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Abstract

The Danube is the second-largest river in Europe and the
conservation of its water quality is very important because it
influences the lives of millions people. The aim of this research
is to predict one of the most important water quality parameters,
dissolved oxygen, with the help of water pH, runoff, water
temperature and electrical conductivity data. Multivariate Linear
Regression (MLR), Back-propagation Neural Networks (BPNN)
and General Regression Neural Networks (GRNN) were applied
and their performances compared in this study. The most accurate
prediction proved to be GRNN. This paper describes the influence
of single input parameters on the prediction.
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1. Introduction

Dissolved oxygen is a very significant parameter in the condition
of surface waters, and so its prediction by the help of general and
easily measureable parameters is an important scientific question.
The concentration of dissolved oxygen (DO) reflects the
equilibrium or its lack between oxygen-producing processes (e.g.
photosynthesis) and oxygen-consuming processes (e.g. aerobic
respiration, nitrification, and chemical oxidation) and depends on
many factors such as temperature, salinity, oxygen depletion,
sources of oxygen and other water quality parameters [1]. The
DO level is a measure of the health of aquatic systems. A certain
minimum level of DO in water is required for aquatic life to
survive [2].

Various models are used for the prediction of several
parameters of surface waters, but in the last decade the techniques
of artificial intelligence have been successfully applied as a
forecasting method. In most research, the simply prediction of
the concentration of dissolved oxygen was the aim [1, 3, 4, 5, 6,
7, 8, 9], while in a number of studies the prediction of biological
oxygen demand (BOD) was the purpose [2, 7, 10] and, very
rarely, models were applied to the estimation of chemical oxygen
demand (COD) [7, 11]. MLP was applied by Rankovic et al. [3]
for the modelling of DO in a reservoir, in Serbia, and in their next
study [8] an adaptive network-based fuzzy inference system
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(ANFIS) model was used on the same dataset, but with fewer
input variables. Ahmed [1] developed two models, an MLP and
aradial basis function neural network (RBFN), for the prediction
of DO in the Surma River (Bangladesh) using BOD and COD
and the models were compared: the RBFN predicted better.
Emamgholizadeh et al. [7] used three models (MLP, RBFN and
ANFIS) and the MLP was the most efficient in predicting water
quality variables (DO, BOD and COD) in the Karoon River, Iran.
Basant et al. [2] predicted the DO and BOD in the Gomti River,
India, using two models (partial least squares regression and
MLP), and the performance of the MLP was better. MLP was
developed by Dogan et al. [10] to predict the BOD in the Melen
River, Turkey, and the COD was found to be more effective on
the BOD estimation. The MLP with the Bayesian regularization
training algorithm was successfully utilized by Wen et al. [4] to
simulate the DO concentrations in the Heihe River, China, where
the most effective inputs were determined as pH, NO3-N and
NH4-N. Two applied models (MLR and GRNN) were compared
by Heddam [9] and it was found that the best fit was obtained
using GRNN model in prediction of DO in the Upper Klamath
River, USA. Antanasijevic et al. [5] developed three models:
MLP, GRNN and Recurrent Neural Network (RNN) for the
modelling of DO in the River Danube, in Serbia at a single
location, Bezdan, and the obtained results showed that RNN
performed much better than the other methods. Only GRNN was
used by Antanasijevis et al. [6] for the prediction of DO in the
River Danube, in Serbia, at 17 sample sites, and various
normalization and input selection techniques were compared and
applied successfully.

The main objective of this study is to predict one of the most
important parameters, dissolved oxygen, with the help of some
casily measured physical and chemical variables of the River
Danube using MLR and two types of neural networks (GRNN
and BPNN). A further aim is to evaluate the results obtained and
to apply sensitivity analysis to them, in order to determine which
input variable(s) played a significant role in the prediction of
output.

2. Material and methods

Water quality data set

There are 12 sampling sites in the section of the River Danube in
Hungary, the Mohdacs station (Figure 1.) was chosen as a
representative location, while the studied period was from 1998



to 2003. This complete river water quality data set was divided
into two subsets. The data from 2003 were used as the test data
set (26 data patterns, 17% of all available data), and the data from
1998-2002 were used as the training set (128 data patterns, 83%
of all available data). The output variables corresponding to the
input variables belonged to the same water sample, which was
measured in the same time and at the same location. The same
training and testing sets were used with every single model
applied.
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Figure 1. Hungarian section of the River Danube

Multivariate Linear Regression

Multivariate Linear Regression (MLR) is used to estimate the
linear association between the dependent and one or more
independent variables. MLR is based on least squares; and it
expresses the value of the predicted variable as a linear function
of one or more predictor variables:

y=PBo+ B xx 4 By xxy +ot fi¥x;

where x; is the value of the iy, predictor variable, S, is the
regression constant, and f; is the coefficient of the iy, predictor
variable.

Back-propagation neural network

Artificial neural networks (ANNSs) are basically parallel
computing systems similar to biological neural networks. Among
the various types of ANNs the multilayer perceptron (MLP)
neural network structure is the most commonly used and is a well-
researched basic ANN architecture. The MLP has generally three
layers: input, output and one or more hidden layer(s). Each layer
consists of one or more basic element(s) called a neuron or a node
(or a processing unit). Nodes are connected to each other by links,
synapses are characterised by a weight factor, which denotes the
connection strength between two nodes. Each node in the input
and inner layers receives input values, processes it, and passes it
to the next layer. This process is conducted by weights [10],
meaning that the hidden layer sums the weighted inputs and own
bias value and uses the own transfer function to create an output
value. Typical transfer functions are the linear, the sigmoid or the
hyperbolic tangent function [12].

Back-propagation neural networks (BPNN) are multilayer
feed-forward perceptrons (MLP) trained from the input data using
an error back-propagation algorithm [5]. Back-propagation was
proposed by Rumelhart et al. [13], and it is the most popular
algorithm for the training of an MLP network [12]. This back-
propagation algorithm has two steps. The first step is a forward
pass, in which the effect of the input is passed forward through
the network to reach the output layer. After the error is computed,
a second step starts backward through the network [7] to correct
the initial assigned weights of the input layer in such a way as to
minimize the error. The term “feed-forward” means that a node

connection only exists from a node in the input layer to other
nodes in the hidden layer or from a node in the hidden layer to
nodes in the output layer; and nodes within a layer are not
interconnected to each other, there are not lateral or feedback
connections. MLP using a BP algorithm is sensitive to randomly
assigned initial connection weights [14]. The initialization of
weights and bias values for a layer is conducted using Nguyen-
Widrow method in the MATLAB environment [15], and these
initial values are dissimilar on every single run, so after the
training process different predicted values are obtained. Since
these predicted values were significantly different, the MLP was
trained sixty times at the same settings (number of neuron, input
and target values, transfer functions and back-propagation
algorithm etc.) and the average of these predicted values were
taken into account.

In this study, the Levenberg-Marquardt algorithm is applied for
adjusting the MLP weights [16] and the number of epochs was
1000. One hidden layer and a hyperbolic tangent sigmoid transfer
function were used between the input and the hidden layer and a
linear transfer function was employed between the hidden and
output layers. Neural Network Toolbox of MATLAB was utilized
for both ANNs.

General Regression neural network

GRNN was introduced first by Specht [17] as an alternative to
MLP. GRNN is a modified form of the radial basic function
neural network model. GRNN is a one-pass supervised learning
network, and it is a universal approximator for smooth functions.
GRNN is a four-layer feed-forward neural network, which is
shown in Fig. 2. The first layer is fully connected to the second.
Each input unit in the first layer corresponds to an independent
variable in the model and the number of pattern neurons is equal
to the number of data patterns. The training between the input
layer and the pattern layer is performed by defining the weights
(the center of the RBF functions) with the help of a special
clustering algorithm such as the k-means algorithm [14] and
estimates the Euclidean distance of the ith input vector (x;) and
the weight of the i input variable and the j™ pattern node (w;;)
where N is the number of input variables.

N
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Using the most popular RBF function, the Gaussian Kernel
Function as an activation function, where ¢ is the smoothing

factor or spread:
-D.
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The smoothing factor is the only “unknown” parameter in the
GRNN algorithm; it represents the width of the calculated
Gaussian Kernel Function, and must be given before training the
model.

f(D)=exp(-D/25°), where D= £, (w,~x)’

input layer pattern layer summation layer output layer
§ 5=Z /(D)
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Figure 2. A schematic representation of GRNN, adopted from
Antanasijevic et al. [6]
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The number of neurons in the summation layer can be
expressed as No+1, where No is the number of output neurons
[6]. Since the model has only one output, each pattern layer unit
is connected to the two neurons in the summation layer: the S-
summation neuron and the D-summation neuron. The weights
between the summation-neuron and output neuron are equal to
the measured value of the output variable. The S-summation
neuron computes the sum of the weighted outputs of the pattern
layer (S) while the D-summation neuron calculates the
unweighted outputs of the pattern neurons (D).

D=3 /(D)) 3

J=1
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Finally, the output layer merely divides the S-summation
neuron by the D-summation neuron [9].

Statistical forecasting of the models

The performance of the applied models can be assessed by several
statistical error parameters. The root mean square error (RMSE),
mean absolute error (MAE), and coefficient of determination (R2)
were used to provide an indication of goodness of fit between the
observed and predicted values. Expressions for these error
parameters are given as follows:

RMSE = /%Zn:(o,. -py Q)

1 n
MAE=-2 |0, =P (6)
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where n is the number of input samples; and O; and P; are the
observed and predicted output value from the ith element,
respectively. O and P denote their respective averages.

3 0,07

0

i=1

3. Results and discussion

Prediction by Multivariate Linear Regression

Equation (8) was obtained by the MLR from the input water
quality variables, which represent the whole dataset (training set
+ testing set)

DO =5.9198 % pH —0.2101 = WT —0.0053 * EC —0.0002 * RF —32.6353 (8)

where pH is the water’s pH value; WT is the water temperature

Prediction by Back-propagation Neural Network

The best performance with reference to the testing set was
achieved by BPNN using z-score (normalizing so the inputs and
targets have zero mean and unity standard deviation) and 5
neurons in the single hidden layer. These results, which are
presented in Table 2, were the errors of sixty run’s average.

Table 2. Performance parameters of the BPNN model — the
error of sixty run’s average

RMSE MAE 2
BPRN (mglL) | mgn) | °
training 0.65 0.43 0.85
testing 1.57 1.28 0.57
whole 0.88 0.57 0.77

Prediction by General Regression Neural Network

The best performance with reference to the testing set was gained
by BPNN applying z-score and 0.3 as smoothing factor, Table 3
depicts the obtained values of RMSE, MAE, R2 for the training,
testing and the whole sets.

Table 3. Performance parameters of the GRNN model

RMSE MAE 2

GRNN (mgl) | mgL) |
training 0.47 0.27 0.93
testing 1.42 1.14 0.72
whole 0.72 0.41 0.85

Summarizing, the comparison of the results of the MLR and
BPNN models with GRNN revealed that the GRNN performed
better than the MLR and BPNN models in both training and testing.

Sensitivity analysis

Sensitivity analysis was applied to determine the relative
significance of each input variable, namely which parameter played
the most important role in predicting the DO. The optimal network
architecture (GRNN) which provided the best performance was
selected as a base and the evaluation process was conducted to
eliminate only one input parameter in the data set. Table 4 gives the
results of five networks, and each one demonstrates the extents, to
which the eliminated variable would affect the network accuracy.
As the results in the Table 4 show, the pH value was the most
effective parameter in predicting DO, and the runoff had the weakest
effect on the accuracy the prediction of DO.

Table 4. Sensitivity analysis of input variables eliminated

(°C), EC is the electrical conductivity (uS/cm), and RF is the separately
runoff (m¥/s).
Table 1 shows the performance evaluation of the MLR model - RMSE (mg/L) MAE (mg/L) R
in reference to training’ tGSting and whole set. Combination Training  Testing | Training  Testing | Training Testing
All 0.47 1.42 0.27 1.14 0.93 0.72
Table 1. Performance parameters of the MLR model Bliminate pH 107 214 073 1.69 0.59 024
Eliminate EC 0.70 1.57 0.42 1.26 0.83 0.62
MLR RMSE MAE R2 Eliminate WT | 067 150 | 044 130 0.85 0.73
(mg/L) | (mg/L) Eliminate RF_| 068 146 | 047 116 | 084 072
traming 113 0.79 0.52 Following the application of sensitivity analysis by GRNN, the
testing 1.73 1.24 0.45 pH value of the applied input variables has the most significant
whole 131 0.92 0.46 influence on the prediction of the DO. This result is confirmed
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by correlation coefficients. The highest correlation was obtained
between the DO and pH (0.33), while the lowest was between the
DO and RF (-0.16). The correlation coefficients between DO-WT
and DO-EC were -0.29 and 0.25.

4. Conclusion

In this study, two types of the ANNs, namely (BPNN and GRNN)
and MLR were applied to predict the DO in the River Danube, at
a single location, Mohdcs, with water pH, temperature, electrical
conductivity and runoff. In order to compare the two ANNs and
MLR results, RMSE, MAE, and R2 were used as evaluation
criteria. Based on the results obtained by training and testing of
the ANNS, it was found that the GRNN model provided better
predictions of DO than the BPNN, and so the use of GRNN is
justified not only due to its better performance, but also on
account of it quickness, as, in contrast to BPNN, it is a one-pass
training algorithm that does not necessitate an iterative training
process. A comparison of the ANNs with the conventional MLR
shows that the ANNs demonstrated better performance indicators
than the MLR when every model was trained and tested by the
same data sets and input variables. Conclusions have shown that
the two ANNS, and especially the GRNN are practical methods
for predicting DO concentrations in a river.
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