Clickable fluorophores for biological labeling—with or without copper†

Péter Kele,*a,b Xiaohua Li,b,c Martin Link,b Krisztina Nagya, András Herney, Krisztian Lorincz,a Szaboles Bényd and Otto S. Wolfbeisab

Received 17th April 2009, Accepted 12th June 2009
First published as an Advance Article on the web 7th July 2009
DOI: 10.1039/b907741c

The synthesis of a set of new clickable fluorophores that virtually cover the whole visible spectrum reaching the near infra-red regime is presented herein. Besides dyes that are capable of participating in classical copper catalyzed 1,3-dipolar cycloaddition reactions with the counterparting function we have also prepared dyes containing a cyclooctyne moiety, an alkyne derivative that enables copper free clicking to azides. The suitability of these dyes for fluorescent labeling of biomolecules is presented by examples on model frameworks representing major biopolymer building blocks. The versatility of these dyes is presented in cell labeling experiments as well as by labeling the azide modified surface glycans of CHO cells either by copper catalyzed or copper-free click reaction. These dyes are expected to have a large variety of applications in (bio)orthogonal labeling schemes both in vivo and in vitro.

Introduction

The in vitro and in vivo labeling of biomolecules by means of fluorescent tags represents an important tool in order to study complex biological processes often via imaging. The importance of fluorescent tags is due to the high sensitivity, the excellent spatial and temporal resolution and their potential for multi-channel imaging. The introduction of reporter tags rely on their selective and efficient reaction under physiological conditions with functional groups available at the biomolecule of interest. Amongst the known ligation reactions, so-called bioorthogonal chemical reporters have drawn much interest lately. The criteria for bioorthogonal reporters state that these reporter tags should be “non-native, non-perturbing chemical handles that can be modified in living systems through highly selective reactions with exogenously delivered probes”. In the bioorthogonal ligation toolkit the most valuable ones are: (a) the Staudinger ligation⁴; (b) the so-called click reaction represented by a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC)⁵; (c) photoinduced dipolar cycloadditions of tetrazoles and alkenes⁶, and (d) the direct electron demand Diels–Alder reaction of tetrazines and strained alkenes.⁷ A recent review lists all these reactions in more detail.⁸ Among these reaction types the introduction of fluorophore tags is synthetically most concise by a click reaction between azides and alkynes. The extreme rareness of azide and alkyne functionalities in biological systems further increases the importance of tagging by means of a copper catalyzed azide-alkyne cycloaddition. This reaction has been shown to be quite versatile in terms of biological applications.⁴ CuAAC also finds widespread applications in high-throughput screening of libraries.⁴ In cases where copper toxicity can be an obstacle in the ligation process, a strain-promoted cycloaddition between cyclooctynes and azides can be used as an alternative as proposed by the Bertozzi and Boons groups.⁵,⁶ Very recently, we have presented our results on multiple labeling of biomolecules using a combination of copper free and copper mediated click chemistries in a sequential manner.⁷ Although the extreme sensitivity and the relatively easy detection modes of fluorescence make these techniques very appealing there has been little effort to develop clickable dyes for all colors present in the visible-NIR regime.⁸ This had initiated our work presented herein to design clickable fluorophores that meet the criteria of bioorthogonality.

Results and discussion

The core part of the fluorescent tags 1–9 (Fig. 1) was selected on the basis of their emission bands i.e. to have a full coverage of the visible spectrum with edges at the near-infrared (NIR) region (Table 1). The incorporation of the clickable azido- or alkyne-functions was achieved by using appropriate halo-alkyl or propargyl amine derivatives. In the case of haloalkyl amine incorporation the halogenes (Br or I) were subsequently converted into the appropriate azido derivatives.

Once the syntheses of these novel dyes were accomplished we tested their applicability by ligating them to model frameworks.

Table 1 Photophysical properties of clickable fluorophores⁹

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>λmax(em)</td>
<td>330 450 520 480 505 625 550 651 664</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λmax(abs)</td>
<td>460 540 535 600 630 675 620 673 718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D⁰</td>
<td>0.34 0.68 6.3 4.7 5.7 1.8 7.0 7.3 10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D⁰ In methanol * × 10⁴ M⁻¹ cm⁻¹.
These model scaffolds A–F (Fig. 2) represent examples of major biological classes including sugars, amino acids, and nucleotides.

![Fig. 1 Novel clickable fluorophores.](image)

![Fig. 2 Model frameworks for biological ligation.](image)

Labeling experiments were carried out in an acetonitrile-water (50 v/v%) mixture in the presence of 10% CuI (10⁻³ M stock solution in DMSO and 10% triethylamine. In each case t.l.c. analyses revealed complete consumption of the starting materials. Purification of the products was carried out either by simple filtration of the precipitated products or by column chromatography. The fluorescently labeled biological building blocks were obtained in good to excellent yields providing further proof for the efficiency of CuAAC reaction in ligation processes (Table 2). As expected, the spectral properties of the dyes did not (or only slightly) changed upon conjugation.

Although fluorophores in the spectral region between the far red to the NIR region are particularly suitable for biological (both in vitro and in vivo) labeling as they are not interfered with by biological background luminescence, little effort has been made to develop such (bio)orthogonal labels in this spectral regime. Nile Blue (6), oxazine (8) and the cyanine dye (9) derivatives are labels that are compatible with the 635-nm diode laser which is widely used in fluorescence instrumentation such as cell sorters and imagers.

Clickable dyes 4 and 5 are noteworthy for their large Stokes-shifts (120 and 125 nm, respectively). Dyes of this kind are exceptionally useful in Förster or fluorescence resonance electron transfer (FRET) applications as they do not interfere with the spectral bands of the second fluorophore, a common problem in FRET technology.

The introduction of strained cyclooctynes in azide-alkyne click reactions made it possible to overcome the limitations of the copper catalyzed process (e.g. copper toxicity). To extend our studies to the copper free version of click tagging we have designed and synthesized compounds that incorporate cyclooctyne functionality. Due to its relatively long wavelength emission and synthetic simplicity we have chosen the framework of 4 as a starting azide. Phosphine reduction of 4 (Staudinger-reduction) furnished the appropriate amine which subsequently could easily be converted into a cyclooctyne derivative, 10, using a cyclooctyne-carboxylic acid derivative (Scheme 1). Later, the cyclooctyne derivative (11) of compound 1 was also synthesized in a similar manner and its versatility was demonstrated by labeling the HIV drug F.[10,11]

![Scheme 1 Synthesis of strained alkyne containing dye 10.](image)

Azido sugars have frequently been used for click-labeling of surface glycoproteines, recently. We have adapted this system to demonstrate the ability of our dyes to undergo bioorthogonal labeling reactions, efficiently. Prior to labeling, Chinese hamster ovary (CHO) cells were incubated with 9b and 10 to test the possible cytostatic effects of these dyes. Experimental results have shown that neither dye is toxic up to 50 µM concentration (see ESI†). Subsequently, CHO cells were treated with azidoacetylmannosamine (ManNAz) for 3 days.

Azido sugars as well as 9b, CuSO₄ with sodium-ascorbate and tris(benzyltriazolylmethyl)amine (TBTA) were used to facilitate the reaction, whereas labeling with 10 did not require any further auxiliary reagents.

Table 2 Isolated yields of representative ligation experiments

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>1A</th>
<th>1C</th>
<th>2aA</th>
<th>3bD</th>
<th>4A</th>
<th>4C</th>
<th>5C</th>
<th>6aA</th>
<th>6aC</th>
<th>7B</th>
<th>8B</th>
<th>1E</th>
<th>11F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield [%]</td>
<td>72</td>
<td>99</td>
<td>75</td>
<td>64</td>
<td>98</td>
<td>83</td>
<td>60</td>
<td>99</td>
<td>42</td>
<td>45</td>
<td>53</td>
<td>80</td>
<td>83</td>
</tr>
</tbody>
</table>

In each case t.l.c. analysis showed complete consumption of starting materials.
Results have shown that after 20 min reaction, both labels had efficiently tagged the modified cells, whilst cells not treated with ManNAz have shown only low intensity fluorescence as a result of non-specific binding of the dyes (Fig. 3, A–D).

The toxic effects of Cu(I) during the labeling process had been demonstrated earlier\(^b\) and we also observed significant cell death when we attempted to label live cells with 9b in the presence of a copper catalyst. On the other hand, as expected, the cyclooctyne (D) ManNAz and cells treated with (E) (Fig. 3, E–F).

Experimental

General

Unless otherwise indicated, all starting materials were obtained from commercial suppliers (Sigma-Aldrich, Fluka) and used without further purification. Analytical thin-layer chromatography (TLC) was performed on Polygram SIL G/UV 254 pre-coated plastic TLC plates with 0.25 mm silica gel from Macherey-Nagel + TLC was performed on Polygram SIL G/UV 254 pre-coated plastic TLC plates with 0.25 mm silica gel from Macherey-Nagel + (TLC) was performed on Polygram SIL G/UV 254 pre-coated silica gel (0.040–0.063 mm) from Merck. The NMR spectra were calibrated for C\(_{14}H_{18}N_5O_2S: 320.1181\); found: 320.1178.

Synthesis of 2a. A mixture of 4-amino-1,8-naphthalic anhydride (0.91 g, 4 mmol) and ethanolamine (0.543 g, 8 mmol) were heated at 80 °C overnight in 10 mL DMF. After cooling, the solution was poured into 200 mL of ice-cold water. The precipitate was filtered, washed with water and acetone and dried in vacuo. The obtained product was then dissolved in DMF (10 mL), NaN\(_3\) (756 mg, 11.4 mmol) was added to it and the reaction mixture was stirred at 80 °C for 24 h. The solvent was then removed in vacuo and the product was extracted with ethyl acetate, dried over Na\(_2\)SO\(_4\), and purified by flash chromatography (CHCl\(_3\)). Yield: 825 mg, 69%. m.p. 214–216 °C. 1H (CDCl\(_3\)) \(\delta = 3.57\) (2H, t, J = 6.2 Hz); 4.25 (2H, t, J = 6.0 Hz); 6.85 (1H, d, J = 8.4 Hz); 7.64 (1H, t, J = 7.7 Hz); 8.19 (1H, d, J = 8.4 Hz); 8.43 (1H, d, J = 7.4 Hz); 8.62 (1H, d, J = 7.7 Hz). Anal. Calcd. for C\(_{14}H_{11}N_5O_2: \text{C}: 59.87; H: 4.54; N: 23.85. Found: C: 59.96; H: 4.51; N: 23.74.

Synthesis of 4. N-(3-azido-propyl)-4-methyl-pyridinium-iodide (0.213 g, 0.701 mmol) and 4-(dimethylamino)-benzaldehyde (0.104 g, 0.701 mmol) were stirred in EtOH = 1416, 1503, 1570, 1712, 2097, 2978, 3069 cm\(^{-1}\). HRMS (ESI) [M + H\(^+\)] calcd for C\(_{14}H_{18}N_5O_2S: 320,1181\); found: 320,1178.

Synthesis of 5. 7-(Diethylamino)-2-oxo-2H-chromene-3-carbaldehyde (0.42 g, 1.71 mmol) and N-(3-azido-propyl)-4-methyl-pyridinium-iodide (0.55 g, 1.71 mmol) were refluxed for 3 hours in ethanol (20 mL) in the presence of 5 drops of piperidine. After cooling to room temperature the solvent was removed and the product was purified on a column (SiO\(_2\)) using acetoniitrile as eluent. The product was dissolved in acetonitrile, and an excess of NH\(_4\)PF\(_6\), was added. After solvent removal, the purple crystalline product was suspended in water and filtered. The solid was washed several times with water and dried in vacuo to give the title compound as a purple crystalline solid containing one molecule of water (0.4 g, 41%). M.p.: 200–201 °C. IR (neat) \(\nu = 1416, 1503, 1570, 1712, 2097, 2978, 3069 \text{ cm}^{-1}\). 1H NMR
(DMSO-d6): δ = 1.14 (6H, t, J = 6.9 Hz); 2.18 (2H, quint. J = 13.4 Hz); 3.40 - 3.57 (6H, m); 4.52 (2H, t, J = 7.1 Hz); 6.58 (1H, d, J = 1.9 Hz); 6.78 (1H, dd, J = 1.9 Hz, J = 9.0 Hz); 7.53 (1H, d, J = 9.0 Hz); 7.66 and 7.82 (2H, AB, J = 16.1 Hz); 8.13 - 8.21 (3H, m); 8.85 (2H, d, J = 6.9 Hz). 13C NMR (DMSO-d6): δ = 12.3; 28.4; 44.3; 47.5; 52.7; 96.1; 110.0; 113.6; 122.5; 123.2; 130.7; 137.0; 144.0; 145.4; 151.9; 153.9; 156.3; 159.5. Anal. calcd. for C31H33F5N5O3P: C: 48.68; H: 4.97; N: 12.34 Found: C: 48.58; H: 4.80; N: 12.45.

Synthesis of 6a. This was obtained by condensation of 5-dimethylamino-2-nitrosophenol111 hydrochloride with (3-azidopropyl)-1-naphthylamine48 in 10 mL acidic ethanol. Specifically, to a cold solution (ice bath) of 5-dimethylamino-2-nitrosophenol hydrochloride (610 mg, 3 mmol) in ethanol (10 mL), (3-azidopropyl)-1-naphthylamine (658 mg, 2.91 mmol) and concentrated hydrochloric acid (0.25 mL) were added. The mixture was refluxed for about 9 hours and monitored by TLC (silica: chloroform and chloroform–methanol, 6:1). The solvent was removed under reduced pressure and the crude mixture was concentrated and then recrystallized in ethanol to yield dark blue crystals. Yield: 0.21 g, 35%. 1H NMR (DMSO-d6): δ = 4.80; N: 12.34.

Synthesis of 6b. This was obtained by condensation of 5-dimethylamino-2-nitrosophenol111 hydrochloride with (3-azidopropyl)-1-naphthylamine48 in 10 mL acidic ethanol. Specifically, to a cold solution (ice bath) of 5-dimethylamino-2-nitrosophenol hydrochloride (610 mg, 3 mmol) in ethanol (10 mL), (3-azidopropyl)-1-naphthylamine (658 mg, 2.91 mmol) and concentrated hydrochloric acid (0.25 mL) were added. The mixture was refluxed for about 9 hours and monitored by TLC (silica: chloroform and chloroform–methanol, 6:1). The solvent was removed under reduced pressure and the crude mixture was concentrated and then recrystallized in ethanol to yield dark blue crystals. Yield: 0.21 g, 35%. 1H NMR (DMSO-d6): δ = 4.80; N: 12.34.

Synthesis of 8. 5-(Piperdin-1-yl)benzene-1,3-diol111 (0.5 g, 2.6 mmol) was refluxed with propargyl bromide (0.23 mL, 2.6 mmol) in THF for 2 days. 360 mg of K2CO3 was used as base. After cooling, the reaction was filtered, concentrated on a rotavapor, and then purified by column to get a colorless oil. Yield: 0.21 g, 35%. 1H NMR (DMSO-d6): δ = 1.80–1.62 (6H, m); 2.50 (1H, t, J = 2.5 Hz); 3.12–3.04 (4H, m); 4.53 (2H, d, J = 2.5 Hz); 5.23 (1H, t, J = 1.1 Hz); 5.31 (1H, t, J = 1.9 Hz); 5.26 (1H, t, J = 1.9 Hz); 5.96 (1H, t, J = 1.9 Hz); 3.38 (4H, s); 1.69–1.79 (8H, m); 2.50–2.52 (3H, m); 2.74 (1H, t, J = 2.5 Hz); 3.49–3.51 (4H, m); 4.17–4.20 (2H, d, J = 1.9 Hz); 7.42 (2H, d, J = 1.9 Hz). 13C NMR (CDCl3): δ = 27.1; 30.2; 42.6; 45.8; 99.0; 118.1; 120.6; 120.7; 121.3; 122.2; 122.6; 126.5; 126.9; 127.1; 129.3; 132.9; 147.0; 147.8; 148.6; 164.4. HRMS (PI-LSI) calcd. for C31H33N3O6 [M+]: 373.1777; found: 373.1770.

Synthesis of 11. Compound 1 (0.133 g, 0.41 mmol) was mixed with support bound triphenylphosphine (0.35 g, 3 mmol/g) in CH2Cl2 (1 mL). After being stirred at r.t. for 2 hours, water (0.5 mL) was added and the mixture was further stirred at r.t. for 16 h then filtered through Celite and the filtrate was concentrated in vacuo to give 0.111 g of the desired product. The product (0.02 g, 0.068 mmol) was dissolved in acetonitrile (5 mL) and CyCOOH (0.018 g, 0.075 mmol), HBTU (0.027 g, 0.682 mmol), HOBT (0.011 g, 0.075 mmol) and N,N-diisopropylethylamine (24 μL, 0.136 mmol) were added. The solution was stirred at r.t. for 24 h then concentrated. The product was purified by silica (eluent: hexane : EtOAc, 1:1 v/v%) to give compound 11 (0.03 g, 86%). 1H NMR (300 MHz, CDCl3): δ = 1.29–1.41 (2H, m); 1.47–1.59 (1H, m); 1.62–1.94 (5H, m); 2.05–2.11 (2H, m); 2.54–2.67 (3H, m); 2.78 (6H, s); 3.03 (2H, dd, J = 6.0 Hz, J = 10.4 Hz); 3.38 (2H, dd, J = 6.0 Hz, J = 10.4 Hz); 5.95 (1H, t, J = 6.0 Hz); 6.81 (1H, t, J = 5.5 Hz); 7.04 (1H, d, J = 7.1 Hz); 7.08 (2H, d, J = 8.2 Hz); 7.34–7.43 (2H, m); 7.48 (2H, d, J = 8.4 Hz); 8.14 (1H, dd, J = 1.1 Hz, J = 7.3 Hz); 8.19 (1H, d, J = 8.7 Hz); 8.43 (1H, d, J = 8.5 Hz). 13C NMR: δ = 22.6; 28.4; 29.8; 34.7; 36.5; 39.7; 40.1; 41.6; 43.0; 45.3; 49.8; 96.3; 115.2; 118.5; 123.1; 127.0; 128.5; 128.9; 129.4; 129.5; 130.5; 131.5; 134.3; 144.1; 151.9; 168.0. HRMS (ESI) calcd. for C30H29N3O2S [M+H]+: 518.2477; found: 518.2471.
Preparation of fluorescent adducts

General procedure for the synthesis of adducts. Azido- or alkyne bearing fluorophores 1–11 (1 eq.) and modified building blocks A–F (1.1 eq.) were stirred in an acetonitrile-water (50 v/v%) mixture at r.t. in the presence of 10% CuI and triethylamine 20% for 16 hours. Products were purified either by simple filtration or column chromatography on silica. Characterization data of the fluorescent ligates can be found in the ESI.†

Fluorescent labeling of CHO cells

Chinese hamster ovary (CHO) cells were incubated for 2 days in a ManNAz containing medium. The cells bearing azido-salicic acid on their surface glycans were then fixed or directly treated with the appropriate labels and auxiliaries where needed. Labeled cells were then studied under a fluorescent confocal microscope. For a detailed experimental set up please refer to the ESI.†

Conclusions

In conclusion, the set of clickable fluorophores presented here is suitable for fluorescent labeling of biomolecules. These tagging molecules have moderate to high quantum yields (0.1 to 0.6), and this is best documented by the brilliant contrast of the microscopy images. These dyes are expected to have a large variety of applications in (bio)orthogonal labeling schemes both in vivo and in vitro. Besides the (cyclo)alkyne function, installation of additional functional groups e.g. maleimides, amines etc. can lead to further tools for tagging other desirable reactive groups.

Acknowledgements

Financial support from the Hungarian Scientific Research Fund (OTKA-NKTH: H07-B-74291) is greatly acknowledged. P.K. thanks the Alexander von Humboldt Foundation (Bonn) for a Humboldt fellowship (3.3-UNG/1126507). M. L. thanks the DFG (German Research Council) for a stipend within Graduate College GRK 640. The authors wish to thank Dr Szilvia B˝osze and Ms Erika Orbán for cytotoxicology and cell labeling experiments and Prof. János Matkó for fluorescence imaging.

Notes and references

14 See supporting information (ESI).
15 Reichspatentamt Patentschrift Nr.: 639125 (1934); “Verfahren zur Herstellung von Kondensationsprodukten des Phloroglucinols”.