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Extraction of Vehicle Groups in Airborne Lidar
Point Clouds with Two-Level Point Processes
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Abstract—In this paper we present a new object based hi- A. Sensing technologies

erarchical model for joint probabilistic extraction of vehicles . . . -
and groups of corresponding vehicles — calledraffic segments Various sensing technologies have already been utilized fo

— in airborne Lidar point clouds collected from dense urban Vehicle monitoring. Beside terrestrial sensors such asovid
areas. Firstly, the 3-D point set is classified into terrainyehicle, cameras and induction loops, airborne and spaceborne data
roof, vegetation and clutter classes. Then the points withhe sources are frequently used to support the scene analysis.
corresponding class labels and echo strength (i.e. inte¥) pegling with optical imagery, recent vehicle detection moels

values are projected to the ground. In the obtained 2-D class . . . ; -
and intensity maps we approximate the top view projections exploit the improving quality and resolution of the obtaine

of vehicles by rectangles. Since our tasks are simultanedys 2aerial or satellite images [2], [3], [4]. Long time thermal
the extraction of the rectangle population which describeshe infrared (TIR) cameras are used for traffic monitoring due to

position, size and orientation of the vehicles and groupinghe their ‘day-and-night’ capability and their potential torie

vehicles into the _traffic segmegts, we propose a hierarchitalwo- temperature and temperature differences of objects [F][1p
Level Marked Point Process (L MPP) model for the problem. The Traffic surveillance is also an important civilian applioat
output vehicle and traffic segment configurations are extrated by

an iterative stochastic optimization algorithm. We have tsted the ~©Of radars [8], which have the advantage of jointly providing
proposed method with real data of a discrete return Lidar sersor  the location and speed of the vehicles. Efficient radar based
providing up to four range measurements for each laser pulse solutions have been proposed for monitoring non-urbansroad
e i 0 vrdos . rovl oamaiae sty ! Mshways 5. [10] from remate sensing plaorms, o ciy
results show?ng that the >MPP Fr)nodel S?erasses two earlier centers from terrestriallinstallations [8]. SAR images aév )
grid-based approaches, a 3-D point-cloud-based process dva D€ used to detect stationary vehicles [11]. A comprehensive
single layer MPP solution. The accuracy of the proposed metid ~ overview on the above mentioned aerial technologies féfidra
measured in F-rate is 97% at object level, 83% at pixel levelad  estimation can be found in [5], [12].

95% at group level. The Light Detection and Ranging (Lidar) technology offers

Index Terms—Lidar, aerial laser scanning, vehicle, urban, an efficient alternative solution for vehicle detectioncsirit
Marked Point Process can jointly provide an accurate 3-D geometrical descriptio

of the scene, and additional features about the reflection
I. INTRODUCTION properties and structures of the surfaces.

In this paper we deal with measurements of an aerial
fiscrete return (DR) Lidar sensor [13], which is able to
capture up to four range measurements for a single laseg,puls
including 1st, 2nd, 3rd and last returns. We may also obtain
feStr intensity returns of each pulse, which are related ® th
trength of the backscattered echoes. The intensity aéitior

Analyzing the vehicle populations of inner city areas is
central goal of automatic traffic monitoring and controlyien
ronmental protection and aerial surveillance applicatii].

modeling approach. At low levehdividual vehiclesshould

be detected and separated with accurate size and oriemtaﬁ%p [14], performed by a commercial software, is considiere

estimation. .At a hlgher level we need to |(_jent|fy the groups %s a black-box module by our processing methods. The density
corresponding vehicles, called hereattaffic segmentssuch of the collected point clouds is around 8 pointa/m

as cars in a parking lot, or a vehicle queue waiting in front
of a traffic light. Corresponding automated approachesén th

literature can be grouped first based on the used sensors BndRelated work on Lidar based vehicle detection
measurements; second based on the software modules fgcusinjdar based vehicle detection methods in the literature

on the applied signal processing and artificial intelligendollow generally either a grid-based or a 3-D point-clouaséd
algorithms. approach [15]. In the first group of techniques [16], [17k th
) - . obtained Lidar data is first transformed into a dense 2.5-D
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requirement of the processing algorithms may be signifigandifficult/inaccurate, and in the sequential workflow, thiufiee
higher. of each step may corrupt the whole process. In addition, we
Another important factor is related to the types of measurkave limited options here to incorporate a priori inforroati
ments utilized in the detection. A couple of earlier worksneo (e.g. shape, size) and object interaction.
bined multiple data sources, e.g. [19] fused Lidar and edect Inverse methods [23] assign a fithess value to each pos-
optical camera inputs. Other methods rely purely on geametsible object configuration, thereafter an optimizationgess
information [17], [18], emphasizing that these approadhes attempts to find the configuration with the highest confidence
not depend on the accuracy of image-to-point-cloud regyistin this way complex object appearance models can be used,
tion. Regardless of the difficulties with radiometric caditon and it is easy to incorporate prior shape information (e.g.
[14], the Lidar intensity is often used as an auxiliary chelnnonly searching among rectangles) and object interactiems (
in terrain classification and object detection tasks [22]L][ penalizing intersection, favoring similar orientationpwever,
Nevertheless, the intensity-related parameters of thesifla high computational need is present due to searching in gte hi
cation process must be carefully set for specific Lidar desjic dimensional population space. Therefore, applying efiicie
calibration techniques, and capturing circumstances. optimization techniques is a crucial need.
While most of the Lidar based vehicle detection methods
focus on static scenarios, in [1], [15] motion informatioish ¢ |nvolvement of road network information
been extracted from thshearingdistortion of the observed

vehicle shapes. This aporoach exploits that due to the seque The previously discussed techniques focus on extractidg an
o PEes. bp ploit o g analyzing individual vehicles, which can be achieved witho
tial line scanning technology applied in aerial Lidar soansn

. . . considering complex structural models of the city layouts.
moving vehicles from top view appear as parallelogram . . . . e
: . . . owever, for implementing a higher level traffic monitoring
instead of rectangles in the point clouds. A binary shape S . .
e . ; system, the utilization of the road network information be-
classification method has been introduced in [22] to grou : :
. ) : .. comes a necessary step, since the context of the vehicles
the objects based on the estimated velocity. However it has ; .
o e : can only be interpreted based on the neighborhood. The
also been noted that it is often difficult to decide whether, -~ 7. =~ ; . .
) o . _Sjtuation is simpler, if the scene consists of straight spad
the observed shape distortion is caused by target motion or .. . . :
o o . . S0 that an efficient traffic segmentation can be obtained by
missing data, yielding a number of detected objects with the.

status ‘uncertain motion’. We have also experienced i i ofientation based vehicle clustering [24]. This assunmptio

data sets that the relevance of this feature may depend on Eﬁg been exploited by us using data samples from Budapest,
. . ... Hungary. However for a general usage of the model, we also
data quality, the speed of the traffic flow, the sensor pasitio

: . heed to provide strategies to deal with arbitrary road neks/o
w.r.t. the target motion and the scanning frequency of teerla S
beam. containing roundabouts and strongly curved roads.

The vehicle detection techniques should also be examinecirhere have recently been proposed a few approaches on

from the point of view of object recognition methodologie complete road network extraction from airborne Lidar data

Machine learning methods offer noticeable solutions, [&.4. 5[25]’ [26]. The Junction-Point Processes introduced in] [27

. may also give us a powerful tool for the problem with appro-
adopts a cascade AdaBoost framework to train a classmerate Lidar-specific modifications. Some of the existingte

based on edgelet features. However, the authors also menfo

[

0 . : . .
that it is often difficult to collect enough representatiragrting niques exploit the intensity channel of the Lidar measures)e
samples, therefore, they generate more training examples

%suming that asphalt provides usually lower intensities t
shifting and rotating a few training annotations. Modeldths vegetation [21], [25]. However as noted earlier the intgnsi
methods attempt to fit 2-D or 3-D car models to the observ

ecalibration issue may mean a bottleneck here to use these
data [1], however, these approaches may face limitation for

ethods for various types of sensors.
) . . : . In this paper, we do not detail the road network extraction
low resolution point clouds with complex and highly variou : . .
. ask, but we assume that either the scene contains onlglstrai
vehicle shapes. ) : . . )
- . : . roads; or a coarse line network is available and registeyed t
We can also group the existing object modeling techniqugs. . . .
. . e Lidar data by using an automatically obtained or maguall
whether they follow abottom-upor an inverse (i.e. a top-

down) approach. Thbeottom-uptechniques usually consist inlabeled city road map. This nework will help us in the
pp ' b q y determination and analysis of possible interacting vekicl

extractingprimitives(blobs, edges, corners etc.) and thereaftq—rrowever this prior map solves neither the accurate terrain
the objects are constructed from the obtained features by '

sequential process. To extract the vehicles, [16] intredbee e>&ract|on nor the vehicle detection problems which shéield
different methods with similar performance results, WhicﬁtIII handled in an automated way.

combine surface warping, Delaunay triangulation, thr&thg ) o

and Connected Component Analysis (CCA). [18] apply tHe: Methodological contributions of the proposed approach
h-maxima transform followed by watershed segmentation toln our approach, we propose a hybrid model, where the
separate the objects. The output is a set of vehicle contoundtial point cloud is classified via 3-D features, but theioyal
however, some car silhouettes are only partially extraatedl object configuration is extracted on a 2-D lattice, afterugiab

a couple of neighboring objects are merged into the sarpkne projection.

blob. In general, bottom-up techniques can be relativedy, fa Taking an energy minimization based approach we model
however construction of appropriate primitive filters mag btraffic scenes by Marked Point Processes (MPP) [23], [28].
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. . . TABLE |
MPPs have previously been used for various population €0unt pagameTERS ASSOCIATED TO A POINTY OF THE INPUT CLOUDL
ing problems, dealing with a large nhumber of objects which PROVIDED BY A DISCRETE RETURNDR) LIDAR SENSOR
have low varieties in shape. Among alternative techniquigs w
similar goals, we can mention Hough transform or mathematiParametef Domain Description
cal morphology based methods [29], however these appreachép, ¥p, zp | R coordinates of the 3-D geome-
show limitations in cases of dense populations with sevetal ric location of the poinp
adjacent objects. On the other hand MPP models can hardie [0,259] calibrated intensity value asso-
these phenomena more efficiently, through jointly desegbi ciated to the poinp
individual objects by various data terms, and using infdioma | 7, {1,2,3,4} total number of range mea-
from entity interactions by prior geometric constraint®][3 surements (echos) of the laser
Although the computational complexity of MPP optimization pulse yieldingp
may mean bottleneck for some applications, various efficignr, {1,2,3,4} index (ordinary number) of the
techniques have recently been proposed to speed up theyengrg echo associated to poipt

minimization process, such as the Multiple Birth and Death
(MBD) [23] algorithm or the parallel Reversible-Jump Mavko
Chain Monte Carlo (RIMCMC) sampling process [31]. seasons, completeness study of regular and ad-hoc parking
However, conventional MPP models offer limited optionareas, or detecting vehicles with outlier positioning amon
for hierarchical scene modeling, since they usually explaiegularly aligned objects.
pairwise object interactions, which are defined on fixed sym-The workflow and dataflow charts of the proposed method
metric object neighborhoods. In a traffic situation we ofteare displayed in Fig. 1 and Fig. 2 respectively. In Sec. Il we
find several groups of regularly aligned vehicles, but we tmugescribe the point cloud classification and ground prajecti
also deal with junctions or skewed parking places next to tRéeps. We introduce the proposedMPP model in Sec.
roads, where many differently oriented cars appear close|lp and the corresponding energy optimization algorithm i
each other. In addition, the coherent car groups may hagec. IV. In the experimental part (Sec. V) we discuss first
thin, elongated shapes, therefore concentric neighbadhoghe parameter settings, thereafter qualitative and ciainé
are less efficient. Some earlier attempts have already beesults are provided using different group-, object- andlpi
conducted to introduce hierarchical contextual modelsha tlevel evaluation metrics. We validate the proposed model
MPP framework. In [32] the relation between objects angh a data set of 1009 vehicles from seven different urban
object parts has been modeled as a relationship of parent asgions, and compare our results to four previous apprsache
child objects. Here we need a different approach, sinceaaist Finally, concluding remarks are given in Sec. VI. This detic
of object encapsulation we should give probabilistic medeéxtends our corresponding conference papers [24], [34] wit
for various object grouping constraints. significant new model elements, including an improved ¢lass
For the above reason, we propose a new Two-Level MHRiEation model, various new data based and prior features and
(L2MPP) model, which partitions the complete vehicle popueneralized grouping constraints for curved roads.
lation into vehicle groups, calletaffic segmentsand extracts
the vehicles and the optimal segments simultaneously by a
joint energy minimization process. While object interant
within the same segment realize conventional non-oveittgpp The first step of the proposed workflow is point cloud
or alignment constraints [33], the key novelty 6fMPP is that classification, as displayed in Fig. 1. Similarly to [35], we
we introduce inter layer object — group interaction termscivh have developed an energy minimization based contextuat poi
can prescribe different geometric constraints withinatiéht cloud segmentation method. However, while [35] deals with
object groups, implementing adaptive object neighborBoodnacro area classification, marking vehicles as part of the
Features exploited in the recognition process are directiutter regions, our approach also focuses on the accurate
derived from the classification of the Lidar point cloud ifD3- discrimination of the vehicle class from other areas.
However, to keep the computational time tractable, the-opti The input of the proposed framework is a point clodd
mization of the inverse problem is performed in 2-D, follagi provided by a Discrete Return (DR) airborne Lidar system.
a ground projection of the previously obtained class labelset us assume that the cloud consists [opoints: £ =
During the projection of the Lidar point cloud to the groundps,...,p;}, where each pointp € L, is associated to
(i.e. a regular image), we do not interpolate pixel valuethwisix parameters, as listed in Table I. The geometric position
missing data, avoiding artifacts of data interpolation. coordinates £, yp,2p) are available in a local Euclidean
In our model, the processed Lidar scans are consideredcasrdinate system, which is adjusted to the WGS 84 datum
3-D scans of the cities, and we extract local snapshots fraurface. In addition, each point has a calibrated intensilye
the traffic flow, with performing location and orientationseal ¢g,. As indicated earlier, the DR Lidar system may capture
contextual classification of the vehicles. In this way, wa caup to four range measurements (echos) for each laser pulse.
obtain robust information about the number and density @his information is encoded in the point could by adding two
objects in different road lanes, crossroads and parkingsareaddition parameters to each point: marks the total number
Our extracted descriptors can contribute to statisticatliog of captured echos from the pulse yieldipgandr, (< 7,) is
analysis of roads and main junctions in different day pamts athe reflection index corresponding jpawvithin the echos of the

II. CLASSIFICATION OF AERIAL POINT CLOUDS
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Sec. IV.
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Fig. 1. Workflow of the point cloud filtering, classificatiomé projection steps. Note that for easier visualization,haee distinguished pixels of roof (red)
and ground (blue) in the projected label map (Fig. (c)), huirdy the vehicle extraction process, we consider them #sopa unifiedbackground class.

same laser pulse. If, = 7,, we say thap corresponds to a andm is a steepness parameter used for normalization. If we
last return otherwise to anntermediate return need to apply dower threshold constraint for a given feature,

Let us denote by, (p) the ¢ neighborhood op:

Velp) ={a € L:lg —pl| <e}, 1)
where||q — p|| marks the Euclidean distance of poigtand

we simply need to reflect the sigmoid function to the- 0.5

line, i.e. using(1 — {(x,7,m)) as class energy function. In
this way parameter tuning for the different classes is giitai
forward, if the evidence of class membership monotonously

increases or decreases as a function ofaztHeature.

Based on the membership terms, we defineFaenergy
function on the space of the possible global point cloud
labellings, which uses the Potts smoothness term favoring
Similar labels for close points [35]:

p, and thee threshold parameter was setas ,/%, where

p is the point density of the scan measured in points/Aor
efficient neighborhood calculation, we need to divide thmjpo
cloud into smaller parts by making a nonuniform subdivisio
of the 3-D space using led tree data structure.
In our classification model, we distinguigrrain, vege- E({¢(p)lp € £}) = > pein(0)+> Y. wI{&(p) # £(r)}
tation, roof, vehicle and clutter regions, and accordingly we peEL pEL reV.(p)
denote byé(p) the class label assigned to a given paint )
The clutter class contains sparse point cloud regions, lwhi@herex > 0 is the weight of the interaction term arid.} is
mainly correspond to vertical structures such as facadds @ indicator functionI{true} = 1, I{false} = 0.
lampposts, or thin objects, like power lines. We continue with the definition of the class membership
To classify the point cloud, we define for each class functions. The first step igerrain modeling. Planaground
a pe(p) € [0,1] inverse membership (or energy) functionmodels are freq_uen_tly adopted in the literature relying on
which evaluates the hypothesis thate £ belongs to the¢  robust plane estimation methods su.ch as RANSAC, however,
class, marking high quality matches with lowewalues. For they are less efficient in cases of significant elevatiorediff

deriving the membership terms we uéesigmoid functions, €nces within the observed terrain parts. In these casesnbott
which can be considered asft threshold$36]: parts of the cars can be cut off by the estimated ground plane,

or the objects may drift over the grounthstead we apply
1 . h .
= ) a cell based locally adaptive terrain modeling approach. [37
L+ exp(=m - (z = 7)) First, we fit a regular 2-D grid withVs = 1m rectangle
wherex € R is a scalar valued fitness descriptor evaluating thveidth (i.e. grid distance) onto thkorizontal P,_, plane of
match between: and a selected point cloud classjs a soft the point cloud’s Euclidean coordinate system. We assigh ea
upperthreshold corresponding te with respect to the class,p € P point to the corresponding cell, which contains the

2

C(Z’ T’ m)
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projection ofp to P,—_y. We mark the cells a®rrain candidate (L*MPP model R
cells where the differences of the observed maximal ar (Sec. IIT.)

minimal z,, point elevation values are lower than 50cm, whic Raw Lidar EI—
Pa(m)

Classified
point cloud
(Sec. 1)

condition admits up t@6° ground slope within a cell. Next, for
obtaining a local Digital Terrain Model (DTM), we calculate

point cloud

Output
vehicle and

configuration

T
for the previously marked terrain candidate cells the ayeaf c-:l;rrligric \ . | Object interaction traffic
the included poinelevationcoordinates. To eliminate outlier Cgonstmims \}\ terms 1(u,v) segment
values in the DTM resulted by e.g. flat car roofs, we appl

Road network
database

a median filter on the elevation map, and interpolate t Registered
remaining cell elevation values from the neighbortegain
regions. As the DTM is ready, we calculate for each peint

itS distance from the terrain mOdEL: dg = dlSt(p, Tp) For Fig_ 2. A dataflow model of the proposed system.
real ground points we expect low height values, therefore we

determine the class energy function by soft-thresholdirey t
dl levels: the corresponding direction:

,Uterrain(p) =( (dz;; Tter, mter) . (4)

™ Object-group
interaction terms
Alu,y

p S

[vehicle(p) = max (1 - (dga Tter, mter) ¢ (dzv Troof, mroof) )
Hereyr is anupperheight threshold for ground points, which
depends on the geometric accuracy of the Lidar datanagd ¢ (np =15, 0.5, m"eQ)) 7
is a normalizing parameter. We set these factors in a suggetvi - gy constructing all the class membership functions, the
way by training regions, since they highly depend on the@0igjoha| energy formula of (3) is completely defined. For the
level and point density of the measurement. Note that usifgnimum of (3) we can get an efficient approximation by
our proposed terrain modeling approach, we may classify thesph-cut based techniques [38], a sample result is shown in
top of large flat roofs as local ground, which enables us g. 1(b).
detect vehicles on roof top parking places. After the 3-D classification process, we stretch a 2-D pixel
For detecting thevegetation we analyzed the return (echo)lattice S (i.e. an image) onto the terrain model, where S
numbers of the points. Typically, in regions covered bygreglenotes a single pixel. Next, we project each Lidar poinhi® t
and bushes we can observe multiple laser returnsyj-er, > lattice, which has a label of ground, vehicle or buildingffoo
0 holds for vegetation points. Thus for thg — r, difference and create a 2-D class label map and an intensity map. The
value we can apply.5 as softlower threshold to obtain the label of pixels, v(s) € {vehicle, background, undefined}, is
vegetation class’ energy term: chosen by a majority voting from thg(.) labels of points
projected tos. Here the union of roof and ground labels form
HvegetatiofP) = 1= C (1lp = 7,05, Mveg) ®) the background class, whilerv(s) = undefined if no point
Note that multiple laser returns are also present at thesedgerresponds te after projection. We also assign to each pixel
of buildings, but these regions can mostly be filtered out byan intensityy(s), which is0, if v(s) = undefined, otherwise
the smoothness term of the model. we take the average intensity of points projectesl. teor point
In clutter regions which are typically formed by reflectionsclouds with 8 points/rhi density, we used a cell side length of
from walls in aerial Lidar scans, we expect at most a few) ( 30 cm in.S, which means a three times larger grid resolution

neighbors around each point in the cloud: than the one adopted for terrain modeling. With this choice
we assign in average 0.7 points to a pixel, so that informatio
teiutier(P) = ¢ (Ve(p)|, 7v,my) - (6) loss due to overlapping point projections will be limited.

In the following part of the algorithm, we purely work on the
previously extracted label and intensity images. The dietec
is mainly based on the label map, but additional evidences ar
extracted from the intensity image, where several carsappe
as salient bright blobs due to their shiny surfaces.

As 7, soft threshold, we usetD% of the average point density
of the point cloud in are x e vertical column.

Regarding theroof class, we assume that thzg height
parameter of the point exceeds;gs value, and the roof points
form dense regions, so th@i.(p)| > 7v. The energy subterms
of these two softower thresholding constraints are joined with l. L2-MARKED POINT PROCESSMODEL
the maximum (i.e. logical AND) operator to obtain the roof

class energy: The inputs of this step are the label and intensity maps

over the pixel latticeS, which were extracted in the previous
Lroof(p) = max (1_g (d, Tioof, Miroof) , 1—C (|Ve(p)], 7v,my,) ) S€ction (see Fig. 1(c) and (d)). We assume that each vehicle
can be approximated from top view by a rectangle, which we

Finally, for points corresponding to vehicles we prescrib@m to extract by the following model. A vehicle candidate

three soft constraints using the negation of three prelyous: is described by five parameters; andc, coordinates of

defined terms. We expect that thk point elevation w.rt. the center pixel: € S, side lengthse, ¢; and orientation

the local terrain part is between the maximal accepted grouth € [—90°,490°] (Fig. 3(c)). Note that with replacing the

height (ier) and the minimal roof height valuer{.), while rectangle shapes for parallelograms, the “shearing éffefct

the given point should correspond to the last reflection fromoving vehicles may also be modeled [1].
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!; --l"»':l'f.' ‘-:_-"_" second stepwe constructpg; (u) data drivenenergy subterms
sl for each featurg, by attempting to satisf’ (u) < 0 for real

objects an J(u) > 0 for false candidates. For this purpose,
C - d

i : we project the feature domain fe-1, 1] with a monotonously
e z -;" decreasing function [23]p/ (u) = Q(f(u),d}), where
ull
(a) Label map (Colors: (c) Rectangle parame- (&) Vehicle model + label (1 oz ) if x<d
vehicle class: black, ters of a vehicle candi- map (background class = Q(m, do) = do )’ 0 (9)
undefined class: white) date u roof + terrain: gray color) exp (f z(; f“) —1, if z>dp.

T u u Observe that th& function has a key parametefy, which
K ' ) is the object acceptance threshold for feature
5 - ~ We used four different data-based features, which are
T -~ " demonstrated in Fig. 3. Let us denote By, C S the pixels
. =" of the image lattice lying inside the vehicle candidate’s

(b) Intensity map (d) Internal (R) and ex-  (f) Vehicle candidate + reCtanglef and b}T’;R T_b)t’ T,,lf, and T’zig_the upper, b_ottom,
ternal (TV) regions for u  binarized intensity map left and right object neighborhood regions, respectivekye(

Fig. 3(d)). The feature definitions are listed in the follogi
Fig. 3. Demonstration of the (a)-(b) input maps (c) objecttamgle paragraph;. .
parameters and (d)-(f) data term calculation process The vehicle evidenceeature f¥¢(u) expresses that we
expect several pixels classified ashicle within R,,:

1 .
Let H be the space of objects. We define a neighborhood [Y(u) = R > T{v(s) = vehicle} (10)
relation~ in H: u ~ v iff the distance of the object centers is U seR,

smaller than a threshold. We describe the scene by a Two-leyere |r,,| denotes the cardinality of,, andI{.} marks
Marked Point Process €IMPP) model: a global configuration again an indicator function.

w is a set ofk traffic segmentsw = {¢1,.... ¢}, where  The external backgroundeature f°(u) measures if the
each traffic segment; (i = 1...k) is a configuration of.; yehicle candidate is surrounded by background regions:
vehicles,y; = {uj,...,u;,} € H". Here we prescribe that

;N = 0 for i # j, while thek set number and, . .., ny . 1
inali i initi f(u) = min2nd
set cardinality values may be arbitrary (and initially uotum) ie{up.btitug} \ |7

] Z I{v(s) = backgr.} |,
integers. We mark withy < w if « belongs to any) in w, i.e. €T,
JY; € w:u € Y;. Q denotes the space of all the possible
global configurations, and is defined as follows:

(11)
where themin2nd operator returns the second smallest ele-
ment from the background filling ratios of the four neighinori
Q=U2, {{11)17 R [Ufle\lln]k} regions, thus we also accept vehicles which connect with at
" most one side to other vehicles or undefined regions.
whereW,, = {{u1,....un} € H"}. () The internal backgroundfeature f*(u) prescribes that

The above formula expresses that a configuration may con¥yghin R. only very few background pixels may occur:

of any number of traffic segments, and each segment can b 1

contain an arbitrary number of vehicles. fou) = R > 1-T{v(s) =backgr}. (12)
Next, following an inverse modeling approach, an energy SERy

function ®(w) is defined, which can evaluate eache © Calculation of thef'e, f¢* and f'* features can be followed

configuration based on the observed data and prior knowledgeFig. 3(e).

The above neighborhood-energies are constructed by fusingrinally, the intensity feature provides additional evidence

various data terms and prior terms, as it will be introducefdr image parts containing high intensity regions (see B{b)

in the following subsections in details. Therefore the ggerand (f)). )

function can be decomposed into a data term and a prior term: ity

®(w) = By(w) + ®,(w), and the optimalu is obtained by ) | Ryl 2 Mol > T, (13)

minimizing ®(w).

SER,,

whereT, is an intensity threshold. As Fig. 1(c) shows many
vehicles appear as bright blobs in the asphalt, which fagema
A. Data-dependent energy terms the feature relevant to support the detection process.

Data terms evaluate the proposed vehicle candidatesh@e. t After the feature definitions, the data tergp$(u), ¢3°(u),
u = {cg,cy,er, 1,0} rectangles) based on the input labelg’? (u), ¢5°(u) can be calculated with th@ function by
or intensity maps, but independently of other objects of trappropriately fixing the correspondirdé parameters for each
population. The data modeling process consists of two stefeature. We set the parameters based on manually annotated
First, we define differentf(u) : H — R features which training data obtained by using a ground truth generatioh to
evaluate a vehicle hypothesis foiin the image, so that ‘high’ which will be described later in Sec. V-C.
f(u) values correspond to efficient vehicle candidates. In theOnce we obtained the subterms, the joint data energy of
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Fig. 7. Roadside-dependent prior orientation terms withinaffic segm.

(b) Width uniformity feature
B. Prior terms
Fig. 4. Demonstration of the used pairwise interaction trairgs The prior terms encode geometric knowledge about the
expectedv vehicle populations. The prior configuration energy
is decomposed into two main parts:

@

v, ©® v o) = S Iwo)+ S A(wy).  (15)
KRR ESR I
Voo @ y

Here thel (u, v) terms implement classical pairwise interaction

©  u constraints between (spatially) neighboring objects stroiat-
|t|—|:|—|:F u '| '| |' |' ed in a similar manner to various examples from [30]. On one
EE E‘E hand, we penalize any overlapping rectangles within ¢he
configuration (see Fig. 4(a)). On the other hand, to prevent

us from merging contacting vehicles into the same object
Fig. 5. Favored {/) and penalized ) sub-configurations within a traffic candidate, we penalize rectangles with significantly déffe

segment width (e;) parameters in local neighborhoods (Fig. 4(b)):
_Area{R, N R,}
I, v) ~ Area{R,UR,} *
objectu is derived as | b .} N |j\1/ | Z I{jex(u) — ex(w)| > T1) (16)
¢a(u) = max(min(yg (u), 93 (1), 93’ (1), @3 (u)).  (14) “oen,

Here the min and max operators are equivalent to the logi¥dtere N = {v < w : u ~ v} marks the neighborhood
OR resp. AND operations for the different feature constginof u. We setT; as the half of the average vehicle width.
in the negative fitness domain. We do not prescribe simult@uUr experiments showed that this assumptions did not yield
neously thevehicle evidencand intensity constraints, since further false detection results, only the width estimatiaight
usually not all vehicles appear as bright blobs in the iritgns be slightly inaccurate for very wide vehicles.

map. The data term of the configuration is obtained as the On the other hand, the(u, 1) terms can describe various

sum of the individual object energiedy(w) = 3, ., wa(u). constraints between the object group level and the objeet le
R of the scene, which can be considered as the main novelty of

the proposed tMPP model.

The object grouping process is based on the relative orienta
tion and positioning of the vehicles close to each other.evior
specifically, in a straight road, we prescribe that the \ekic

(1)

t ) - : .

u of the same traffic segment have similar orientation, angl the
v’ form regular rows: Fig. 5 shows examples for favored and
s penalized configurations within a given vehicle group. If we

also need to deal witburved roadparts such as exit ramps or
roundabouts, we should notice that tlogvs of corresponding
u vehicles may follow curved lanes. At this point we utilize
the available road network information mentioned in SeC. I-
Fig. 6. Roadside-dependent orientation calculation.center pixel of object For each vehicle, we calculate a relative orientation wine
o ?(tr)"f‘;”ci’f'f)f?ga’;j(;)déﬂiﬂg’gﬁf\g&gi?&efgif‘gn”;fb’“éfv)v'eggie;ggrt local road tangent for the classification. More specifically
as shown in Fig. 6 we calculate theadside anglef* as
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the angle between the main axis of the vehicle and tlige birth step, therefore high energetic objects can séll b
tangent of the road curve in the closest contour point to tlaglded independently of the temperature parameter. Due to
vehicle center. Positive and negative samples for apmteprithese properties, in several remote sensing tasks notabie g
alignments within a group are shown Fig. 7. has been reported in optimization speed versus RIMCMC

To define theA(u,v) energy components, we introducg23], [28]. On the other hand, parallel sampling in MBD
an alignment distance termh,(u) € [0,1], which measures implementations is less straightforward than regarding th
whether a vehiclex is appropriately arranged with respecRIMCMC relaxation [31].

to a traffic segment). In our model, dy(u) is the av- e have chosen for our method the extension of the MBD
erage of two subtermsfrirst, we take a normalized angleigorithm, as an efficient trade-off between performanag an
difference betweery”(u) and the mean angld; within ,rocessing speed. As MBD has been designed for single
¥t min([0"(u) — 0;[,45°)/45° (see Fig. 5(a),(b) and Fig.|ayer MPP models, the main task was here to include the
7(a),(p)). Second we calculate a distance term between “'group assignment and the object re-grouping issues within
center of object: and the lane orientation curve, normalizeg,q original framework. More specifically, after eabirth

by the expected average lane width in the scene. By consisp the generated object should be assigned to a new, or an
ering straight road segments only, the lane orientatioN&Urgyisiing group. Then, after thdeathprocedure, we execute a

is obtained as lines fit to the object centers of the group. (Fige,y step, calledGroup re-arrangementwhich may re-direct

5(c),(d)). Otherwise, the reference lane orientation eusvhe ¢qme objects to neighboring segments based on data based
local part of the used road network (Fig. 7(c),(d)). and alignment features.

After defining the d,,(u) distance metric, we construct 3 _
the group alignment energy term. For prescribing Spatialil The .steps of the modified, two-level MBD algorithm are as
connected traffic segments, we use a constant high differe llows:
factor, if u has no neighbors withig» w.r.t. relation~. Thus Initialization: start with empty populations = (), set the

we derive a modified distance: birth rateby, initialize the inverse temperature parameter
R 1 if Jv e \{u}:un~wv 5o and the discretization step= dy.
dy(u) = { dy(u) otherwise (17) Main program:alternate the following three steps:

We define theA(u,v) arrangement term of (15) by dis- ® Birth step Visit all pixels on the image latticé' one after
criminating three cases. First, we slightly penalize vighicanother. At each pixed, with probability 6by, generate a new
groups which only contain a single vehicle. Second, betwe@Ri€ctu with centers and randomey, e; and ¢ parameters.
a segment) and an included objeat € ¢ we penalize large FOF €ach new objeat, with a probability

dy(u) distance values. Third, we also penalizeyitioes not P0 = Hw = 0} + H{w # 0} - min dy, (u), (19)
belong toy, although thed,(u) distance islow. The above Yj€w
three constraints are formulated as follows: generate a new empty traffic segment, add to v and ¢

c if ¢ = {u} to w. Otherwise, add: to an existing traffic segment; € w

A(u,¥) = ¢ dy(u) if u e (18) with a probability

1—dy(u) ifudd b — (1= dy, (u)) . 20)

where( < ¢ < 1. by cn(l = dy, (w)
IV. OPTIMIZATION e Death stepConsider the actual configuration of all objects

MPP energy functions are optimized in the literature withithin « and sort it by decreasmg values. dependlng on
iterative stochastic algorithms, most frequently with Re- ¥d(t) + A(u, )] - For each object: taken in this order,
versible Jump Markov Chain Monte Carlo (RIMCMC) samggmp”teA‘I)w(“) = ®(w/{u}) — (), derive thedeath rate
pler [39] or the Multiple Birth and Death Dynamic techniqud (%) @s
each feraton of the relasation consists n perterbing one | 7(1) = T(A.(w) = o8- M%)

perturbing one w 1+ dexp(—f3 - Ad,, (u))
a couple of objects with various kernels such as birth, death ] . -
translation, rotation or dilation. Here experiments shbwatt @nd delete object with probability p(u). Remove empty
the rejection rate, especially for the birth move, may irlu®©Pulation segments from, if they appear.
a heavy computation time. Besides, one should decrease the Group re-arrangementConsider the objects of the current
temperature slowly, because at low temperature, it is diffic w population, one after another. For each objedf segment
to add objects to the population. On the other hand, MBD we propose an alternative object, so that the geometric
[23] evolves the population of objects by alternating pyrelparameters ofu’ are derived from the parameters of by
stochastic object generatiohiith) and removal death) steps, adding zero mean Gaussian random values. The next step
in a Simulated Annealing (SA) framework. In contrast tis selecting a group candidate far. For this reason, we
the above mentioned RIMCMC implementations, each bintandomly choose a object from the proximity neighborhood
step of MBD consists of adding several random objects &f v (v € N, (w)), and assign.’ to the group ofv, denoted by
the current configuration, and there is no rejection during. Then, we estimate the energy cost of exchanging v

(21)
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TABLE Il - .
CATEGORIZATION OF THE DATA SETS BY DIFFERENT CONTENT FEATURE, The parameters of thelassification the data and. the
WITH ALSO GIVING THE COVERED AREA AND POINT NUMBER prior terms are set based on manually labeled point cloud

regions and training objects, respectively. Most of theadat

Feature / Data sef #1 | #2 | #3 | #4 | #5 | #6 | #7 dependent parameters are related to physical circumstarfice
Main road traffic | < X | X | X X the measurement, such as altitude and speed of the airplane,
Roadside parking x | x | x X X frequency of scanning, measurement noise and point cloud
Parking square | x X X density. We have observed that using similar settings ivengi
Curved Road X X Lidar measurement platform, we do not need to re-calibrate
Cluttered traffic | x | x x | x the model parameters for each test set. The later phenomenon
Areain103km? | 46| 65| 39| 47| 37| 39| 46 is a significant advantage of processing Lidar data, ratieer t
Point num-10% 451331351381 271 36| 36 optical images where the parametric models should also be

adapted to the outside illumination conditions.

Finally, to set theoptimizationparameters, we followed the
guidelines provided in [23] and usdg = 5 - 1076, §; =
10000, By = 20 and geometric cooling factors/0.96.

x marks the features of the different test sets

tou' €
Ap(w, u,u') =pa(u’) — pa(u) + 1w, w\{u})—

—I(u,w) + AW, 9) = Alu,v) - (22) . . ,
_ _ _ _ For comparative evaluation, we have first selected three
Theobject exchange ratis calculated using thE(.) function state-of-the art techniques of Lidar based vehicle detecti

B. Reference Methods

defined by (21): Since vehicle grouping has not been investigated by the
o N , considered reference methods, we also compared the pbpose

o (u,u') = F(A‘P(w’u’ “ )) (23) two-level L2MPP model to a sequential approach which con-

Finally with a probabilityp® (u, u’), we replace: with u’. sist of a vehicle detection step with our single layer MPP

Convergence testif the process has not converged yetnodel (SMPP, [34]), and the grouping step is performed in the
increased and decreasé with a geometric scheme, and gd?0St processing phase. Next we briefly introduce the reéeren

back to the birth step. methods. . , ,
Although the two-level MBD algorithm cannot theoretically 1) DEM-PCA (D-PCA):This method is @ottom-upgrid-

guarantee to reach the global minimum of the MPP ener§@sed algorithm introduced in [16], which consists of three

function, it proved to be practically efficient for our adgsed COnsecutive steps: (1) Height map (aigital ElevationModel)

problem, which fact will be demonstrated in the next experfl€neration by ground projection of the elevation valuesien t
mental section. Lidar point cloud, and missing data interpolation. (2) @i

region detection by thresholding the height map followed by
morphological connected component extraction. (3) Retéan
V. EXPERIMENTS AND EVALUATION fitting to the detected vehicle blobs Brincipal Component

We evaluated our method in seven aerial Lidar data ségalysis.

(provided by Astrium GEO-Inf. Services Hungary), which are 2) h-max: : The method proposed by [18] applies three
captured above dense urban areas of Budapest, Hungary. Gbsecutive steps: geo-tiling for accelerating the datass,
collected point clouds have an average point density of v8hicle-top detection by local maximum filtering, and segme
points/n? considering the last returns. Various traffic situationi@tion through marker-controlled watershed transforamati
can be observed in the used data collection, such as main r&étce the output of [18] is a set of vehicle contours, we
traffic, roadside parking, parking in squared lots, or eligtl calculate the bounding boxes of the obtained vehicle blobs
scenarios. A subjective human classification of the testlsgt to make the direct comparison with our approach relevant.
typical events and road configurations is given in Table H. A 3) Floodfill: The third algorithm implements a 3-D con-
shown here, the individual data sets cover regions of 0.08%cted component analysis on the segmented point cloud.
to 0.065 kn?, and the total number of points (including botHFirst, the point set is classified using our segmentatiooréty
intermediate and last returns) varies between 270K and 450K presented in Sec. Il. Thereafter, in vehicle-classifigibires
The first set consists of different point cloud parts cowgrirthe individual objects are separated by floodfill propagatio
smaller areas, while the remaining sets correspond toraryde use here &-d tree subdivison for efficient extraction of
connected regions. The whole test data collection containsthe nearest neighbor point, and Euclidean distance camistra
aggregate 1009 vehicles. for vehicle blob separation.

4) single layer MPP (sMPP)we extract the vehicle config-
uration by our previously proposed sMPP model [34], which
uses similar data terms to the present approach, but instead

We can divide the parameters of the proposeédMBP of the complex two-level grouping strategy ofMPP, simple
technique intdour groups corresponding to point cloaths- pairwise energy terms are applied as soft constraints nvithi
sification data-based vehicle modelprior configuration-level the interaction components of the MPP energy function.e&inc
constraints an@ptimization the output of [34] is an unsegmented vehicle population, the

A. Parameter settings
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for eachi =1...7 , TABLE IV
. . o IMPROVEMENTS OF THEL“MPP TECHNIQUE IN TERMS OF CORRECT
selectj € {1,...,n} so thata(i,j) =1 VEHICLE GROUPINGRATE (GR)VERSUS THE SEQUENTIAL $/PPMODEL.
|f ] >n FURTHER NOTATIONS ARE DEFINED INSEC. V-C.
.u,- detected object is a False Positive S SMPP RIVEE
elseifi > m & |FGTFG T GR [ TG [FG| GR
v; GT object corresponds to a False Negative #1 170 | 13 | 93% || 181 | 3 | 98%
elseift(i,j) > ry, (usedr, = 8%) #2 53 | 38 | 58% | 80 | 11 | 88%
u; is a True Positive candidate, angdis matched #3 114 | 49 | 70% | 158 | 4 | 98%
to GT ObjeCt’Uj #4 120 37 76% 153 4 97%
else #5 64 | 45 | 59% | 100| 9 | 92%
u; is a False Positive and; GT object indicates #6 106 | 23 822/" 126 | 2 982/"
a False Negative #7 104 | 38 | 73% || 129 | 14 | 90%
endif [ Al ] 731] 243 75% [[ 927 ] 47 | 95% |
Note: TG+FG is equal to the number of True Positive objects

Fig. 8. Algorithm of object assignment considering the Gidruth (GT)

(GR, %) among the true positive samples, considering GT
grouping step is performed in post processing, by a floodfillassification of human observers. The GR value is deteinine
based strategy. Starting from a randomly chosen object, Wy counting the number of correctly grouped vehicles (TG),
assign all its spatial neighbors to the same cluster iff thibe number of falsely grouped (but correctly detected) cibje
difference between the orientations is lower than a thrieshdFG), and calculating GR=TG/(TG+FG).

(used25°), and recursively repeat the process until all objects

receive a group label. D. Performance evaluation

A few qualitative sample results are shown in Fig. 9-13 and
, the quantitative evaluation is provided in Tables Ill and IV

For accurate Ground Truth (GT) generation, we have dgy rig 9 the complete scene of Data set #3 is displayed with
veloped an accessory program with graphical user interfagg 5o raffic and 9 different object groups. We can obseate th
Wh_'Ch enables us to manual_ly create and edit a GT confi part from the few highlighted False Positive (FP) and False
ration of rectangles and assign each rectang!e to a group é(gative (FN) hits, the major part of the vehicles are cdlyec
operators. To enable fully automated evaluation, we need dgyo ted, separated from each other and grouped based on the
make first a non-ambiguous assignment between the detecied, ) yraffic situation. Using the orientation-based ging
vehiclesu, ... un, and the GT object samples ...v,. Let o nqpaint the cars parking in a skewed formation can be
us denote by = max (m,n). First, we calculate a similar- oficjently distinguished. However, since no car-velogitior-
ity matrix T = [t(i, j)];, which contains the normalized p\4tion is extracted in the proposed model, vehicles parking
intersection area of the object rectangles: parallel to the lanes may be ordered to the traveling caaffi¢r

|Ru, "Ry, | .. . . segments (see light blue group in Fig. 9). We can also see two
Ru| T | Ro, | ifi<m, j<n  pEase Positives in the central regions of the scene, whieh ar

(24) caused by point cloud classification errors. Neverthelss,

otherwiset(i, 7) = 0. We use the Hungarian algorithm [40] tofive parking cars in a courtyard on the right central part ef th
find the maximum matching,e. the maximum utilization of image are appropriately detected and aligned by the method.
T. We denote byA = [a(i, )], the assignment obtainedWe can also notice that the vehicles parking next to the main
by the algorithm, which is a binary matrix where each rowop-bottom road part are split into three different growpisich
and each column contains exactly one match denoted & not spatially connected. Sample parts from the remginin
a(i,j) = 1. Thereafter, we classify the objects according tdata sets are displayed in Fig. 10.
the algorithm presented in Fig. 8 as True Positive (TP),dals Although the reference methods were chosen so that they
Positive (FP) or False Negative (FN). provide complex and valid solutions for the vehicle detacti

We have performed quantitative evaluation both at objetetsk in general urban environments, we have also observed a
and at pixel levels considering the GT configurations. Aecbj number of limitations for each case. Most of the problem& wit
level, we have counted number of the TP, FP and FN samp@EM-PCA originate from the inaccuracies and discretization
based on the algorithm of Fig. 8. Then, using the Numbartifacts of the estimated elevation maps. In addition,risho
of real Vehicles (NumV=TP+FN), the F-rate of the detectiomegetation or various street objects can corrupt the psoces
(harmonic mean of precision and recall) is calculated. Aepi since their elevation range is often overlapping with the
level, we compare the vehicle silhouette mask to the GT masfehicles’ height values. By testing the-max method, we
and calculate the F-rate of the match [34]. have noticed similar limitations as mentioned by the awghor

Regarding thesMPP and the proposediMPP approaches, in [18]: in parking areas and cluttered regions, the teahaiq
we have also measured the correct Group Classification Rgields inaccurate contours and merges some of the nearby

C. Automated evaluation methodology

t(i, j) = I"(ui,vj) =2
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TABLE Il
OBJECT LEVEL AND PIXEL LEVEL F-RATES(IN %) BY THE D-PCA [16], H-MAX [18], FLOODFILL, SMPP [34] AND THE PROPOSELL2MPPMETHODS.
Set NUmV* Object level F-rate % Pixel level I_:-rate%
D-PCA | h-max | Floodfill | sMPP | L°MPP || D-PCA | h-max | Floodfill | sMPP| L2MPP
#1 191 78 78 88 97 97 63 63 66 81 82
#2 94 89 81 80 96 97 80 38 60 73 73
#3 170 85 87 91 97 96 77 76 85 75 74
#4 160 68 77 88 97 97 61 68 75 80 89
#5 110 48 79 92 98 98 37 61 82 80 84
#6 131 89 81 73 98 98 80 70 48 81 88
#7 153 80 90 88 93 93 60 76 65 74 88
[Al J1009 [ 77 [ 8 [ 8 | 97 [ 97 [ 66 | 65 [ 71 [ 78 [ 83 |

*NumV = Number of real Vehicles in the test set

(a) 3-D input Lidar data (mesh visualization with intensityloring)  (b) Detection result showing False Positive (FP) and Falegalive (FN) hits

Fig. 9. Demonstration of the result in a large scene part fiata set #3. (a) Input Lidar data visualized as a 3-D trisatgd mesh with intensity coloring
(note: some vehicles are occluded from this viewpoint) (BMPP detection result in the 2-D projected plane. Vehiclesliierent segments are displayed
with different colors, background is interpolated for \afimation.

q Y, i 1 :
(a) Data set #2 (b) Data set #4 (c) Data set #5 (d) Data set #6 (e) Data set #7

Fig. 10. Results on selected regions from the different data. Note that a sample from Set #1 is shown in Fig. 13 and &t displayed in Fig. 9.
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(d) sMPP (e) Proposed tMPP (f) Ground Truth (manual)

Fig. 11. Method comparison on a sample part of Fig. 9. Reterenethods in the top row do not perform vehicle grouping.

TABLE V

objects, while vegetation causes a number of additionaéfal \ieasurep compUTATIONAL TIME REQUIREMENTS OF THE DIFFERENT
alarms. Regarding th&loodfill algorithm, we observed that METHODS FORDATA SET #5

3-D connected component propagation is sensitive to noise Method Running time

due to partial occlusion, and nearby vehicles are often etkrg DEM-PCA 57 sec

together. On the other hand, in the proposed technique the 2- h-max 55 sec

projection implements already a noise filtering step, arel th Floodfill 28 sec

inverse object description approach of MPP does not request Proposed.2MPP | 53 sec

strictly connected components for detecting a vehicle.

Fig. 11 shows a selected segment of the Data set #3, for
comparing the output of the reference methods, the proposed
model and the manually edited Ground Truth (GT) configurés much closer to the human classification than the result of
tion. Regarding the sMPP,2MPP and the GT configurations,the sequential SMPP approach.
different vehicle groups are marked with different coldvegt Using a standard desktop computer and single-thread imple-
viewed in color print), for the three other methods onlynentations of the algorithms, we have also measured the run-
the vehicle extraction step is investigated. The corredpan ning times of the different methods on Data set #5. Although
numerical object and pixel level evaluation rates (F-fatge the two-level MBD optimization induces some computational
listed in Table Ill. Both the qualitative and the quantitati overload, the proposed method is still competitive with thos
results confirm that the proposedMPP model surpasses theof the reference techniques, and it is only outperformed by
D-PCA h-maxandFloodfill state-of-the-art techniques at both-loodfill.
levels.

The object level performance of the single layer MPP
(sMPP) and the proposed model is nearly identical due to the
same data energies applied in both cases. However, the pixéh this subsection, we demonstrate the steps of the pro-
level performance of ¥MPP is noticeably higher, showingposed algorithm on a challenging data sample with a curved
that the prior alignment constraints within the correspogd crossroad hidden by dense tree crowns. The input point cloud
segments increase the detection accuracy for the noisy déashown in Fig. 14(b), and the result of echo number based
numerous misaligned or partially extracted vehicle bloles avegetation removal in Fig. 14(c). In this case, the road ngtw
also shown in Fig. 11(d). extraction step can be done in an automated way. First, we

Regarding the Group Classification rate, even a more signian observe in the intensity map of Fig. 12(a), that the dspha
icant gain is obtained by the propose@MPP technique. As regions provide lower intensities than the neighboringirait
listed in Table IV I2MPP outperforms sMPP in the GR factorground areas. By applying an intensity based thresholdam s
by 5-30% on the different data sets. Fig. 11 (bottom row) al$ollowed by a morphological closing filter, we can obtain a
shows that the segmented population by the two level modelarse road mask shown in Fig. 12(b). Since we may find

Example for road extraction and curved segment analysis
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(a) Without curvature constraints [24] (b) Proposed detection results

Fig. 13. Results on a curved road segment, also shown in Bigndl 12.

TABLE VI
RELEVANCE STUDY OF THE DIFFERENT CONFIGURATION ENERGY
COMPONENTS ONDATA SET #3. AT PIXEL LEVEL, THE RECALL THE
PRECISION AND THEF-RATES ARE ALSO GIVEN
D

Obj. level Pixel level (%)

Skipped feature

(c) Unfiltered road contours (d) CSS filtered road contours _ FP | FN || Rec.| Prec.| F-r

1 | intensity f' 5 8 65 77 | 70

Fig. 12.  Intensity based road detection, and contour figewith the | 2 | veh. evid.fY*& f™ || 57 | 9 66 57 61
Curvature Scale Space (CSS) technique in a sample 3 | internal bg. £’ 26 | 30 44 42 43
4 [ external bg/® || 12| 11 || 57 | 75 | 64

hicl ki in cit d icest 5 | width-uniform. 5 7 66 78 | 71
venicles parking on grass In City green areas, we do no S '_h6 — all features used| 4 6 67 82 74

the car extraction step to the roads. Instead, we estimate
road contours which will be used for calculating the rekativ
orientation of the vehicles for the traffic segment exti@cti
step. However, since the intensity based road mask is otaBy ignoring also the vehicle evidence featyr& the number
noisy here (Fig. 12(b)), we apply for the detected contouss false positive hits (FP) increases significantly, sinbe t
(Fig. 12(c)) a robust smoothing process. Here we have filtergigorithm may detect false vehicles éar sized holef the
the initial contours with the Curvature Scale Space (CSgjojected map, especially at the border of roof and terrain
technique [41], which yielded the road outlines shown in. Figegions (Fig. 15(a)). Since vehicles are usually separbyed
12(d). background areas, without the internal background tgitn

The detection result on this road segment is demonstratedéime cars can be merged into the same object, or the detected
Fig. 13. We compare the model proposed hereby (Fig. 13(b))dRapes can significantly overhang the real car silhouefigs (
an earlier model version (Fig. 13(a)) introduced in [24]ieth 15(b)). With skipping the external background feature, the
considers only the parallel alignment constraints forighta object level performance does not decrease drasticaliythieu
roads, but does not use the road curvature model of Fig.fixel level rates become lower since the car shapes are not
The improvement by this development is clearly observabdgmpletely recovered (Fig. 15(c)).
in the example, since using the newer approach the curved\s for the prior energy terms, th&u,v) component has
lane’s and the straight lane’s vehicle groups are appr@yia  crucial role to avoid multiple detections at a given vehicl

separated. position, therefore it cannot be skipped. As the fifth row of
Table VI demonstrates, ignoring theidth uniformity prior
F. Relevance study of the different energy terms component results in slightly decreased pixel level reaat

The configuration energy of the!MPP model is composed Precision rates.
by fusing various data terms and prior terms. For studyirg th
relevance of the different features, we have tested the moge
with skipping selected components from the energy term, oné
after an other. Quantitative results regarding the test[Bat To test the sensitivity of the proposedMPP method
#3 are listed in Table VI, and a few sample images are showur.t. point density reduction, we have downscaled the fpoin
in Fig. 15. The first four rows of Table VI correspond to thelouds of Data set3 and#6. Comparative recognition rates
data model verification. In the considered test sets, skgppiobtained on data samples with 4 respectively 8 poirts/m
the intensity featurefi® results only in a slight deficit of densities are displayed in Table. VII. In these regions the
performance, which fact also confirms that the model is nperformance with1/2 density downsampling drops 4% at
very sensitive to the lack of calibrated intensity inforioat object and 3-7 % at pixel levels.

Dependence on point cloud resolution
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(a) Aerial photo (not used) (b) Input Lidar point cloud (c) Lidar data filtered by echo number

Fig. 14. Challenging data sample with a curved crossroadehnicby dense tree crowns (point intensity is related to 8t@va A significant part of upper
vegetation has been removed based on echo number, howevpoitit density under the trees is usually less uniform tmacdlgarly visible surfaces.

=’ a
(a) Ignoredfve (b) Ignored fiP (c) Ignored feP (d) Complete EMPP (e) Ground truth

Fig. 15. Testing the significance of the individual energyn® on a sample part of Fig. 9. Ignoring tif&® vehicle evidence features yields several false
alarms, without the internal backgrourfd® term we get elongated shapes, without the external backdrgeP shortened rectangles.
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66, pp. 260-271, 2011.
#3 4 pts/n’? 92 1 [2] C. Benedek, T. Sziranyi, Z. Kato, and J. Zerubia, “Détet of object
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