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Abstract

A complete k-coloring of a graph G = (V,E) is an assignment ϕ : V →
{1, . . . , k} of colors to the vertices such that no two vertices of the same color
are adjacent, and the union of any two color classes contains at least one edge.
Three extensively investigated graph invariants related to complete colorings are
the minimum and maximum number of colors in a complete coloring (chromatic

number χ(G) and achromatic number ψ(G), respectively), and the Grundy num-

ber Γ(G) defined as the largest k admitting a complete coloring ϕ with exactly
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k colors such that every vertex v ∈ V of color ϕ(v) has a neighbor of color i for
all 1 ≤ i < ϕ(v). The inequality chain χ(G) ≤ Γ(G) ≤ ψ(G) obviously holds for
all graphs G. A triple (f, g, h) of positive integers at least 2 is called realizable

if there exists a connected graph G with χ(G) = f , Γ(G) = g, and ψ(G) = h.
In [8], the list of realizable triples has been found. In this paper we determine
the minimum number of vertices in a connected graph with chromatic number f ,
Grundy number g, and achromatic number h, for all realizable triples (f, g, h) of
integers. Furthermore, for f = g = 3 we describe the (two) extremal graphs for
each h ≥ 6. For h = 4 and 5, there are more extremal graphs, their description
is contained as well.

Keywords: graph coloring, Grundy number, achromatic number, greedy algorithm,
extremal graph, bipartite graph

2010 Mathematics Subject Classification: 05C15, 05C75, 68R10

1 Introduction

A complete coloring of a graph is an assignment of colors to the vertices in such a way
that adjacent vertices receive different colors, and there is at least one edge between
any two color classes. In other words, the coloring is proper and the number of colors
cannot be decreased by identifying two colors.

Let G = (V,E) be any simple undirected graph. The minimum number of colors in a
proper coloring is the chromatic number χ(G), and all proper χ-colorings are necessarily
complete. The maximum number of colors in a complete coloring is the achromatic
number ψ(G). Every graph admits a complete coloring with exactly k colors for all
χ ≤ k ≤ ψ (Harary et al., [15]). An important variant of complete coloring, called
Grundy coloring or Grundy numbering, requires a proper coloring ϕ : V → {1, . . . , k}
such that every vertex v ∈ V has a neighbor of color i for each 1 ≤ i < ϕ(v). The
largest integer k for which there exists a Grundy coloring of G is denoted by Γ(G) and
is called the Grundy number of G. Certainly, Γ(G) is sandwiched between χ(G) and
ψ(G). One should emphasize that χ(G) and ψ(G) are defined in terms of unordered
colorings, i.e., permutation of colors does not change the required property of a coloring.
On the other hand, in a Grundy coloring the order of colors is substantial.

Proper colorings have found a huge amount of applications and hence, besides their
high importance in graph theory, they are very well motivated from the practical side,
too. The chromatic number occurs in lots of optimization problems. The achromatic
number looks less practically motivated, nevertheless it expresses the worst case of a
coloring algorithm which creates a proper color partition of a graph in an arbitrary
way and then applies the improvement heuristic of identifying two colors as long as no
monochromatic edge is created. Grundy colorings have strong motivation from game
theory; moreover, Γ(G) describes the worst case of First-Fit coloring algorithm when
applied to a graph G if we do not know the graph in advance, the vertices arrive one by
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one, and we irrevocably assign the smallest feasible color to each new vertex as a best
local choice. Then the number of colors required for a worst input order is exactly Γ(G).
For this reason, Γ(G) is also called the on-line First-Fit chromatic number of G in the
literature.

An overview of on-line colorings and a detailed analysis of the First-Fit version
is given in [4]. A more extensive survey on the subject can be found in [19]. The
performance of First-Fit is much better on the average than in the worst case. This is
a good reason that it has numerous successful applications. This nicely shows from a
practical point of view that the Grundy number is worth investigating.

The definition of Grundy number is usually attributed to Christen and Selkow [10],
although its roots date back to the works of Grundy [12] four decades earlier; and in
fact Γ(G) of an undirected graph G is equal to that of the digraph in which each edge
of G is replaced with two oppositely oriented arcs. In general, computing the Grundy
number is NP-hard, and it remains so even when restricted to some very particular
graph classes, e.g., to bipartite graphs or complements of bipartite graphs ([16] and
[26], respectively). Actually, the situation is even worse: there does not exist any
polynomial-time approximation scheme to estimate Γ(G) unless P = NP [20], and for
every integer c it is coNP-complete to decide whether Γ(G) ≤ c χ(G), and also whether
Γ(G) ≤ c ω(G), where ω(G) denotes the clique number of G (see [1]). Several bounds
on Γ(G) in terms of other graph invariants were given, e.g., in [5, 27, 28]. On the other
hand, by the finite basis theorem of Gyárfás et al. [13] the problem of deciding whether
Γ(G) ≥ k can be solved in polynomial time, when k is a fixed integer (see also [6] for
results on Grundy critical graphs). Moreover, there are known efficient algorithms to
determine the Grundy number of trees [17] and more generally of partial k-trees [24].

Concerning the achromatic number, on the positive side there exists a constant-
approximation for trees [9] and a polynomial-time exact algorithm for complements
of trees [25]. But in a sense, the computation of ψ(G) is harder than that of Γ(G).
It is NP-complete to determine ψ(G) on connected graphs that are simultaneously
interval graphs and co-graphs [3], and even on trees [7, 23]. Moreover, no randomized
polynomial-time algorithm can generate with high probability a complete coloring with
Cψ(G)/

√
n colors for arbitrarily large constant C, unless NP ⊆ RTime(npoly logn), and

under the same assumption ψ(G) cannot be approximated deterministically within a
multiplicative lg1/4−ε n, for any ε > 0 [22], although some o(n)-approximations are
known [9, 21].

The strong negative results above concerning algorithmic complexity also mean a
natural limitation on structural dependencies, for all the three graph invariants χ,Γ, ψ.
On the other hand, quantitatively, the triple (χ,Γ, ψ) can take any non-decreasing
sequence of integers at least 2. (The analogous assertion for (χ, ψ) without Γ appeared
in [2].) For example, if χ = Γ = 2, then properly choosing the size of a union of complete
graphs on two vertices will do for any given ψ. Assuming connectivity, however, makes
a difference. Let us call a triple (f, g, h) of integers with 2 ≤ f ≤ g ≤ h realizable if
there exists a connected graph G such that χ(G) = f , Γ(G) = g, and ψ(G) = h. It was
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proved by Chartrand et al. [8] that a triple is realizable if and only if either g ≥ 3 or
f = g = h = 2.

Here we address the naturally arising question of smallest connected graphs with
the given coloring parameters. Namely, for a realizable triple (f, g, h), let us denote by
n(f, g, h) the minimum order of a connected graph G with χ(G) = f , Γ(G) = g and
ψ(G) = h. The lower bound n(f, g, h) ≥ 2h − f was proved in [8, Theorem 2.10] in
the stronger form 2ψ−ω (where ω denotes clique number), and this estimate was also
shown to be tight for g = h. On the other hand the order of graphs constructed there
to verify that the triple (f, g, h) is realizable was rather large, and had a high growth
rate. In particular, for every fixed f and g, the number of vertices in the graphs of [8]
realizing (f, g, h) grows with h2 as h gets large, while the lower bound is linear in h.
For instance, the construction for f = g, described in [18], takes the complete graph
Kf together with a pendant path Pk, having properly chosen number of vertices k, and
applies the facts that very long paths make ψ arbitrarily large and that the removal of
the endvertex of a path (or actually any vertex of any graph) decreases ψ by at most
1, as proved in [11].

In this paper we determine the exact value of n(f, g, h) for every realizable triple
(f, g, h), showing that the lower bound 2h−f is either tight or just one below optimum.
It is easy to see that the complete graph Kf verifies n(f, f, f) = f for all f ≥ 2. For
the other cases it will turn out that the formula depends on whether f < g. These facts
are summarized in the following two theorems; the case g = h was already discussed
in [8].

Theorem 1 For 2 ≤ f < g and for f = g = h, n(f, g, h) = 2h− f .

Theorem 2 For 2 < f = g < h, n(f, g, h) = 2h− f + 1.

Remark 1 As one can see, the minimum does not depend on g, apart from the
distinction between f = g and f < g.

The two theorems above will be proved in the following two sections, while in the
last section for each h > 3 we determine the number of extremal graphs (the graphs of
minimum order) that realize the triple (3, 3, h).

Theorem 3 Let f = g = 3. If h = 4, then there are seven extremal graphs. If h = 5,
then there are three such graphs, while for every h ≥ 6 there are exactly two of them.

Along the proof of Theorem 3 we will also determine the structure of all extremal
graphs.

In what follows we need some additional terms and notation. Given a graph G =
(V,E) and a vertex set X ⊆ V , the subgraph induced by X will be denoted by G[X ].
A set of vertices X is dominated by another one, say D, if every x ∈ X \ D has at
least one neighbor in D. A set D is dominating if it dominates the whole vertex set.
We will also say that a set D dominates a subgraph H in the sense that D dominates
V (H). A set S is said to be stable if it does not contain any pair of adjacent vertices.
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2 The case χ < Γ — Proof of Theorem 1

First, we consider the lower bound for n(f, g, h). From [8, Theorem 2.10], it follows
that for all f, g, h satisfying conditions of Theorem 1, it holds that n(f, g, h) ≥ 2h− f .
The idea is that h color classes on fewer than 2h− f vertices would yield at least f +1
singleton classes, but then they should be mutually adjacent if the coloring is complete.
This leads to the contradiction f + 1 ≤ ω(G) ≤ χ(G).

Considering the tightness of the bound we construct an appropriate bipartite graph
to prove the following lemma

Lemma 1 The lower bound 2h− f is tight for the case f = 2.

Construction I

For every k ≥ 2 we define a basic bipartite graph Bk, with vertex set X = U ∪W ,
where U = {u1, u2, . . . , uk−1} and W = {w2, w3, . . . , wk}, and edge set

C = {uiwj | 1 ≤ i < j ≤ k}.

We call U and W the partite sets of Bk. See Figure 1 for the graph B7 that will be
used several times.

u1 u2 u3 u4 u5 u6

w2 w3 w4 w5 w6 w7

Figure 1: Graph B7

For g = 3, we consider Bh itself. However, for g ≥ 4, we denote γ = g − 3, and
modify the graph Bh by inserting the following set of edges:

{uiwj | 1 ≤ i− j ≤ γ, 2 ≤ i ≤ h− 1, 2 ≤ j ≤ h− 2}.

We shall call them the inserted edges. ✷

For any g ≥ 3, the graph with inserted edges will be denoted by G(2, g, h), and in
the following text, briefly by G∗. We show an example of G∗ in Figure 2.
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u1 u2 u3 u4 u5 u6

w2 w3 w4 w5 w6 w7

Figure 2: Graph G(2, 5, 7)

Proposition 1 χ(G∗) = 2, Γ(G∗) = g, and ψ(G∗) = h.

Proof By definition, G∗ is bipartite, i.e., χ(G∗) = 2 and the color classes {u1},
{u2, w2}, . . . , {uh−1, wh−1}, {wh} verify that ψ(G∗) ≥ h is valid, whereas ψ(G∗) ≤ h
also holds because G∗ has no more than 2h− 2 vertices. Hence, what remains to prove
is that Γ(G∗) = g.

For g < h, the proof of the lower bound Γ(G∗) ≥ g is obtained by assigning color
g to u1, color i − 1 to {ui, wi} for i = 2, . . . , g − 1, color 1 again to ug, . . . , uh−1, and
finally color g − 1 to wj for j = g, . . . , h. Consequently, Γ(G∗) ≥ g.

For g = h, the only difference is that in the set U , color 1 is assigned to exactly one
vertex, namely to u2.

To prove the upper bound on Γ(G∗) is more difficult. We manage it as a separate
statement.

Claim 1 Γ(G∗) ≤ g

Throughout the argumentation, we assume that Γ(G∗) > g. Claim 1 will be a
consequence of Claim 3 below. Before proving those claims we need some additional
notation and a simple Claim 2.

Let us call a stable set S a double set if it meets both partite sets. Considering a
Grundy coloring of G∗ with Γ(G∗) colors, a double class is a color class which is a double
set. Graph G∗ is bipartite and there must be an edge between any two color classes.
Moreover, the classes containing u1, wh respectively, are non-double. Thus, the number
of non-double classes is exactly 2. We denote the double classes by D1, D2, . . . , D∆,
indexed with their colors; here ∆ = Γ(G∗)− 2.

Let S be any double set, let I = I(S) be the minimum of {i | ui ∈ S} and let
J = J(S) be the maximum of {j | wj ∈ S}. For S = Dk we denote I(S) also by Ik and
similarly Jk for J(S).

The following claim is straightforward, so the proof is omitted.
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Claim 2 I(S) ≥ J(S) for any double set S and, in particular, for any double class.
✷

We shall use the term reduced graph and notation Rt for the bipartite graph Kt,t −
tK2 obtained from the complete bipartite graph Kt,t by omitting a 1-factor. (This
graph was taken in [8] for f = 2 and g = h > 2.) The essence of the proof is given in
the following claim. Let us recall that ∆ is the number of double classes.

Claim 3

(i) The subgraph H induced by the vertex set

{uI | I = I(D), D is a double class} ∪ {wJ | J = J(D), D is a double class}

is isomorphic to R∆.

(ii) The graph G∗ does not contain any induced subgraph isomorphic to RΘ with
Θ ≥ γ + 2.

Proof We start with an observation that nothing has been stated concerning the
position of {Ik, Jk} in the “omitted 1-factor”.

In order to prove (i) we take two arbitrary double classes Dk and DK with k < K
and consider the vertices ui, uI , wj, wJ where i = Ik, I = IK , j = Jk, J = JK . We
will prove that uIwj ∈ E(G∗) and uiwJ ∈ E(G∗), this will yield the assertion since
{Ik, Jk | 1 ≤ k ≤ ∆} will play the role of the “omitted 1-factor”.

Let us consider the first statement. Suppose for a contradiction that uIwj /∈ E(G∗).
From the properties of Grundy coloring, uI has some neighbor wλ in Dk. By the
maximality of j, j ≥ λ holds and wj is adjacent to uI for every I 6= j. We may suppose
the latter case since otherwise the proof is done. Similarly, we obtain that wJ has a
neighbor uµ in Dk.

Since all of wj−γ, wj−γ+1, . . . , wh except wj are adjacent to uI , the non-edge uIwJ

implies J < I − γ, and i ≤ µ also holds. Hence, the following chain of inequalities is
valid:

J < I − γ = j − γ ≤ i− γ ≤ µ− γ.

Consequently, the vertices uI and wj are adjacent, as claimed.
By the central symmetry of G∗, the relation uiwJ ∈ E(G∗) is established in the

same way.

In order to prove (ii) suppose that G∗ has an induced subgraph R isomorphic to R∆

with ∆ ≥ γ + 2. Let Z be the vertex set of R. If u ∈ Z ∩ U , w ∈ Z ∩ W , and
uw /∈ E(G∗), then we call w the match of u and vice versa. Let us denote by a = uM
the vertex of largest subscript in Z ∩U and by b = wm the vertex of smallest subscript
in Z ∩W .
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First, suppose ab ∈ E(G∗). In case M < m, the graph R would be a complete
bipartite graph. SoM ≤ m+γ. Let us take any vertex uι in (Z∩U)\{a}. We observe
that m ≤ ι < M . Indeed, the second inequality is trivial; and if the first one was not
true then uι would have no match. This means that all the subscripts of the vertices
in Z ∩ U are in the interval [m,M ] ⊆ [m,m + γ] and thus ∆ ≤ γ + 1, proving the
assertion if ab ∈ E(G∗).

Second, suppose ab /∈ E(G∗). Then the match of a = uM is b = wm. Surely, for
every vertex uι in Z ∩ U with ι 6= M , we have ι ≤ m+ γ because uιwm ∈ E(G∗), and
m < ι, for otherwise uι would have no match. Consequently, ∆ ≤ γ + 1.

Thus we have proved Claim 3. ✷

As a consequence of the above claim, ∆ ≤ γ + 1 = g − 2 and Γ(G∗) ≤ g follow.
Thus Claim 1 is established; moreover Proposition 1 and Lemma 1 are proved. ✷✷✷

Note that we have also proved Theorem 1 for f = 2. It has been observed in [8,
Proposition 2.8] that if we take the join of the current graph with a new vertex, then
each of χ,Γ, ψ increases by exactly 1. Thus, for a given triple (f, g, h) with f ≥ 3 we
can start from G(2, g′, h′), where

g′ = g − f + 2, h′ = h− f + 2

and join it with Kf−2. In this way we obtain a connected graph that realizes (f, g, h)
and has exactly (2h′ − 2) + (f − 2) = 2h − f vertices. This completes the proof of
Theorem 1. ✷

3 The case χ = Γ — Proof of Theorem 2

Similarly as above, we shall give the proof in two parts. Before proving the lower
bound, we show an auxiliary statement which will be applied many times.

Claim 4 Given a graph G, suppose there exists an induced subgraph H of G, with
Γ(H) ≥ k and a stable set, disjoint from V (H) and dominating H. Then the Grundy
number of G is strictly larger than k.

Proof For both G and H , the stable set can get color 1, and the vertices of H can
be colored with numbers one larger than in the original Grundy numbering of H . This
induces a subgraph of Grundy number larger than k, and we can use the fact that Γ
is monotone with respect to taking induced subgraphs. ✷

Remark 2 In most of the applications, H will be a K3 or a P4 and k will be 3. As
another special case, we shall often find a maximal stable set of G, disjoint from some
subgraph H of G.

Now we are in a position to establish the first part of the theorem.
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Lemma 2 If 2 < f = g < h, then n(f, g, h) ≥ 2h− f + 1.

Proof Suppose for a contradiction that there exists a graph G with the given coloring
parameters on n < 2h − f + 1 vertices. By what has been said at the beginning of
Section 2, this implies n = 2h− f . From the argument sketched there we also see that
the conditions n = 2h − f and ψ(G) = h > f imply that in any complete h-coloring
of G there exist f singleton color classes, say S1 = {y1}, S2 = {y2}, . . . , Sf = {yf},
inducing a complete subgraph in G. Moreover, by the condition h > f , there is at least
one further color class, say Sf+1.

Since the coloring is assumed to be complete, each yi (1 ≤ i ≤ f) is adjacent to at
least one vertex of Sf+1. Hence, by Claim 4 we obtain Γ(G) > f = g, a contradiction.
Lemma 2 is established. ✷

The proof of the following lemma, which establishes the second part of the theorem,
will be split into several claims.

Lemma 3 If 2 < f = g < h, then n(f, g, h) ≤ 2h− f + 1.

Proof Two graphs will be constructed with the appropriate number of vertices, for
f = g = 3. This will be enough since the simple extension adjoining Kh−f+3 will work
like earlier (see end of the proof of Theorem 1).

First, we recall the simple fact from the proof of [8, Proposition 2.5] that a connected
graph G has Γ(G) = 2 if and only if G is a complete bipartite graph. This can be
extended also to disconnected graphs:

Claim 5 For a graph G, Γ(G) ≤ 2 is equivalent to the following property:
(Π) Each component of G is either an isolated vertex or a complete bipartite graph.

✷

Note that under the present conditions we have h ≥ 4. Starting from the basic
bipartite graph Bh−2 introduced in the previous section, we are going to construct two
graphs L1 and L2 with larger parameters by inserting vertices and edges, different from
Construction I.

Construction II

Let ℓ = h− 2 and consider the bipartite graph Bℓ = (X,C) of Section 2. First, we
extend Bℓ with two isolated vertices uℓ and w1 to obtain the extended graph B′

h. We
also introduce the notation U ′ = {u1, . . . , uℓ}, W ′ = {w1, . . . , wℓ}. Let Li = (Y,Di),
i ∈ {1, 2} be the graph with the vertex set Y = U ′ ∪ W ′ ∪ {q1, q2}, and the edge
set D1 = D0 ∪ {q2uℓ, q1w1, q1q2} or D2 = D0 ∪ {q2uℓ, q1q2}, respectively, where D0 =
C ∪ {q1u | u ∈ U ′} ∪ {q2w | w ∈ W ′}. ✷

In Figure 3 we present an example of L1 and L2, when ℓ = 7 (white vertices induce
Bℓ). From now on, we shall also refer to both graphs shortly as L.

The following claim contains an easier part of the proof of Lemma 3. Later we shall
deal with a more difficult one.
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q1

q2

u1 u2 u3 u4 u5 u6 u7

w1 w2 w3 w4 w5 w6
w7

(a) Graph L1

q1

q2

u1 u2 u3 u4 u5 u6 u7

w1 w2 w3 w4 w5 w6
w7

(b) Graph L2

Figure 3: Two extremal graphs

Claim 6

(i) χ(L) = 3,

(ii) ψ(L) = h.

Proof (i) The graph L contains a triangle, and we can easily find a coloring with
three colors, shown in Figure 4.

(ii) The vertex partition of L into the h stable sets {q1}, {q2}, and {ui, wi},
i ∈ {1, . . . , ℓ} is a complete coloring with exactly h > 3 colors. Thus, ψ(L) ≥ h.
Conversely, the upper bound h for ψ(L) comes from the arguments used in the proof
of Lemma 2. The fact that |V (L)| = 2h− 2 is also important but it follows easily from
the construction. ✷

We continue with the harder part of the lemma. First we state a property similar
to that of Claim 2.

Claim 7 The maximal stable sets S of graph B′

h are of the following form:

S = SN = {w1, . . . , wN} ∪ {uN , . . . , uℓ}

for some 1 ≤ N ≤ ℓ. ✷

We note that the extremal cases N = 1 and N = ℓ correspond to U ′ ∪ {w1} and
W ′ ∪ {uℓ}, respectively. Moreover {uℓ, w1} is contained in all S, hence every S meets
both U ′ and W ′.

Concerning stable sets of the graph L, we have the following:

Claim 8 For any maximal stable set S of L, the induced subgraph L−S has property
(Π) stated in Claim 5.
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q1

q2

u1 u2 u3 u4 u5 u6 u7

w1 w2 w3 w4 w5 w6
w7

Figure 4: Proper 3-coloring of L1

Proof Take an arbitrary S. There are three cases:

(a) S ⊆ V (B′

h),

(b) q1 ∈ S,

(c) q2 ∈ S.

In the first case, S is a maximal stable set of the graph B′

h, and by Claim 7 we have
S = SN for some 1 ≤ N ≤ ℓ. The complement of S with respect to the vertex set of
L is the set {u1, ..., uN−1} ∪ {wN+1, ..., wℓ} ∪ {q1, q2} and induces a complete bipartite
graph with vertex classes {u1, ..., uN−1} ∪ {q2} and {wN+1, ..., wl} ∪ {q1} since uℓ ∈ S
necessarily holds. This verifies property (Π).

In the second case, S ⊆ W ′ ∪ {q1} and, in fact, S is equal to this set, because of
maximality. The complement of S with respect to the vertex set of L, namely U ′∪{q2},
induces a subgraph consisting of U (see Construction I to recall the definition) as ℓ−1
isolated vertices, together with the isolated edge uℓq2. So it does have property (Π).

The third case is similar and yields that L− S is induced by the stable set W plus
the isolated edge uℓq1. ✷

Finally, we prove

Claim 9 Γ(L) = 3.

Proof Let ϕ be an arbitrary Grundy coloring of L, and consider the stable set S formed
by the vertices of color 1 under ϕ. Since every vertex of higher color has a neighbor
of color 1, the set S is a maximal stable set of L. Thus, by Claim 8, the subgraph
L−S satisfies property (Π). Now Claim 5 implies that every Grundy coloring of L−S
uses at most 2 colors. This implies Γ(G) ≤ 3, whereas the presence of a subgraph K3

induced by {uℓ, q1, q2} yields equality. ✷
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To get a general construction of a graph that realizes (f, g, h) with 2h − f + 1
vertices, it is enough to repeat the process of adding a clique of order f − 3, as we did
at the end of the proof of Theorem 1. This completes the proof of Lemma 3. ✷

In this way Theorem 2 has been proved as well. ✷

4 The lists of extremal graphs

Our goal in this section is to prove Theorem 3. Along the proof we shall also describe
the structure of extremal graphs that we call here h-optimal graphs.

Definition 1 Suppose h ≥ 4. We say that a graph G = (V,E) is h-optimal if χ(G) =
Γ(G) = 3, ψ(G) = h and |V (G)| = 2h− 2.

In the following statements G will be an h-optimal graph andH will be an arbitrary,
fixed complete h-coloring of G. Let us also recall that ℓ = h−2. The results in Section
3 directly imply the following

Claim 10 In an h-optimal graph, there are exactly two color classes of one element
and exactly ℓ classes of two elements in H. ✷

Definition 2 The color classes consisting of two elements will be called pairs. For a
vertex x in the pair, the other vertex will be denoted mostly by x′; they will be the
couples of each other.

Notation We denote by φ1 and φ2 the two vertices of the singleton color classes, and
we set Φ = {φ1, φ2}. The pairs will be denoted by M1,M2, . . . ,Mℓ and M will be their
union. Moreover, Fi is the subgraph induced by the vertex set Mi ∪ Φ.

Claim 11 For any 1 ≤ i ≤ ℓ, the subgraph Fi is isomorphic to a P4 or it contains a
triangle as a subgraph. Consequently, Γ(Fi) = 3.

Proof Simply we use the fact that φ1 and φ2 are adjacent and because of the com-
pleteness of the coloring H, both of them have at least one neighbor in Mi. The last
statement follows from the monotonicity of Γ, and simple facts that Γ(P4) = Γ(K3) = 3
and that the only 4-vertex graph having Grundy number greater than 3 is K4. ✷

Definition 3 If Fi is isomorphic to P4, then Mi is called a pair of P4-type, otherwise
we call it a pair of K3-type.

Notation Let Si be any maximal stable set of G containing Mi.

Claim 12 For 1 ≤ i, j ≤ ℓ, the pairs Mi and Mj are joined by exactly one edge.
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Proof The completeness of H implies that Si is disjoint from Φ. Furthermore, because
of Γ(Fj) = 3, Si has to intersect Fj in some vertex, by Claim 4. Consequently, Si∩Mj 6=
∅. Similarly we obtain Sj∩Mi 6= ∅. These conditions (two empty triples insideMi∪Mj)
leave room for just one edge between Mi and Mj . ✷

Claim 13 If u ∈Mi and {φ1, φ2, u} induces K3, then u is an isolated vertex in G[M ].

Proof Let H be a triangle induced by {φ1, φ2, u}. Assume on the contrary that u has
a neighbor in Mj for some j 6= i. Then the set Sj is disjoint from V (H) and dominates
H , which implies Γ(G) > 3, by Claim 4. A contradiction. ✷

From Claims 11 and 13 we obtain

Corollary 1 If a pair has no isolated vertex in G[M ], then it is of P4-type. ✷

Definition and notation Let J be the union of the pairs containing some isolated
vertex of the graph G[M ]. In what follows we say that a vertex is non-isolated if it is
not isolated in G[M ]. Let T =M \ J .

In a series of the three subsequent claims we reveal the structure of the graph
induced by T . Next, in Lemma 4 we analyze the number of pairs in the set J .

Claim 14 T induces a bipartite graph.

Before we prove Claim 14, we give some definitions and state some facts.

Definition 4 An induced P4 of G with the middle edge φ1φ2 will be called an empha-
sized P4.

Proposition 2 If a maximal stable set S contains some pair then it intersects each
emphasized P4 in at least one endvertex.

Proof As we know from Claim 4, the set S intersects every P4. By assumption, S
contains some pair Mi. Using the properties of the complete coloring, both φ1 and
φ2 have some neighbor in Mi. Therefore φ1, φ2 6∈ S and hence S ∩ P4 must be an
endvertex. ✷

Now, let us define the following sets of vertices:

X = {x | x ∈ T and x is adjacent to φ2},

Y = {y | y ∈ T and y is adjacent to φ1}.

By Claim 13, T is the disjoint union of X and Y , moreover, |X| = |Y |.

Proposition 3 For any vertex x ∈ X, there exists a maximal stable set S containing
some pair but not containing x. The same is true for any y ∈ Y , too.

13



Proof By definition, every vertex in T is non-isolated in G[M ]. Since x ∈ T , there
exists a vertex z adjacent to x such that z ∈Mi for some i. The set Si above can play
the role of S in the proposition. ✷

Proof of Claim 14 We show that Y does not induce any edges. For X , the proof is
analogous.

Suppose η1, η2 ∈ Y and η1, η2 are adjacent. Then {η′1, φ2, φ1, η2} induces a P4

because η2 has exactly one neighbor in {η′1, η1}. By Proposition 3, we have a maximal
stable set S containing some pair with η′1 6∈ S. By Proposition 2, S intersects both
induced 4-paths η′1φ1φ2η1 and η

′

1φ1φ2η2, in one of their endvertices. It does not contain
η′1, thus it must contain both η1 and η2, a contradiction. ✷

Claim 15 T induces a 2K2-free graph.

Proof Assume on the contrary that we have a 2K2 in G[T ]. We denote its edges by
xy and x y. Take the 6-vertex subgraph H of G induced by {x, x, y, y, φ1, φ2}. The
subgraph H has a maximal stable set {x, y} and the remaining graph is a P4, because
of the definition of the sets X and Y . By Claim 4, we get Γ(H) > 3, a contradiction.
✷

Let τ be the number of pairs in T . It is a well-known fact that for a bipartite
graph with partite sets X, Y of the same cardinality, 2K2-freeness is equivalent to the
following.

Property (∗): X and Y can be ordered in such a way that X = (x1, x2, . . . , xτ ),
Y = (y1, y2, . . . , yτ), and N(xi) ⊆ N(xj) for every i < j and N(yi) ⊇ N(yj) for every
i < j.

In the next claim we use the extended graphs B′ defined in Section 3.

Claim 16 The set T induces a graph isomorphic to the graph B′

τ .

Proof Let us pick a counterexample T of smallest size. We state that in T the couple
of x1 is y1. Suppose, for a contradiction, that the couple of x1 is yj, for some j > 1. The
pair x1y1 cannot be an edge since otherwise, by Property (∗), y1 would be adjacent to
everything in X and it would not have any couple. From the nonadjacency of x1 and
y1 and Property (∗), x1 is isolated in T . Consequently, yj has some neighbor in every
class of the complete coloring, except its own class {x1, yj}. Since G[T ] is bipartite, yj
is adjacent to all the vertices in X \ x1. By Property (∗), y1 is also adjacent to these
vertices. Consequently, the only couple of y1 could be x1, a contradiction. Thus, the
couple of x1 is y1 indeed.

Taking the graph induced by T ′ = T \{x1, y1}, would be a smaller counterexample.
Claim 16 is proved. ✷

The next step is to manage the isolated vertices of G[M ].
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Lemma 4 The set J contains exactly two pairs.

Proof Let ξ be the number of pairs in J .

Claim 17 ξ ≤ 2

Proof The assertion obviously holds for ℓ = 2. Hence assume that ℓ ≥ 3.

Suppose for a contradiction that ξ ≥ 3. Without loss of generality, we may assume
that Mi = {ui, u′i}, i ∈ {1, 2, 3} are arbitrary pairs in J such that ui is isolated in
G[M ]. By the completeness of the coloring H, the non-isolated vertices u′i of pairs Mi

are mutually adjacent. In what follows we use Q to denote the complete subgraph
induced by {u′1, u′2, u′3}.

If ℓ ≥ 4, then there exists a pairMj = {r, r′}, j > 3. For each i ∈ {1, 2, 3}, consider
the edge ei between Mi and Mj . Obviously, ei contains u

′

i. Consequently, the stable
set {r, r′} dominates Q. Using Claim 4, we obtain a contradiction. Hence it remains
to consider the case when ℓ = 3.

Let ℓ = 3 and assume for a contradiction that ξ ≥ 3, which in this case, by ξ ≤ ℓ,
means ξ = 3. Also recall that under such assumptions we consider only 8-vertex graphs.
Now, observe that for i ∈ {1, 2} the vertex sets Ni = V (Q) \N(φi) have the following
properties:

(Π1) N1 ∪N2 = Q.

Suppose not. Then, considering some uncovered vertex, it would be isolated in
G[M ] (by Claim 13), contradicting the completeness of the coloring H.

(Π2) N1 ∩N2 6= ∅.
For a contradiction, using (Π1), we may assume that N1 = {u′2, u′3}, N2 = {u′1}.
Taking the triangle induced by {φ2, u

′

2, u
′

3} and the stable setM1 which dominates
this triangle, we get a contradiction by Claim 4.

Thus we may assume that N1 and N2 have some common vertex, say u′1. Hence,
by the completeness of the coloring H, it holds that φ1u1 ∈ E and φ2u1 ∈ E.

Between the two sets {φ1, φ2} and {u′2, u′3} we have some edge, because of the
connectedness condition, say φ2u

′

2 ∈ E. This implies φ1u
′

2 /∈ E, since otherwise we
would contradict (Π1).

In order to avoid the P4 induced by {φ1, φ2, u
′

2, u
′

3} and dominated by the stable
set M1, we state that, by (Π1), either φ1u

′

3 or φ2u
′

3 is an edge. If φ2u
′

3 ∈ E, then
the triangle induced by {φ2, u

′

2, u
′

3} is dominated by M1, a contradiction by Claim 4.
Hence φ2u

′

3 /∈ E, and consequently φ1u
′

3 ∈ E. However, in this case the P4 induced by
{u1, φ1, u

′

3, u
′

2} is dominated by the stable set {φ2, u
′

1}. Since this cannot be affected
by any further edges, we get a contradiction by Claim 4. ✷
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Claim 18 ξ ≥ 2.

Proof If h = 4, then the assertion holds, since by Claim 12, each of the two pairs
contains exactly one vertex that is isolated in G[M ]. In what follows we assume that
h ≥ 5.

Case 1 We prove ξ 6= 0.

Suppose that ξ = 0. By Claim 16, it holds that G[T ] is isomorphic to B′

τ . There
are two isolated vertices in this graph but M = T , by the assumption of the claim,
which means that there is no isolated vertex in M , a contradiction.

Case 2 We prove ξ 6= 1.

Let M1 = {u1, u′1} be a pair with u1 being isolated in G[M ], and let Mi = {ui, vi},
i ∈ {2, . . . , ℓ} be the pairs that have no vertices that are isolated in G[M ], consequently,
the pairs of P4-type. Assume that {u2, . . . , uℓ} are adjacent to φ1, while {v2, . . . , vℓ} to
φ2, and consider M1, two distinct pairs Mi,Mj chosen arbitrarily from M \ J . Recall,
that by Claim 12 there are exactly three edges between the vertices of M1,Mi and
Mj , while by Claim 16 it holds that uiuj, vivj /∈ E. Consequently, we have three
possibilities:

(a) u′1vi, u
′

1uj , uivj ∈ E,

(b) u′1vi, u
′

1uj , viuj ∈ E,

(c) u′1vi, u
′

1vj , uivj ∈ E.

By symmetry, and by Claim 14, there are no further possibilities. Also note, that
besides the above-mentioned edges it will be enough to consider the edges between Φ
and M1 and that by Claim 13, the vertex u′1 cannot be a common neighbor of φ1 and
φ2.

We start with a simultaneous analysis of (a) and (b). Assume that φ2u
′

1 ∈ E. Then
(a) implies that a path P4 induced by {uj, φ1, φ2, vj} is dominated by {ui, u′1}, while
from (b) we obtain a triangle induced by {φ2, u

′

1, vi} and dominated by Mj . Since this
cannot be affected by adding any further edges, φ2u

′

1 /∈ E and hence, by completeness,
φ2u1 must be an edge. If so, then for (a), independently of whether φ1u1 ∈ E or
φ1u

′

1 ∈ E, a path P4 induced by {uj, φ1, φ2, vi} is dominated by M1. Now, for (b), if
φ1u

′

1 /∈ E, then {u1, uj} dominates a path P4 induced by {u′1, vi, φ2, φ1}. On the other
hand, if φ1u

′

1 ∈ E, then a triangle induced by {φ1, uj, u
′

1} is dominated by Mi. Note
that the analysis in case (b) is independent of whether φ1u1 is an edge.

Hence φ2u1 /∈ E and it finally follows that neither φ2u
′

1 nor φ2u1 is an edge, which
contradicts the completeness of the coloring H.

It remains to consider case (c). First, observe that whenever all pairs Mi,Mj ,
i, j ∈ {2, . . . , ℓ} satisfy u′1vi, u

′

1vj , uivj ∈ E, then u′1 is adjacent to each vertex in
{v2, . . . , vℓ}. Now, considering adjacencies between the pairs in M \ J , by Claim 16
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Figure 5: All h-optimal graphs for h = 5 and their achromatic colorings (χ = Γ = 3,
ψ = 5, n = 2ψ − χ+ 1 = 8)

either v2, uℓ or vℓ, u2 are isolated in G[M \ J ]. Extending the scope to G[M ], both
v2 and vℓ become neighbors of u′1, but either uℓ or u2 remains isolated. This clearly
contradicts our assumption that ξ = 1. ✷

We have shown Claims 17 and 18, and thus Lemma 4 as well. ✷

Let L0, L1 and L2 be the graphs presented in Figure 5.

Lemma 5 If h = 5, then a graph G is h-optimal if and only if it is isomorphic to one
of the graphs in {L0, L1, L2}.

Proof By Lemma 4 a graph G contains exactly one pair of P4-type that consists of
non-isolated vertices. LetM3 = {u3, v3} be such a pair. For i ∈ {1, 2} letMi = {ui, u′i}
be the pairs having ui isolated in G[M ].

Observe that u′1 and u
′

2 are adjacent and each of them must have some neighbor in
M3. Moreover, since vertices inM3 are non-isolated, by Claim 12 the neighbors of u′1, u

′

2

inM3 must be disjoint. Without loss of generality we may assume that u′1u3, u
′

2v3 ∈ E.
By Claim 12, there are no other edges between M1, . . . ,M3, so it remains to consider
the edges incident to φ1 or φ2.

Since M3 is of P4-type, assume that φ1u3, φ2v3 ∈ E and consequently φ1v3, φ2u3 /∈
E. Now, if both φ2u

′

1 ∈ E and φ2u
′

2 ∈ E, then M3 dominates a triangle induced by
{φ2, u

′

1, u
′

2}, a contradiction. This cannot be affected by any further edges and hence
φ2 cannot be simultaneously adjacent to u′1 and u

′

2. Consequently, by completeness, φ2

must be adjacent to at least one vertex in {u1, u2}.
Case 1 Assume that φ2u

′

1 ∈ E and φ2u
′

2 /∈ E.

Consequently, by completeness φ2u2 ∈ E. By Claim 13 we have φ1u
′

1 /∈ E and
hence φ1u1 ∈ E. However, since the current graph is bipartite, we need to consider
further edges. If φ1u

′

2 /∈ E, then M3 dominates a path P4 induced by {φ1, φ2, u
′

1, u
′

2},
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and this cannot be altered neither by φ2u1 nor by φ1u2. Hence φ1u
′

2 ∈ E. The graph is
still bipartite. Now, adding either φ2u1 or φ1u2 results in the graph L1, while adding
both edges gives the graph L2.

Case 2 Assume that φ2u
′

2 ∈ E and φ2u
′

1 /∈ E.

From Claim 13 it follows that φ1u
′

2 /∈ E, while by completeness φ1u1 ∈ E or φ1u
′

1 ∈
E. Assume that φ1u

′

1 ∈ E and consider a subgraph H induced by Φ ∪M \ {u1, u2}.
Then a path P4 induced by {φ1, u

′

1, u
′

2, v3} is dominated by {φ2, u3}. Hence φ1u
′

1 /∈ E.
This in turn results in a graph containing a subgraph P4 induced by {φ1, φ2, u

′

1, u
′

2}
and dominated by M3. Since there are no further edges that could be added between
vertices of H , we get a contradiction by Claim 4.

Case 3 Assume that φ2u
′

1, φ2u
′

2 /∈ E.

By completeness, φ2u1, φ2u2 ∈ E. Note that it remains to consider the edges
incident to φ1. Consider a subgraph H induced by Φ ∪M \ {u1, u2}. To argue that
either φ1 is adjacent to both u′1 and u

′

2 or to none of them observe that whenever only
one of the edges is present, then M3 dominates a path P4 induced by {φ1, φ2, u

′

1, u
′

2}.
On the other hand, if we assume that both edges are present, then M3 dominates
a triangle induced by {φ1, u

′

1, u
′

2}. If both edges are missing, then by completeness
φ1u1, φ2u2 ∈ E, and we get the graph L0, that obviously realizes a triple (3, 3, 5).
Thus, either we get a h-optimal graph L0 or a contradiction by Claim 4. ✷

It is not hard to see that the arguments analogous to those in the proof of Lemma 5
can be used to obtain the list of all graphs that are h-optimal for h = 4. Let L1, . . . , L7

be the graphs presented in Figure 6.

Lemma 6 If h = 4, then a graph G is h-optimal if and only if it is isomorphic to one
of the graphs in {L1, . . . , L7}.

4.1 End of the proof of Theorem 3 for h ≥ 6

By the analysis above, to complete the proof of Theorem 3 it remains to focus on J
and Φ when h ≥ 6.

Notation Let ι1, ι2 be the vertices that are isolated in G[M ], and let ν1, ν2 be their
couples, respectively. Let Mi = {ui, vi}, i ∈ {1, . . . , τ} be the pairs in T , that is, the
pairs without isolated vertices. Recall that τ = ℓ− 2 = h− 4.

The results on 2K2-free bipartite graphs entitle us to suppose that the set of edges
in G[T ] is {uivI | I > i}.

Claim 19 {j | vjν1 ∈ E} and {k | ukν1 ∈ E} are intervals. (Here the empty set is
also considered as an interval.)
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Figure 6: The seven 4-optimal graphs and their achromatic colorings

Proof Suppose first that there are subscripts j and k > j such that ν1vj ∈ E and
ν1uk ∈ E. Then we would have a stable set {ι1, ν1} dominating the P4 induced by
{uk, φ2, φ1, vj}, a contradiction. (The relation of φ1 and φ2 to the other vertices can be
read out from the proof of Claim 14.)

The vertex ν1 is adjacent to exactly one of ui, vi for every i. Thus, denoting the
neighbor of ν1 in Y with the smallest subscript by vj , N(ν1) ∩ Y = {vj , vj+1, . . . , vτ}
and N(ν1) ∩X = {u1, u2, . . . , uj−1}. ✷

Claim 20 One of N(νi) ∩X, N(νi) ∩ Y (i ∈ {1, 2}) is empty.

Proof Otherwise {ν1, ν2, u1, vτ} would induce a K4 and the Grundy number would be
greater than 3. ✷

We may assume N(ν2) ∩X = ∅. Then

Claim 21 (a) N(ν2) ∩ Y = Y , (b) N(ν1) ∩ Y = ∅ and (c) N(ν1) ∩X = X.

Proof (a) is an obvious consequence of the assumption.
Suppose N(ν1) ∩ Y is a nonempty proper subset of Y . If there was a j such that

vjν1 ∈ E and vj−1ν1 6∈ E, then the stable set {uj−1vj−1} would dominate the triangle
induced by {ν1, ν2, vj}, a contradiction. Consequently, if the Claim was not true, then
such a j would not exist.
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If N(ν1) ∩ Y = Y then one can find the stable set {u1, v1} that dominates the
triangle induced by {ν1, ν2, v2}, a contradiction again. (Note that we used h ≥ 6.)

Otherwise, N(ν1) ∩ Y = {v1, v2, . . . , vj} for some j < τ . Thus ν1vj+1 6∈ E and
ν1uj+1 ∈ E, contradicting the arguments in the proof of Claim 19. This implies the
validity of (b), from which (c) follows, too. ✷

Now we can concentrate on the 8 pairs of vertices between the sets {φ1, φ2} and
{ν1, ν2, ι1, ι2} since these are the remaining undetermined ones. First we prove

Claim 22 ν2φ1 6∈ E (and ν1φ2 6∈ E).

Proof Otherwise the stable set {u1, v1} would dominate the triangle induced by
{ν2, φ1, vτ}. (The same works for the second statement.) ✷

Claim 23 ν1φ1 ∈ E (and ν2φ2 ∈ E).

Proof Suppose ν1φ2 6∈ E. Then the stable set {ν1, φ1} dominates the P4 induced by
{v1, ν2, v2, u1}. (The same works for the second statement.) ✷

The completeness of the coloring implies ι2φ1 ∈ E and ι1φ2 ∈ E. The last fact we
need is

Claim 24 It is impossible that both ι1φ1 and ι2φ2 are non-edges.

Proof In this case the whole graph would be bipartite (with partite sets X∪{φ1, ν2, ι1}
and Y ∪ {φ2, ν1, ι2}), a contradiction with the assumptions. ✷

Now we identify the notation above with that of the examples in Figure 3 in the
following way: φ1 −→ q2, φ2 −→ q1, ι1 −→ uτ+1, ι2 −→ w1.

Let us look now at the graphs L1 and L2. In both graphs ι2q2 ∈ E, moreover ι2
and φ2 are adjacent in L1, while they are non-adjacent in L2. The only further possible
situation would be the converse but this would yield a graph isomorphic to L2, L1

respectively.

This completes the proof of Theorem 3. ✷

5 Concluding remarks

In this paper, for all realizable triples (f, g, h) of integers, we determined the minimum
order of connected graphs G such that χ(G) = f , Γ(G) = g, and ψ(G) = h. We
completely described also the list of graphs attaining the minimum in all cases where
f < g ≤ h or f = g = 3. For the other triples the corresponding characterization of
graphs remains unsolved:
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Problem 1 For larger common values f = g > 3, and h > f , determine the list of
h-optimal graphs.

Since the clique number is a universal lower bound on the chromatic number, one
can study the extended chain of inequalities ω(G) ≤ χ(G) ≤ Γ(G) ≤ ψ(G). In this
context the following problem arises in a natural way:

Problem 2 Let 2 ≤ a ≤ b ≤ c ≤ d be integers.

(i) Give necessary and sufficient conditions for the existence of connected graphs G
with ω(G) = a, χ(G) = b, Γ(G) = c, ψ(G) = d.

(ii) If such graphs exist, determine their minimum order n0 = n0(a, b, c, d), and
characterize the graphs whose number of vertices attains this minimum.

Probably, already some particular cases are quite hard:

Problem 3 Solve the analogous problems for three-element subsets of {ω, χ, Γ, ψ}.

Similar characterizations for graphs with restricted structural properties would also
be of interest.
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