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Abstract. We deal with a random graph model where at each step, a vertex is
chosen uniformly at random, and it is either duplicated or its edges are deleted.
Duplication has a given probability. We analyse the limit distribution of the
degree of a fixed vertex, and derive a.s. asymptotic bounds for the maximal
degree. The model shows a phase transition phenomenon with respect to the
probabilities of duplication and deletion.
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1. Introduction

For researchers in mathematical biology it is evident that duplication of the
information in the genome is a dominant evolutionary force in shaping biological
networks. On the other hand, due to injuries, deletion of edges or vertices is also
a phenomenon which is natural to consider. We analyse the random graph model
that was described in a recent paper of Thörnblad [28, 2014+]. This model evolves
in discrete time steps, and it has a parameter 0 < θ < 1. We start from a single
vertex without edges. At each step, we choose a vertex v uniformly at random.
With probability θ we duplicate v; that is, we add a new vertex and connect it to
the neighbours of v and to v itself with single edges. Otherwise, with probability
1 − θ, all edges of v are deleted (the vertex itself stays in the graph, and has the
chance to get new edges later on).

As it was presented in [28] and as we will see later, the asymptotic behaviour of
the model depends on the value of θ, and there is a phase transition phenomenon.
Naturally, our results will also be different for certain regimes of the duplication
probability. The case 0 < θ < 1/2 is the subcritical case, where deletion is more
likely, and as we will prove, the maximal degree has the order of logarithm of the
actual number of vertices, almost surely. In the critical case (θ = 1/2) the maximal
degree grows faster; we have the square of the logarithm of the number of vertices.
Finally, in the supercritical case, when 1/2 < θ < 1 and the duplication is dominant,
the maximal degree will be compared to the number of vertices (without logarithm)
in some sense. We remark that similar phase transition is present in some other
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random graph models where deletion (but no duplication) is introduced; see e.g.
the work of Vallier [30, 2013].

The random graph defined above consists of disjoint cliques. The vertices form
separate clusters, and two vertices are connected if and only if they belong to the
same cluster. Due to this simple structure, it may be interesting from the point of
view of coagulation–fragmentation models or population dynamics. Champagnat,
Lambert and Richard described certain properties of a continuous version of this
model, the so-called splitting trees with mutations, where the clusters correspond
to different alleles of a gene [6, 7, 2012], [8, 2013].

This shows that the current model does not have a fine structure as a graph.
In the paper [1, 2014+] we described the connection of the critical case of the
model analysed here to a model which is also built on duplication and deletion,
but has a nontrivial graph structure. That model also turns out to be highly
clustered: as one can expect, due to the duplication steps, some dense clusters
evolve, while edges between clusters are rare. These highly clustered networks
come up in mathematical biology, e.g. for modelling protein–protein interaction
networks. Thus graph models with duplication (but with a richer graph structure
than the actual one) may also be found in the literature. In most of those models
edges are never deleted, but only some randomly chosen edges of the chosen vertex
are duplicated, and some extra random edges may be added to the new vertex (Kim
at al. [19, 2002], Pastor-Satorras, Smith and Solé [25, 2003], Chung et al. [9, 2003],
Bebek et al. [4, 2006]). However, these papers did not contain mathematically
rigorous arguments, and some results of the earlier ones (stating that the degree
distribution is polynomially decaying with an exponential cutoff) were disclaimed
by the latter ones. Recently, Hermann and Pfaffelhuber [17, 2014+] have proved
several results on the frequency of isolated vertices and cliques, and also on the
evolution of the degree of a fixed vertex in the initial graph. Various other models
were also introduced, where the choice of the duplicated vertex is not uniform but
depends on the degrees (Jordan [18, 2011], Cohen, Jordan and Voliotis [10, 2010],
Farczadi and Wormald [13, 2014+]) or on the state of a hidden Markov chain
(Hamdi, Krishnamurthy and Yin [16, 2013+]).

Notice that in this duplication–deletion model vertices of larger degree are more
likely to increase their degree, because the probability that one of their neighbours
is duplicated is larger. On the other hand, the probabilty of decreasing their degree
is also larger. However, this is a kind of a preferential attachment phenomenon.
Preferential attachment models are still popular for modelling web graphs or bio-
logical networks since the seminal paper of Albert and Barabási [3, 1999], and also
from a theoretical point of view. It is worth mentioning the model free approaches
of Ostroumova, Ryabchenko and Samosvat [24, 2013] and Dereich and Ortgiese [12,
2014]. However, for example, due to the possibility that the degree of a vertex can
decrease to 1 in a single step by deletion, our model does not fit into those frame-
works, in which the degree of a fixed vertex can not decrease. Maximal degree
was also investigated in certain preferential attachment models, see e.g. [21, Móri,
2005]. Bubeck, Mossel and Rácz showed that the seed graph may have influence on
the limiting distribution of the maximal degree in some kind of preferential attach-
ment models. [5, 2014]. Since all vertices of the initial configuration are deleted
after finitely many steps, this phenomenon does not occur in the current model.

Preferential attachment models are often investigated due to their scale free
property: the proportion of vertices of degree d tends to some contant cd in some
sense, and cd decays polynomially as d → ∞. The current model has a rather
different asymptotic degree distribution, as the results of Thörnblad [28] and [1]
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shows. Since we will use it later on, we sum up these results, as follows. In
accordance with [28] we introduce

β =
θ

2θ − 1
, γ =

1− θ

θ
.

Theorem A. [1, B–M, 2014+, for θ = 1/2] [28, Thörnblad, 2014+, for θ 6=
1/2]. Let X [n, k] denote the proportion of vertices of degree k after n steps in

the duplication–deletion model defined above. Then we have

X [n, k] → ck almost surely as n → ∞,

where (ck)
∞
k=1 is the unique sequence of positive numbers satisfying the following

equations.

c0 =
1− θ

1 + θ
(1 + c1); ck =

k + 1

k + 1 + θ

(

θck−1 + (1− θ)ck+1

)

(k ≥ 1).

Furthermore,
∑∞

k=0 ck = 1.

• Subcritical case. If 0 < θ < 1/2, then

ck = γ−k−1

∫ 1

0

tk+1(1 − t)−1−β

(1 − γ−1t)1−β
dt (k ≥ 0), and

ck ∼ (−β)−1(1 − β)−β Γ(1− β)γ−kkβ as k → ∞.

• Critical case. For θ = 1/2 we have

ck = (k + 1)

∫ ∞

0

tke−t

(1 + t)k+2
dt (k ≥ 0), and

ck ∼ (eπ)1/2 k1/4 e−2
√
k as k → ∞.

• Supercritical case. If 1/2 < θ < 1, then

ck = γ

∫ 1

0

tk+1(1 − t)β−1

(1− γt)1+β
dt (k ≥ 0), and

ck ∼ γ ββ Γ(β + 1)k−β as k → ∞.

(Note that our ck corresponds to Thörnblad’s dk+1.)

Therefore the asymptotic degree distribution decays exponentially in the sub-
critical case, polynomially in the supercritical case, and slower than exponential
but faster than polynomial in the critical case.

The paper is built up as follows. In Section 2 we describe useful variants of the
model and analyse the evolution of the number of vertices. Section 3 contains our
results on the asymptotic behaviour of the degree of a fixed vertex. This is used
in Section 4, where we give bounds for the maximal degree, which are valid with
probability 1. It will follow that the index of the vertex with maximal degree tends
to infinity, that is, there is no persistent hub in this model.

2. Variants of Thörnblad’s model

This is a discrete time model. Let us start from a single vertex. The graph
is modified in two ways: at every step a vertex is selected at random, with equal
probability, then this vertex is either duplicated or deleted. Duplication means that
a new vertex is added to the graph, and it is connected to the selected vertex and
its neighbours. Deletion means that the edges of the selected vertex get deleted,
but not the vertex itself. Every step, independently of the past, is a duplication
with probability θ, and a deletion with probability 1 − θ (0 < θ < 1). This model
is called Version 1 or Thörnblad’s model [28].
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Further versions differ from Version 1 only by time transforms.

In Version 2 the development of the graph is slowed down. Let Nn−1 be the
number of vertices of the graph after the (n − 1)th step. At the nth step, the
graph is not modified with probability 1−Nn−1/n. Otherwise each existing vertex
has equal probability to be selected; the selected vertex (exactly one) is duplicated
or deleted with probabilities θ and 1 − θ, resp. All the above randomizations are
independent of each other. As we will see, in this way the graph does not change
in the majority of the steps.

Version 3 is defined in continuous time. Every vertex is given two clocks at
its birth, which alarm according to independent homogeneous Poisson processes
with rates θ and 1 − θ. When the first clocks rings, the vertex gets duplicated,
while the second clock determines deletion times. In this model, steps occur at an
exponentially accelerating pace.

Focusing only on moments when something happens all versions look identical.
This makes it possible to choose the most convenient version for different proofs.

In all versions, at every moment, the graph is a disjoint union of complete gaphs
(cliques). This is obviously true in the beginning, and it is easy to see that neither
duplication, nor deletion can break this property.

Lemma 1. Let us denote the number of vertices after n steps by Nn, and in Version

3, the size of the graph at time t will be denoted by N(t). Then a.s.

Nn ∼ θn in Version 1;

Nn ∼ ζ nθ in Version 2, where ζ is a positive random variable;

N(t) ∼ η eθt in Version 3, where η is a positive random variable.

Proof. The proof for Version 1 is obvious.

Version 2. Let Fn denote the σ-field generated by the first n steps. At step n the
number of vertices increases by 1 with (conditional) probability θNn−1/n. Thus

E
(

Nn

∣

∣ Fn−1

)

=
(

1 +
θ

n

)

Nn−1.

Introduce

κn =
n
∏

i=1

(

1 +
θ

i

)−1

=
Γ(1 + θ)Γ(n + 1)

Γ(n+ 1 + θ)
∼ Γ(1 + θ)n−θ.

Then (κnNn, Fn) is a nonnegative martingale, which is known to be a.s. conver-
gent. Let ζ = limn→∞ n−θNn.

We still have to show that ζ > 0. Let Rn = (Nn − 1)−1, if Nn ≥ 2, and Rn = 1
otherwise. This time let

κn =
n
∏

i=1

(

1− θ

i
I(Ni−1 ≥ 2)

)−1

≍ nθ

as n → ∞. Here I( · ) stands for the indicator of the event in brackets. Clearly,

E
(

Rn

∣

∣ Fn−1

)

=
1

Nn−1
· θNn−1

n
+

1

Nn−1 − 1

(

1− θNn−1

n

)

=
1

Nn−1 − 1

(

1− θ

n

)

on the event {Nn−1 ≥ 2} ∈ Fn−1, and = 1 on its complement. Hence (κnRn, Fn)
is a nonnegative martingale. Consequently, nθ/Nn converges a.s., and its limit is
obviously 1/ζ.

Version 3. N(θ−1) is a Yule process (see e.g. [26, 29]), thus it is geometri-
cally distributed, namely Geom

(

e−θt
)

, and N(t) ∼ ηeθt, where η is an exponential
random variable of expected value 1. �
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3. The degree process of a fixed vertex

In this section we consider Version 3, because, as we will see, that is the most
natural choice for the individual degree processes. Of course, the results of this
section can easily be transferred to Version 1, by using Lemma 1.

Let the vertices be labelled by 1, 2, . . . in the order of birth, and let di(t) denote
the degree of vertex i at time t.

Theorem 1. For every i = 1, 2, . . . we have

lim
t→∞

P
(

di(t) = k
)

= qk, k = 0, 1, . . . ,

where

(1) q0 = γ(1− c0), qk = ck−1 − γck, k = 1, 2, . . . ,

where the sequence (ck) is defined in Theorem A. Here qk > 0, k = 0, 1, . . . , and
∑∞

k=0 qk = 1.

Proof. Let us fix a vertex. Clearly, its degree is a continuous time Markov
process with infinitesimal generator

M =











1− θ 0 . . .
1− θ 0 . . .
...

...











+



















−1 θ
1− θ −2 2θ

2(1− θ) −3 3θ
3(1− θ) −4 4θ

. . .
. . .

. . .



















The process is positive recurrent, because deletion cuts back the degree to 0 at a
constant rate. Hence it has a stationary distribution q = (q0, q1, . . . ) which is the
unique discrete distribution satisfying qM = 0 [26]. Thus,

(2) q0 = (1− θ)(1 + q1), qk =
kθqk−1 + (k + 1)(1− θ)qk+1

k + 1
, k ≥ 1.

From Theorem A it follows that the numbers qk in (1) satisfy (2). They sum up
to 1, because

∞
∑

k=0

qk = γ(1− c0) +

∞
∑

k=1

(ck−1 − γck) = γ + (1 − γ)

∞
∑

k=0

ck = 1.

Finally, their positivity follows from the integral form of ck, which can be found in
[1] for the critical case, and in [28] for the subcritical and supercritical cases; see
Theorem A. Namely, we immediately obtain in the subcritical case

qk = γ−k

∫ 1

0

tk(1− t)−β

(1− γ−1t)1−β
dt;

and in the supercritical case

qk = γ

∫ 1

0

tk(1− t)β−1

(1− γt)β
dt

for k ≥ 1. In the critical case, by equation (2) and partial integration we get

qk = k

∫ ∞

0

tk−1e−t

(1 + t)k+1
dt− (k + 1)

∫ ∞

0

tke−t

(1 + t)k+2
dt

= k

∫ ∞

0

tk−1e−t

(1 + t)k+1
dt+

[

tke−t

(1 + t)k+1

]∞

0

−
∫ ∞

0

ktk−1e−t − tke−t

(1 + t)k+1
dt

=

∫ ∞

0

tke−t

(1 + t)k+1
dt. �
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It is somewhat surprising. In spite that the limit distribution of the degree is the
same for every vertex, the asymptotic degree distribution of the graph is different.
If the the degrees were independent and identically distributed, the proportion
of vertices with fixed degree would converge to the corresponding probability. In
our model neither condition is satisfied, not even approximately. On one hand, in
Version 3, the size of the graph grows exponentially. Consequently, at every moment
the vast majority of the vertices are relatively young, so the limit distribution cannot
be applied to them. On the other hand, if the vertices were nearly independent,
the number of vertices with high degree would follow the Poisson distribution; but
in our model, if there exists at least one vertex of a large degree d, then all its
neighbours have the same degree, therefore many of such vertices are coexistent.

This phenomenon can be better understood if we consider the degree process of
an arbitrary vertex. The higher the degree is, the shorter it sustains. Therefore a
reversed size biased sampling can be observed: at a given moment the probability
that a given vertex has degree d is less than the proportion of degree d ones among
all vertices.

In Section 4 we shall need asymptotics for the tail of the stationary distribution.

Theorem 2.

Subcritical case. qk + qk+1 + · · · ∼ (1− β)2−βΓ(1− β) kβ−1γ−k ;(3)

Critical case. qk + qk+1 + · · · ∼ (eπ)1/2 k1/4 e−2
√
k ;(4)

Supercritical case. qk + qk+1 + · · · ∼ γ ββΓ(β − 1) k1−β,(5)

as k → ∞.

Proof. In the subcritical case we have
∞
∑

j=k

qj = γ−k

∫ 1

0

tk(1− t)−β

(1− γ−1t)2−β
dt,

while in the supercritical case
∞
∑

j=k

qj = γ

∫ 1

0

tk(1− t)−2+β

(1 − γt)β
dt.

If k → ∞, both integrals become relatively negligible over any interval [0, 1 − ε],
compared to those over [1− ε, 1]. Hence in the denominators we can replace t with
1, thus reducing to complete beta integrals.

In the critical case qk + qk+1 + · · · = ck−1, hence Theorem A can be applied. �

Obviously, every vertex becomes isolated infinitely many times, due to deletion.
What can be said about the extremely high degrees?

Theorem 3.

Subcritical case. lim sup
t→∞

di(t)

log logN(t)
=

1

log γ
;

Critical case. lim sup
t→∞

di(t)

(log logN(t))2
= 1,

Supercritical case. lim sup
t→∞

log di(t)

log logN(t)
=

1

β − 1
.

for i = 1, 2, . . . .

Proof. First we investigate how large can the degree grow between two con-
secutive deletions. Let pi(r) denote the probability that a vertex of degree i will
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sometimes have degree r at least once before it is selected for deletion. Then we
clearly have

p0(r) = θp1(r);

pi(r) =
(i + 1)θpi+1(r) + i(1− θ)pi−1(r)

i+ 1
, i = 1, 2, . . . , r − 1;

pr(r) = 1.

Introduce ai = pi(r)/p0(r); it does not depend on r provided r > i. The probability
we are interested in is p0(r) = 1/ar. The sequence (ar)r≥0 satisfies the following
recursion.

(6) a0 = 1, a1 =
1

θ
, ai = θai+1 +

i

i+ 1
(1− θ)ai−1, i = 1, 2, . . . .

In the critical case we can use some well-known facts about Laguerre polynomials
Lr(x) [27]. They can be defined by the following recursion formula.

(7) L0(x) = 1, L1(x) = 1− x,

Lr+1(x) =
(2r + 1− x)Lr(x) − rLr−1(x)

r + 1
, r = 1, 2, . . . .

Their asymptotic behaviour for large r and fixed y > 0 is given by

(8) Lr(−y) ∼ 2−1π−1/2r−1/4e−y/2y−1/4e2
√
yr.

Recursions (6) and (7) coincide if θ = 1/2 and x = −1. Hence we obtain

(9) p0(r) =
1

ar
=

1

Lr(−1)
∼ 2

√
eπ r1/4e−2

√
r

in the critical case.

If θ 6= 1/2, we can analyse the asymptotic behaviour of the sequence (ar) by
computing its generating function G(z) =

∑∞
r=0 arz

r. From (6) it follows that

∞
∑

r=1

(r + 1)arz
r = (1 − θ)

∞
∑

r=1

rar−1z
r + θ

∞
∑

r=1

(r + 1)ar+1z
r,

that is,
(

zG(z)
)′ − 1 = (1− θ)z

(

zG(z)
)′
+ θ

(

G′(z)− 1

θ

)

.

This leads to the following homogeneous linear ODE.
(

θ − z + (1− θ)z2
)

G′(z) =
(

1− (1 − θ)z
)

G(z), G(0) = 1.

Its solution can easily be expanded into a power series.

G(z) = (1− z)−β(1− γz)β−1 =

∞
∑

r=0

(−z)r
r

∑

i=0

(

β − 1

i

)( −β

r − i

)

γi.

Thus,

ar = (−1)r
r

∑

i=0

(

β − 1

i

)( −β

r − i

)

γi.

Suppose first that θ > 1/2. Then γ < 1 and β > 1. Since

(−1)rr1−β

(−β

r

)

=
r1−βΓ(r + β)

Γ(r + 1)Γ(β)

converges as r → ∞, therefore it is bounded. Consequently, we have
∣

∣

∣

∣

(−1)rr1−β

(

β − 1

i

)( −β

r − i

)

γi

∣

∣

∣

∣

≤ bi,
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uniformly in r ≥ i, where the infinite series
∑

bi converges. Hence

lim
r→∞

r1−βar =

∞
∑

i=0

lim
r→∞

(−1)rr1−β

(

β − 1

i

)( −β

r − i

)

γi

=
1

Γ(β)

∞
∑

i=0

(

β − 1

i

)

(−γ)i =
(1− γ)β−1

Γ(β)
=

β1−β

Γ(β)
,

and, by this,

(10) p0(r) ∼ ββ−1Γ(β)r1−β

in the supercritical case.

The subcritical case is easy to reduce to the supercritical one. Let a′r = γ−rar.
Then a′r satisfies the same recursion that ar does when θ is replaced by 1− θ. This
substitution transforms the subcritical case into the supercritical one, furthermore,
β changes to 1− β. Hence we get

(11) p0(r) = γ−r(a′r)
−1 ∼ (1− β)−βΓ(1− β) rβγ−r.

Up to time t there are (1 − θ)t(1 + o(1)) ∼ γ logN(t) epochs (time intervals
between consecutive deletions), hence max{di(s) : s ≤ t} is asymptotically equal to
the maximum of (1+o(1))γ logN(t) i.i.d. random variables with distribution P (ξ ≥
r) = p0(r). Starting from (11), (9) and (10), standard Borel–Cantelli arguments
yield

max{di(s) : s ≤ t} ∼ log logN(t)

log γ

in the subcritical case,

max{di(s) : s ≤ t} ∼ log2 t ∼ (log logN(t))2

in the critical case, and

logmax{di(s) : s ≤ t} ∼ log logN(t)

β − 1

in the supercritical case, completing the proof. (Alternatively, one can apply [15,
Theorem 4.4.4].) �

4. Maximal degree

Let Mn denote the maximal degree in Version 1 after n steps. From Theorem
A it is clear thatMn → ∞. In many scale-free random graph processes the order
of magnitude of the maximal degree Mn can be characterized in the following way:
Mn ≍ min{d : Nncd < 1}, where (cd) is the asymptotic degree distribution, and
Nn is the size of the graph, see e.g. [21, 2005], [22, 2007], [23, 2010], [2, 2014]. This
would give Mn ≍ logNn in the subcritical case, Mn ≍ log2 Nn in the critical one,

and Mn ≍ N
1/β
n in the supercritical one. We will show that this estimate is valid

in the subcritical and critical cases, but in the supercritical case we can prove less.

Theorem 4.

Subcritical case.
1− θ

log γ
≤ lim inf

n→∞

Mn

logNn
≤ lim sup

n→∞

Mn

logNn
≤ 1 + θ

θ log γ
.

Critical case.
1

16
≤ lim inf

n→∞

Mn

log2 Nn

≤ lim sup
n→∞

Mn

log2 Nn

≤ 9

4
.

Supercritical case.
θ

β
≤ lim inf

n→∞

logMn

logNn
≤ lim sup

n→∞

logMn

logNn
≤ 1

β
.
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Proof of the upper bounds.

The proof will be given for Version 2.

Let di(n) denote the degree of vertex i after step n, i = 1, . . . , Nn, where Nn is
the size of the graph after n steps. Introduce

Sn(r) =

Nn
∑

i=1

(

di(n)

r

)

.

Lemma 2. For every n = 1, 2, . . . and r = 0, 1, 2, . . . we have

Subcritical case. ESn(r) ≤ 2(r + 1)(−β)rnθ;(12)

Critical case. ESn(r) ≤ 2(r + 1)!
√
n ;(13)

Supercritical case. ESn(r) ≤



















Cr(θ)n
θ, if r < β − 1;

Cr(θ)n
θ(1 + logn), if r = β − 1;

Cr(θ)n
(r+1)(2θ−1), if r > β − 1.

(14)

where Cr(θ) is a constant depending on r and θ but independent of n..

Proof. First we will verify the following recursion. For every n = 1, 2, . . . and
r = 1, 2, . . . we have

(15) ESn(r) =
(

1 +
(2θ − 1)(r + 1)

n

)

ESn−1(r) +
θ(r + 1)

n
ESn−1(r − 1).

At the nth step the ith term of Sn(r) can change in the following way. With the
notation d = di(n− 1),

(

di(n)

r

)

=



































































(

d+ 1

r

)

with conditional probability
d+ 1

n
θ

(vertex i or one of its neighbours is duplicated);
(

d− 1

r

)

with conditional probability
d

n
(1− θ)

(a neighbour of vertex i is deleted);

0 with conditional probability
1− θ

n
(vertex i is deleted);

(

d

r

)

otherwise.

Thus,

E

((

di(n)

r

) ∣

∣

∣

∣

Fn−1

)

=

(

d

r

)(

1− d+ 1

n

)

+

(

d+ 1

r

)

d+ 1

n
θ +

(

d− 1

r

)

d

n
(1− θ).

Besides, when vertex i is duplicated, an additional term
(

d+1
r

)

also appears as the

yield of the new vertex. Hence the total contribution of vertex i in E
(

Sn(r)
∣

∣ Fn−1

)

is
(

d

r

)(

1− d+ 1

n

)

+

(

d+ 1

r

)

d+ 2

n
θ +

(

d− 1

r

)

d

n
(1 − θ)

=

(

d

r

)(

1 +
(2θ − 1)(r + 1)

n

)

+

(

d

r − 1

)

θ(r + 1)

n
.

This implies that

E
(

Sn(r)
∣

∣ Fn−1

)

=

(

1 +
(2θ − 1)(r + 1)

n

)

Sn−1(r) +
θ(r + 1)

n
Sn−1(r − 1),
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as needed.

Next, we prove the lemma by double induction over r and n, basing on the
recursion (15).

Clearly, Sn(0) = Nn. From the proof of Lemma 1 we know that

ENn =

n
∏

i=1

(

1 +
θ

i

)

≤ 2

n−1
∏

i=1

(

1 +
θ

i

)

≤ 2

n−1
∏

i=1

(

1 +
1

i

)θ

= 2nθ

in all three cases. Furthermore, ES1(1) = 2θ and ES1(r) = 0 if r > 1. Thus, for
all pairs (n, 0) and (1, r) Lemma 2 holds true.

Let us check the induction step.

In the subcritical case, by using the induction hypothesis we can write

ESn(r) ≤ 2(r + 1)(−β)r(n− 1)θ
(

1 +
(r + 1)θ

nβ

)

+ 2r(−β)r−1(n− 1)θ
θ(r + 1)

n
≤ 2(r + 1)(−β)r nθ,

as needed.

In the critical case we have

ESn(r) = ESn−1(r) +
r + 1

2n
ESn−1(r − 1)

≤ 2(r + 1)!
√
n− 1

(

1 +
1

2n

)

≤ 2(r + 1)!
√
n.

Finally, in the supercritical case C0(θ) = 2 will do. Suppose we have proved
inequality (14) for r − 1 (and all n). Introduce s = (r + 1)(2θ − 1) and

κn =
Γ(n+ 1 + s)

Γ(n+ 1)
,

then
κn

κn−1
= 1 +

s

n
≤

( n

n− 1

)s

,

because 1+ s
n <

(

1+ 1
n

)s ≤
(

1+ 1
n−1

)s
=

(

n
n−1

)s
, if s ≥ 1, and 1+ s

n ≤
(

1− s
n

)−1 ≤
(

1− 1
n

)−s

=
(

n
n−1

)s
, if 0 < s < 1. Hence, for 1 ≤ j ≤ n we have

(16)
κn

κj
≤

(n

j

)s

.

By iterating equation (15) we get

ESn(r)

κn
=

ESn−1(r)

κn−1
+

(r + 1)θ

nκn
ESn−1(r − 1) = . . .

=
ES1(r)

κ1
+ (r + 1)θ

n
∑

j=2

ESj−1(r − 1)

jκj
,

hence, by (16),

ESn(r) ≤ nsES1(r) + (r + 1)θ ns
n−1
∑

j=1

j−sESj(r − 1) = A+B.

In the right-hand side A vanishes if r > 1. For r = 1 it is equal to 2θn2(2θ−1), which
satisfies (14) in all three cases. Let us turn to B.
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First, suppose r < β − 1, that is, θ > s. Then, by the induction hypothesis we
have

B ≤ (r + 1)θ Cr−1(θ)n
s
n−1
∑

j=1

jθ−s−1 ≤ (r + 1)θ

θ − s
Cr−1(θ)n

θ.

Next, let r = β − 1, that is, θ = s. Then again

B ≤ (r + 1)θ Cr−1(θ)n
θ
n−1
∑

j=1

1

j
≤ (r + 1)θ Cr−1(θ)n

θ(1 + logn).

If β − 1 < r ≤ β, that is, r(2θ − 1) ≤ θ < s, then

B ≤ (r + 1)θ Cr−1(θ)n
s
n−1
∑

j=1

jθ−s−1(1 + log j) ≤ (r + 1)θ Cr−1(θ)Qns,

where

Q =

∞
∑

j=1

jθ−s−1(1 + log j) < ∞.

Finally, if β < r, then

B ≤ (r + 1)θ Cr−1(θ)n
s
n−1
∑

j=1

j−2θ ≤ (r + 1)θ Cr−1(θ) ζ(2θ)n
s,

where ζ( . ) is the Riemann zeta function. �

Let us continue the proof of Theorem 4.

In the subcritical case, let us fix z and a in such a way that 0 < z < −1/β, and
a log(1 + z) > 1 + θ. Then, by Lemma 2 we have

E

( Nn
∑

i=1

(1 + z)di(n)

)

= E

( Nn
∑

i=1

n
∑

r=0

(

di(n)

r

)

zr
)

= E

( n
∑

r=0

Nn
∑

i=1

(

di(n)

r

)

zr
)

=

n
∑

r=0

ESn(r)z
r ≤ 2

∞
∑

r=0

(r + 1)(−βz)rnθ =
2nθ

(1 + βz)2
= K nθ.

By the Markov inequality,

P (Mn ≥ a logn) = P
(

(1 + z)Mn ≥ (1 + z)a logn
)

≤ n−a log(1+z) E

( Nn
∑

i=1

(1 + z)di(n)

)

≤ K nθ−a log(1+z).

The infinite sum of the right-hand side is convergent as n runs through the pos-
itive integers, thus the Borel–Cantelli lemma implies Mn < a logn a.s. for every
sufficiently large n. Consequently,

lim sup
n→∞

Mn

logn
≤ 1 + θ

log(1− β−1)
=

1 + θ

log γ
.

From Lemma 1 we know that logNn ∼ θ logn as n → ∞.

In the critical case we can make use of Laguerre polynomials again. Their explicit
form is

Lk(y) =

k
∑

r=0

(

k

r

)

(−y)r

r!
.
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Since the multiplicity of the maximal degree is at least Mn + 1, we have

Sn(r − 1) ≥ (Mn + 1)

(

Mn

r − 1

)

= r

(

Mn + 1

r

)

.

Therefore, by Lemma 2,

E

(

Mn

r

)

≤ 1

r
ESn(r − 1) ≤ 2r!

√
n ,

for r = 1, 2, . . . , hence

E
(

LMn
(−y)

)

= E

( n
∑

r=0

(

Mn

r

)

yr

r!

)

≤ 1 + 2
√
n

n
∑

r=1

yr ≤ 2
√
n

1− y

if 0 < y < 1. Let k = kn ≥ a log2 n, where ya > 9/16. Then the Markov inequality,
combined with (8), implies

P (Mn ≥ k) = P
(

LMn
(−y) ≥ Lk(−y)

)

≤ E
(

LMn
(−y)

)

Lk(−y)

= O
(√

n e−2(1+o(1))
√
yk
)

= O
(

n1/2−2
√
ya
)

.

The exponent in O( . ) is less than −1, hence it makes a convergent series again,
and from the Borel–Cantelli lemma

lim sup
n→∞

Mn

log2 n
≤ a

follows for every a > 9/16. This time logn ∼ 2 logNn by Lemma 1.

Finally, let us turn to the supercritical case. Let a > 2θ − 1 and r so large that
r > β − 1 and r(2θ − 1 − a) < −1 hold. Then by the Markov inequality and (14)
we have

P
(

Mn ≥ na
)

= P

((

Mn

r

)

≥
(

na

r

))

≤ E
(

Mn

r

)

(

na

r

)

≤ ESn(r − 1)

r
(

na

r

) = O
(

nr(2θ−1−a)
)

.

The proof can be completed with the help of the Borel–Cantelli lemma and
Lemma 1. �

Proof of the lower bounds.

The proof will be performed for Version 3. Let ε be an arbitrarily small fixed
positive number. The proof will consist of the following steps.

We first show that at time (1− θ)
√
n there are quite many isolated points in the

graph. Clearly, they behave independently of each other after time (1− θ)
√
n.

Then we give a lower bound for the probability that such an isolated vertex
increases its degree above kn by time

√
n, where kn is an increasing positive sequence

depending on θ. It will follow that the probability that none of them can do it is so
small that its sum over n is convergent. Hence the Borel–Cantelli lemma implies
that a.s. M

(√
n
)

≥ kn if n is large enough.

Finally, we will show that the probability that a vertex having such a high degree
at time tn will lose from its degree at least εkn times in the interval [

√
n,

√
n+ 1]

is very small: it is also finitely summable. Thus, with n = ⌊t2⌋ we have a.s.
M(t) ≥ (1− ε)kn if t is large enough.

In more details, let us start with the number of isolated vertices. For the sake of
brevity denoteN

(

(1−θ)
√
n−1

)

byNn. For each vertex present at time (1−θ)
√
n−1,
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the probability that, during the next time unit, it will be deleted some time and
not duplicated after that is

σ = (1 − θ)
(

1− e−1
)

.

(Something happens to the vertex, and the last event is a deletion.) Therefore the
number of isolated vertices at time (1−θ)

√
n is at least as big as a binomial random

variable Qn with parameters Nn and σ. Since Nn itself is Geom(pn) distributed
with parameter pn = exp(−θ(1− θ)

√
n+ θ), straightforward calculation gives that

the distribution of Qn is a mixture:

Qn =















Geom

(

pn
σ + (1− σ)pn

)

with weight
σ

σ + (1− σ)pn
;

0 with weight
(1− σ)pn

σ + (1− σ)pn
.

Let us turn to the estimation of the probability that a fixed isolated vertex can
considerably increase its degree in a time interval of length θ

√
n.

How fast is the convergence to the stationary distribution? This can be answered
easily by coupling. Let us start two degree processes, one from the stationary
distribution, and another one from an isolated vertex (i.e., from degree = 0). Let
the deletion of the vertex in question be governed by the same Poisson process
in both cases. After the first deletion stick the two processes together. Then the
probability that the two processes differ after time t is at most e−(1−θ)t. Hence the
same bound is valid for the total variation distance of the degree distribution at
time t from the stationary one.

Consequently, if a vertex is isolated at time (1− θ)
√
n, then the probability that

its degree at time
√
n is larger than kn, is at least

πn =

∞
∑

k=kn

qk − exp
(

− θ(1 − θ)
√
n
)

.

If kn is specified in such a way that

(17)

∞
∑

n=1

pn
πn

< ∞

holds, then pn = o(πn), and we have

P
(

M
(√

n
)

≤ kn
)

≤ E
(

(1− πn)
Qn

)

=
(1 − σ)pn

σ + (1 − σ)pn
+

σ

σ + (1− σ)pn
·

pn
σ + (1− σ)pn

(1− πn)

1− σ(1 − pn)

σ + (1 − σ)pn
(1− πn)

∼ pn
σπn

.

The sum of these probabilities is convergent by supposition. Hence the Borel–
Cantelli lemma implies that, almost surely, M

(√
n
)

> kn if n is large enough.

Finally, we have to show that M(t) cannot decrease significantly between
√
n

and
√
n+ 1. Suppose M

(√
n
)

> kn. Choose a vertex with maximal degree and
select kn from its neighbours. Let us compute the probability that more than εkn
of them will be deleted between

√
n and

√
n+ 1. The number Z of deleted vertices

is binomial with parameters kn and

1− exp
(

(1 − θ)
(√

n−
√
n+ 1

))

≤ (1 − θ)
(√

n−
√
n+ 1

)

≤ 2(1− θ)n−1/2.

By Hoeffding’s inequality

P
(

Z > εkn
)

≤ exp
(

−2
(

ε− 2(1− θ)n−1/2
)2
kn

)

.
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If, in addition to (17), sequence (kn) satisfies

(18)

∞
∑

n=1

exp
(

−ε2kn
)

< ∞,

then the Borel–Cantelli lemma gives

min
{

M(t) :
√
n ≤ t ≤

√
n+ 1

}

> (1− ε)kn

if n is sufficiently large. Consequently, with n = ⌊t2⌋ we have a.s. M(t) ≥ (1−ε)kn
for all sufficiently large t.

Let us specify kn in all three cases to meet conditions (17) and (18).

In the subcritical case let

kn =
θ(1− θ)

log γ
(1− ε)

√
n.

Then condition (18) is satisfied. Moreover, by (3) we have

πn = exp
(

− (1 + o(1)) log γ · kn
)

.

Hence
pn
πn

= exp
(

− (1 + o(1)) θ(1 − θ)ε
√
n
)

,

thus condition (17) is satisfied as well. Consequently,

M(t) > (1 + o(1))(1− ε)2
θ(1− θ)

log γ
t = (1 + o(1))(1 − ε)2

1− θ

log γ
logN(t)

if t is sufficiently large.

In the critical case let

kn =
(1− ε)2

64
n,

then (18) is fulfilled. In addition, (4) implies

πn = exp

(

−(1 + o(1))
1 − ε

4

√
n

)

.

Therefore
pn
πn

= exp
(

−(1 + o(1))
ε

4

√
n
)

,

and requirement (17) is also met. Hence

M(t) > (1 + o(1))
(1− ε)3

64
t2 = (1 + o(1))

(1 − ε)3

16
log2 N(t)

if t is large enough.

Finally, in the supercritical case set

kn = exp
(

(1− ε)θ(2θ − 1)
√
n
)

.

Then (18) is satisfied. By (5) we can write

πn = k(1+o(1))(1−β)
n = exp

(

− (1 + o(1))(1 − ε)θ(1− θ)
√
n
)

,

from which it follows that
pn
πn

= exp
(

− (1 + o(1))εθ(1 − θ)
√
n
)

.

This produces a finite sum, thus (17) holds true. Consequently, with n = ⌊t2⌋,

M(t) > (1− ε)kn = exp
(

(1 + o(1))(1 − ε)θ(2θ − 1)t
)

= exp
(

(1 + o(1))(1 − ε)(2θ − 1) logN(t)
)

,

if t is sufficiently large. �
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Due to deletions, in our graph there is no persistent hub in the sense of Krapivsky
and Redner [20, 2001] or Galashin [14, 2014+] (namely, a single vertex which
emerges forever as vertex of maximal degree), unlike in certain preferential at-
tachment models [11, Dereich and Mörters, 2009], [21, Móri, 2005]. As a corollary
to Theorems 3 and 4, it follows that the index of the vertex with the maximal
degree tends to infinity with time.
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16 ÁGNES BACKHAUSZ AND TAMÁS F. MÓRI
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