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Abstract

A weakly compressible SPH solver is presented and applied to simulate free-
surface solitary waves generated in a dam-break experiment. Wave propaga-
tion speeds are compared with the exact solutions of the Korteweg-de Vries
(KdV) equation as a first order theory and a second order approximation
investigated in the literature. Test cases are constructed based on the mea-
surement layouts of a dam-break experiment. Free surface shapes of different
simulation cases are compared with the KdV-shapes. The simulation results
show good agreement with the second order approximation of solitary wave
propagation speeds.

Keywords: Soliton, Solitary wave, Free-surface flow, Smoothed Particle
Hydrodynamics

1. Introduction

The first known observation of a solitary wave was reported by Scott
Russell in 1834 [1]. He studied the behaviour of the solitary waves in lab-
oratory while the first theoretical model explaining them appeared in 1895
by Korteweg and de Vries [2]. The idea of the Korteweg-de Vries (KdV)
theory is based on slightly dispersive shallow water waves whose dispersion
is balanced by nonlinear effects so that the wave preserves its amplitude and
shape during the propagation on arbitrary distances. The exact solution of
the KdV equation describes the shape and propagation speed of a soliton.
Although the KdV theory can be considered a first order approximation and
its solution describes real solitary waves well, higher order approximations
can also be constituted. In [3] Halász introduced an arbitrarily high order
iterative, successive approximation model that reproduces the KdV theory
in the first iteration step, however, the higher order investigation requires
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numerical approach.
Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian numer-
ical scheme firstly published by R.A. Gingold and J.J. Monaghan [4] and
independently by L. Lucy [5] in 1977. In the beginning SPH was applied
in the field of astrophysics, then the first attempts on modeling fluid flows
motivated by coastal engineering problems was published by J.J. Monaghan
in 1994 [6] and [7]. Later the investigation of the dynamics of Scott Russel’s
Solitary wave generator with SPH has been carried out by the same author
in 2000 [8]. Different aspects of free-surface waves in SPH were rigorously
investigated, like turbulence modeling of breaking waves by R.A. Dalrymple
and B.D. Rogers [9]. Standing and regular waves were modelled by Antuono
et al. in [10] and the damping of viscous gravity waves in SPH were validated
to analytical solutions by M. Antuono and A. Colagrossi [11]. Solitary waves
over non-uniform bottoms and wave-splitting mechanics were investigated by
Li et al. [12] and S. De Chowdhury and S.A. Sannasiraj in [13].
During the past two decades, owing to its attractive properties and promi-
nent capabilities in modeling free surface flows, SPH became one of the most
popular particle based numerical schemes in many different areas of engi-
neering applications, like modeling coastal waves or tsunamies.

The paper is organized as follows. In the next section a short overview of
free-surface solitary wave models is presented, then the governing equations
of fluid dynamics and a novel SPH-based parallel solver is introduced. After
the specification of the investigated test cases in Section 6 the results are
compared with the first and second order wave propagation velocities of the
literature and KdV soliton shapes in the last two sections.

2. Solitary waves

The zeroth order approximation of solitary wave propagation can be de-
scribed by the linear wave propagation equation, and the wave speed in
shallow water is given by the formula:

c0 =
√
gH (1)

where g is the gravitational acceleration and H is the depth of the ambient
water. This relation gives a rough approximation on solitary wave propaga-
tion but neglects some particular features of the phenomenon like the actual
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Figure 1: Notations of the solitary wave: H is the ambient depth, c is the speed of the
soliton, A is the amplitude and η(x) is the shape of the surface.

amplitude and width of the wave and is valid only if A << H. The linear
wave propagation equation has no solitary wave solutions.
The KdV equation

∂η

∂t
+ c

[
∂η

∂x
+
H2

6

∂3η

∂x3
+

3

2H

∂η

∂x

]
= 0, (2)

is suitable for construction of free surface soliton shapes with different geo-
metrical configurations. Here η(x, t) denotes the surface elevation at a given
location x. Figure 1 shows a soliton propagating from the right to the left
with the corresponding notations. The exact solution of the KdV equation
for a single free surface solitary wave is given by the shape of the wave

η(x) = Ach−2(k(x− a)), (3)

where A is the amplitude, a is the horizontal displacement of the soliton and

k =

√
3A

4H3
(4)

is the effective wave number. The wave propagation speed related to the first
order solitary wave solution is

c1 =
√
gH

(
1 +

A

2H

)
. (5)

The second order wave speed including the corrections described by Halász
is given as

c2 =
√
gH

(
1 +

A

2H
− 3A2

20H2

)
. (6)

3



Halász [3] has shown that the second order approximation describes well
the laboratory results for the solitary wave speed and that the third order
theory differs only by a small amount that is usually not resolvable due to
experimental uncertainty error.

3. Governing equations

In fluid mechanics, the Euler and the continuity equations are widely
used together to describe inviscid fluid motion. In the Lagrangian frame of
reference these partial differential equations are expressed in terms of ma-
terial coordinates where the local and convective fluxes are wrapped in the
Lagrangian total derivative

dΦ

dt
=
∂Φ

∂t
+ v∇Φ, (7)

denoting an arbitrary scalar or vector field by Φ. By employing the differen-
tial operator (7) the inviscid hydrodynamic equations become

dv

dt
= −1

ρ
∇p+ g,

dρ

dt
= −ρ∇v,

(8)

where v, ρ, p, ν, g are the velocity, density, pressure, kinematic viscosity,
and gravitational acceleration, respectively. For weakly compressible flows
an additional state equation

p = p(ρ), (9)

is required to define a constraint between pressure and density.
Although there exist numerous analytic solutions of restricted variants of
the system (8) includeing the wave propagation equations shown before, the
exact solution in the generic case is still unknown and usually approximated
by suitable numerical methods. However, these approximating schemes often
suffer from unfavourable numerical properties, whereupon their generality is
often limited and possess restricted robustness and applicability. Consid-
ering laminar inviscid flows the difficulties of modeling complex turbulent
hydrodynamic behaviour are avoided in the present work.
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4. The numerical scheme

The meshless Lagrangian numerical scheme called Smoothed Particle Hy-
drodynamics (SPH) is a suitable numerical tool for solving the system of
equations introduced in (8). The approximate solution provided by SPH
is based on elementary fluid nodes, called particles, moving through space
while carrying their own values of mass, density, pressure, velocity, etc. The
discretisation method is based on the weighted interpolation of the fields
at a given point using the neighbouring particles governed by the so-called
smoothing kernel function W (ri − rj, h) forming a discrete convolution [14]

〈f〉i =
N∑
j=1

VjfjWij, (10)

where i denotes the particle of interest, j is a particle in the vicinity of
i, fi = f(ri) is an arbitrary flow field at the position ri of particle i, the
kernel function Wij = W (ri−rj, h) with compact or infinite influence radius,
h is called the smoothing length, Vj is the elementary volume assigned to
particle j and N is the number of particles within the influence radius of
Wij. The discrete convolution (10) constructs an arbitrary flow field on a
statistically uniform distribution of particles in space. In our calculations
the renormalised Gaussian kernel function [15]

Wij =

{
e−(r/h)2−C0

C1
if r < δ

0 otherwise,
(11)

is adopted, where r = |ri − rj|, and the renormalisation constants are

C0 = e−(δ/h)
2

,

C1 = π3/2h3 (1− 10C0) .
(12)

In this case, the influence radius δ was chosen to be 3h. Similarly to (10) the
first order spatial differential operators

(gradf)ri ≈ 〈∇f〉i =
N∑
j=1

Vj (fj + fi)∇iWij,

(divu)ri ≈ 〈∇u〉i =
N∑
j=1

Vj (uj − ui)∇iWij,

(13)
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can be constructed by an arbitrary vector field marked by u [16].
It is a prevailing practice in the SPH scheme to preserve numerical stability
by inserting numerical diffusive terms into the continuity and momentum
equations. The latter behaves similarly to viscosity generally resulting in
a spurious dissipation of kinetic energy of the flow [14], especially in case
of shock waves [17]. Since free surface solitons are driven by inertial forces
and show inviscid behaviour, the momentum diffusion (either physical on
numerical) was ignored in the present work. Instead the numerical diffusive
term for density in the continuity equation worked out by [15] and further
improved by [18] was implemented. Based on the linear stability analysis
by Antuono [19] the density diffusion became an efficient tool on damping
numerical oscillations.
The compressibility, as another particular numerical property of standard
SPH, was controlled by an appropriate weakly compressible equation of state
assuming a barotropic fluid flow with linear relation between density and
pressure [7]. The discretised hydrodynamic equations of the SPH scheme
used through this paper are

dρi
dt

= ρi
∑
j

(vi − vj)∇iWijVj + ξhcs
∑
j

Ψij∇iWijVj,

dui
dt

= − 1

ρi

∑
j

(pi + pj)∇iWijVj +
1

ρ i
fi,

pi = c2s(ρi − ρ0),
dri
dt

= vi,

(14)

where ρ0 is the reference density, f is the sum of the external forces including
gravity and cs is the speed of acoustic wave (or ’sound’) propagation. The
second term on the right hand side of the continuity equation is the artificial
density diffusion term, forming a model often referred as δSPH with the
empirical coefficient ξ = 0.1, and

Ψij = 2(ρi − ρj)
rij

|rij|2
−
[
〈∇ρ〉Li + 〈∇ρ〉Lj

]
. (15)

The second term on the right hand side with the renormalised density gra-
dients 〈∇ρ〉L ensures mass conservation over the fluid domain including free
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surface boundaries and it is calculated using the formula

〈∇ρ〉Li =
∑
j

(ρi − ρj)Li∇iWijVj,

Li =

[∑
j

(ri − rj)⊗∇iWijVj

]−1
,

(16)

where ⊗ denotes tensor product. The renormalisation tensor L is responsible
for the convergence of the discrete Laplacian in the vicinity of the fluid bound-
aries by correcting the numerical artifacts in the discrete gradient caused by
kernel truncation.
To reduce computational cost, the weakly compressible models usually op-
erate with moderate sound speed (in comparison to the physical one), but
large enough to keep the maximum density deviation within a predefined
range and separate inertial and acoustic waves. It is usually considered to
be ten times larger than the typical velocity magnitude being present in the
flow:

cs =
1

M

√
gH, (17)

where M = 10 is the Mach number and H is the characteristic height of the
problem, which is the ambient fluid depth in our case.

4.1. Boundary and initial conditions

A remarkable benefit of the SPH scheme (at least in modeling fluid flows)
is the treatment of free surfaces of arbitrary shape as natural boundaries with-
out any additional computational effort. Furthermore, if the fluid domain is
simply connected the air can be entirely left out from the computational
domain because of its constant pressure and negligible density compared to
water. Note that in case of complex flows such as breaking waves (see more
examples in [20]) the air phase might play an important role, thus it should
not be ignored unconditionally. In the present work we modelled only the
water phase.

In this work two different types of boundary conditions of SPH were
applied. One of them formed the rigid boundaries of the channel wall and
bottom, while the other one was a periodic boundary, which allows one to
perform more general calculations in infinite domain.
Here periodic boundaries were essential by forming a 2δ width domain in
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spanwise direction to approximate a planar flow with the three dimensional
numerical solver described in the next section.
The models of solid boundaries in SPH have several fundamentally distinct
variants with different assets and limitations [16]. In the present work a
penalty force-based boundary condition was applied presented by Sun et al.
in [21]. The boundary model is based on the Voigt model with ideal spring
and viscous damping. We applied the particle-wall interaction forces (elastic
and viscous) only in normal direction to achieve exact free-slip condition. A
further benefit of the model is its computational efficiency due to the lack of
additional wall-particles.

4.2. Integration

The system (14) can be solved by an arbitrary but stable numerical in-
tegration scheme. In the present work the second order predictor-corrector
scheme was applied. In the first step the particles are temporarily advanced
in time with a half-step ∆t/2 (prediction):

ρ
n+1/2
i = ρni +

∆t

2

dρi
dt

∣∣∣∣n
i

,

v
n+1/2
i = vni +

∆t

2
ani ,

r
n+1/2
i = rni +

∆t

2
vni .

(18)

In the intermediate state the density derivatives, pressures, external and
interparticle forces (or accelerations ai) of particles are evaluated. Using the
new values, the particles are advanced in time with a full step (correction)
from the original state [22]:

ρn+1
i = ρni + ∆t

dρi
dt

∣∣∣∣n+1/2

i

,

vn+1
i = vni + ∆ta

n+1/2
i ,

rn+1
i = rni + ∆tv

n+1/2
i .

(19)

To reduce the computational performance requirement while preserving nu-
merical stability the time step size might be selected adaptively in each
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Figure 2: The whole channel layout (L = 10m, d = 0.13m, H = 0.103m and H ′ is 0.17m
or 0.24m depending on the simulation case).

frame. In the current SPH model this was implemented using the Courant-
Friedrichs-Lewy condition [7]:

∆tnew = CFL ·mini


√

h

|ai|
,

h

c0 + hmaxj

(
vijrij
|rij |2

)
 , (20)

where CFL = 0.2 and vij = vi − vj.

5. Simulation tools

Since the three dimensional model requires large number of particles to
resolve the fluid motion the simulations become computationally expensive.
The favourable vectorisation properties of the explicit particle based methods
allow the current and many other solvers (like [23], [24] and [25]) to exploit the
abilities of computationally powerful GPGPU’s (General-Purpose Graphical
Processing Unit) rendering the solutions through massively parallel calcula-
tions. To further reduce the computational time, the time-consuming data
copies between host and device memory are minimised by transferring the
partial results from the device only at predifined equidistant simulation-time
intervals ts = 0.033s. The presented SPH model was implemented in a novel
three dimensional parallel fluid dynamics solver using GPGPU in C++ and
CUDA.

6. Test cases

We have simulated the propagation of a single solitary wave in an in-
finitely wide channel, as appearing in a wet bed dam break experiment, re-
producing the conditions investigated in [3]. Halász performed several mea-
surements of single solitary waves in a channel layout introduced in Figure 2
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with hydrostatic initial conditions. By removing the flat plate at the water
column on the right hand side of the channel at instant t0 = 0s, the collapse
of the water column forms a solitary wave propagating from the right to
the left. As Halász pointed out, a solitary wave travels through the channel
without significant dissipation until it reaches the vertical wall at the end of
the channel.

The performed simulations cover six independent configurations: three
sizes of particle support radii, with two different initial water column heights.
The influence radii of the particles, the initial water column height, and the
number of particles for the different computations are summarised in Table
1. The average interparticle distance is given as

dx =
3

√
4δ3π

3N
, (21)

where the average number of neighbours N was chosen to 70 in this work
showing the mean interparticle distance dx = 1.173h.

7. Results and discussion

In the present work each calculation has been executed on a GTX 970
desktop GPU with 4 GB of device memory. The time and memory require-
ment of the computations varied between 36 and 180 hours while 0.6 and 3.8
GB’s of GPU memory depending on the number particles used.

The evaluation of the propagation speed of the simulated solitary wave
along the channel required a free surface tracking algorithm which reliably
identifies the position of the wave peak in each investigated simulaton frame.
Since in our case only the vertical positions need to be determined, we logged
the highest particle’s altitude above the uniform δ-sized grid laying on the
plane of the channel bottom in each time instant. Due to the discrete convo-
lution (10) the free surface boundary covering a set of particles is not sharp
and need to be tuned carefully. Here the surface was shifted from the layer
of the surface particles by the average interparticle distance dx.
The velocity series were calculated by applying a moving average filter to
the raw position data with a filter size ∆t = 20ts and the temporal deriva-
tive was calculated with a first order central finite differencing scheme. The
smooth velocity data series was resampled on a uniform ∆t-sized grid. By
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Table 1: Summary of simulation cases

Case δ[mm] dx[mm] H/dx H ′[m] Particles
a 2.5 0.678 151.9 0.17 5.48M
b 2.5 0.678 152.9 0.24 5.54M
c 3.75 1.02 101.0 0.17 2.45M
d 3.75 1.02 101.0 0.24 2.47M
e 5.0 1.36 75.7 0.17 1.38M
f 5.0 1.36 75.7 0.24 1.39M

means of the introduced procedure the velocity data was constructed in the
5m width window between 4m and 9m measured from the right hand side of
the channel.

Implementing the channel layout introduced by [3] in the numerical model
has two important advantages. On the one hand the calculation results are
suitable for direct comparison with the measurements, on the other hand the
velocity field below the solitary wave does not have to be prescribed by the
initial conditions of the simulations. The main numerical drawback is that
it is inevitable to update each particle in the entire tank in every simulated
time step, however, the region of interest is small in comparison with the
whole channel.

In Figure 3 we see the wave propagating speed-amplitude relations of the
first and second order theories against our simulation results. For each point,
the instantaneous amplitude and propagation speed were extracted from the
reconstructed surface history to plot instantaneous normalized propagation
speed against instantaneous relative amplitude.
It is visible that along the investigated section of the channel (from 4m to 9m)
the solitary wave speed and amplitude diminished considerably, governed by
a continuous dispersion. Nevertheless, the simulation results seem to more or
less follow the line of the second order approximation, as if the solitary wave
would be an ideal soliton in each time instant. Apparently, in all simulation
cases, the second order theory is closer to the simulation results than the
first order theory.

The effect of the resolution represented by the particle influence radius δ
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Figure 3: Dimensionless soliton wave speed as a function of dimensionless amplitude.
Dashed and solid curves are the first and second order approximations respectively.
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Figure 4: RMS of the deviation of the six simulation cases to the second order approxi-
mation.
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Figure 5: Free surface history of case a) (left) and b) (right)

was investigated through the root mean sqaure (RMS) error

σII =

√√√√ 1

N

1

c20

N∑
k=1

(ck − c2(Ak/H))2 (22)

of the simulation results ck compared to the second order theory c2(Ak/H)
given by (6). As Figure 4 shows, reducing the influence radius δ, the values
of the RMS σ are decreasing considerably.

7.1. Surface evolution

The evolution of the free surface in time along the channel during the
solitary wave propagation as captured by the simulations with the finest
resolution is presented in the space-time plots of Figure 5. The dark diagonal
stripes are indicating the solitary waves travelling at nearly constant speed
through the channel followed by a significantly slower wave pattern with small
amplitudes compared to the solitary wave. This wave pattern is observable in
the channel during measurements as well. Furthermore a marked depression
is present behind the solitary wave in case a) while this phenomenon does not
occur in case b). Note that the noisy surface immediately after the launch
of the wave in case b) was caused by the slight break of the wave peak along
the first few meters in the simulations, reported in laboratory measurements
as well.
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7.2. Solitary wave shape

Besides the solitary wave propagation speed the shape of the free surface
was compared to the first order soliton shapes obtained from the analytical
solution of the KdV equation. The comparison is shown in Figure 6; the
waves propagate from the right to the left. The exact solutions (3) were
fitted to the given SPH results using the evaluated amplitudes and peak po-
sitions, defining together the effective wave number (4).

The wave shapes are in very good agreement with the exact solutions of
the KdV equation even in case of coarser resolutions, apart from the depres-
sion, which appears close in the tail of the solitons with smaller amplitudes
in case a), c) and e) likewise to Figure 5. The existence of this trailing de-
pression has been verified experimentally for the transient flow investigated.
For further details on the comparison of the waveform to experimental data
see Appendix A.

8. Summary and Conclusions

In this work, water surface solitary wave formation and propagation have
been investigated with a novel numerical fluid dynamics solver based on the
Smoothed Particle Hydrodynamics scheme and the results have been com-
pared with the first order analytical theory (KdV equation) and a second
order approximation introduced by Halász in [3]. The simulation layouts of
a dam break experiment were adopted from the measurements carried out
by Halász.
The instantaneous dimensionless velocities and their corresponding ampli-
tudes extracted from the simulations show that although significant disper-
sion occurs during the wave propagation, the velocity-amplitude relation fol-
lows the second order analytical approximation, also verified by the measure-
ments in [3] within measurement uncertainty. The resolution dependency of
the numerical model was also tested by three different particle support radii
presenting the clear convergence to the second order approximation.
Solitary wave shapes provided by the numerical model were also compared
with the closed-form analytical formula of the first order KdV-soliton. Our
simulation results show very good agreement with the first order soliton shape
even in case of coarser numerical resolutions for the leading edge and the peak
shape. However, since the waves were generated in a numerical dam-break
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Figure 6: SPH soliton shapes (solid lines) compared with the exact solution of the KdV-
equation (dashed lines) at the same time instant t = 6.6s.
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Figure A.7: Comparison of measurements (dashed lines) with SPH simulations (solid lines)
in case of H ′ = 0.17m (right) and H ′ = 0.24m (left) at x = 4m.

experiment, the transient formation of the solitary wave also included trail-
ing waves behind the developing soliton. In case of smaller solitary waves
significant depressions (and consequently notable antisymmetries of the wave
shapes) were observed behind the waves. We found that, if such transient
flows should be modeled, these trailing waves found in the simulations can-
not be verified by either the present first or the second order approximations,
as these models describe only the propagation of a developed solitary wave.
The verication of the presence of these trailing waves in our simulation re-
sults is shown by comparison with water height time-series extracted from
our preliminary experimental measurements (see Appendix A) resulting in a
good qualitative match in both investigated test cases.
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Appendix A.

Measurements focusing on the surface shapes were also carried out based
on the same geometry (and, in fact, the very same experimental wave tank)
investigated in [3]. During the measurements, the surface level was observed
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in fixed positions along the channel then the extracted time-series were com-
pared with the corresponding simulation results. In Figure A.7 typical time-
series are shown for both initial configurations (H ′ = 0.17m and 0.24m). In
both cases the time series were extracted at x = 4m and shifted in time to
set the wave peak to t = 0s. The significant depression, also seen in Figure 5
and 6 is visible in the tail of the ’small’ solitary wave. In a subsequent work
a detailed investigation is planned to be presented about the surface shape
of the solitary waves in measurements and SPH simulations.
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R. Canelas, R. Vacondio, A. Barreiro, O. Garćıa-Feal, DualSPHysics:
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