numbers in the graph display the k1/(k2[A]0) 
parameter values for the particular curves. 
 
 

 

Figure 2 Relative estimation error of the end point by the approximate formula in Eq. 11 for 
the scheme shown in Eq. 6 



 

Figure 3 Residuals as a function of scaled time from the fitting of Eq. 12 for a few sample 
curves simulated based on the scheme in Eq. 6. Curve e is indistinguishable from the y = 0 
line in the inset on this scale. Parameter values: k1/(k2[A]0) =  0.1 (a), 0.222 (b), 1 (c), 10 (d), 
100 (e). 
 
 

 

Figure 4 Average relative deviations from the fitting of Eq. 12 and the estimated kobs values 
as a function of shape parameter k1/(k2[A]0) for the scheme shown in Eq. 6. 



 

Figure 5 Scaled concentration of species A as a function of the scaled concentration of 
species B in the scheme shown in Eq. 15. Particular values for the two shape parameters of 
the curves drawn: [C]0/[D]0 =  100 (a), 100 (b), 10 (c), 1 (d), 1 (e), 5 (f), 1 (g), 1 (h); k4[D]0/k3 
=  0.2 (a), 0.1 (b), 0.5 (c), 1000 (d), 5 (e), 0.2 (f), 1 (g), 0.2 (h). 
 
 

 

Figure 6 Relative estimation error of the end point by the approximate formula in Eq. 20 as a 
function of shape parameters [C]0/[D]0 and k3/(k4[D]0) for the scheme shown in Eq. 15. 



 

Figure 7 Residuals as a function of scaled time from the fitting of Eq. 21 for a few sample 
curves simulated based on the scheme in Eq. 15. Parameter values: [C]0/[D]0 =  10 (a), 100 
(b), 104 (c), 1000 (d), 300 (e), 3000 (f); k4[D]0/k3 =  0.3 (a), 0.02 (b), 3104 (c), 0.02 (d), 
0.002 (e), 3 (f). 
 
 

 

Figure 8 Average relative deviations from the fit of Eq. 21 as a function of shape parameter 

k1/(k2[A]0) for the scheme shown in Eq. 15. Parameter values: [C]0/[D]0 =  10 (a), 30 (b), 100 

(c), 300 (d), 1000 (e), 3000 (f), 1104 (g), 3104 (h).
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Derivation I. 

The mechanism defines the following set of differential equations (using the simple notations, 
x = [A], y = [B], a = k1 and b = k2 with the number of dots above the variable indicating the 
number of derivations as a function of time): 
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The derivatives at t = 0 can consequently be given: 
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The values of the derivatives at time zero were directly inserted into Table 1. 



 

Figure S1 Simulated scaled kinetic traces based on the scheme shown in Eq. 6. Parameter 
values: k1/(k2[A]0) =  104 (a), 4500 (b), 2000 (c), 750 (d), 250 (e), 1 (f). 
 
 

 

Figure S2 Relative error of the estimation of the initial value of [B] by Eq. 12 as a function of 
k1/(k2[A]0)  for the scheme shown in Eq. 6. 



 
Figure S3 Relative error of the estimation of [B] by Eq. 12 as a function of k1/(k2[A]0)  for 
the scheme shown in Eq. 6. 
 
 

 

Figure S4 Comparison of the time dependence of the concentration of B calculated by the 
direct simulation based on the scheme shown in Eq. 6 (black curve), the approximation 
equation in Eq. 11 (blue line) and the exponential fit of Eq. 12 (red line). 



Derivation II. 

This time, the mechanism defines the following set of differential equations (using the simple 
notations, x = [C], y = [D], a = k3 and b = k4 with the number of dots above the variable 
indicating the number of derivations as a function of time): 
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The derivatives at t = 0 can consequently be given: 
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The values of the derivatives at time zero were directly inserted into Table 2. 

 



 
Figure S5 Simulated scaled kinetic traces based on the scheme shown in Eq. 15. Parameter 
values: [C]0/[D]0 =  300 (a), 100 (b), 10 (c), 104 (d), 1000 (e), 3000 (f); k4[D]0/k3 =  0.002 (a), 
0.02 (b), 0.3 (c), 3104 (d), 0.02 (e), 3 (f). 


