2013 UNIT VECTORS IN THE PLANE

IMRE BÁRÁNY, BORIS D. GINZBURG, AND VICTOR S. GRINBERG

Abstract

Given a norm in the plane and 2013 unit vectors in this norm, there is a signed sum of these vectors whose norm is at most one.

Let B be the unit ball of a norm $\|\cdot\|$ in \mathbb{R}^{d}, that is, B is an 0 symmetric convex compact set with nonempty interior. Assume $V \subset B$ is a finite set. It is shown in [1] that, under these conditions, there are signs $\varepsilon(v) \in\{-1,+1\}$ for every $v \in V$ such that $\sum_{v \in V} \varepsilon(v) v \in d B$. That is, a suitable signed sum of the vectors in V has norm at most d. This estimate is best possible: when $V=\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ and the norm is ℓ_{1}, all signed sums have ℓ_{1} norm d.

In this short note we show that this result can be strengthened when $d=2,|V|=2013$ (or when $|V|$ is odd) and every $v \in V$ is a unit vector. So from now onwards we work in the plane \mathbb{R}^{2}.
Theorem 1. Assume $V \subset \mathbb{R}^{2}$ consists of unit vectors in the norm $\|$. and $|V|$ is odd. Then there are signs $\varepsilon(v) \in\{-1,+1\}(\forall v \in V)$ such that $\left\|\sum_{v \in V} \varepsilon(v) v\right\| \leq 1$.

This result is best possible (take the same unit vector n times) and does not hold when $|V|$ is even.

Before the proof some remarks are in place here. Define the convex polygon $P=\operatorname{conv}\{ \pm v: v \in V\}$. Then $P \subset B$, and P is again the unit ball of a norm, V is a set of unit vectors of this norm. Thus it suffices to prove the theorem only in this case.

A vector $v \in V$ can be replaced by $-v$ without changing the conditions and the statement. So we assume that $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the vectors $v_{1}, v_{2}, \ldots, v_{n},-v_{1},-v_{2}, \ldots,-v_{n}$ come in this order on the boundary of P. Note that n is odd. We prove the theorem in the following stronger form.

Theorem 2. With this notation $\left\|v_{1}-v_{2}+v_{3}-\cdots-v_{n-1}+v_{n}\right\| \leq 1$.
Proof. Note that this choice of signs is very symmetric as it corresponds to choosing every second vertex of P. So the vector $u=$ $2\left(v_{1}-v_{2}+v_{3}-\cdots-v_{n-1}+v_{n}\right)$ is the same (or its negative) when one starts with another vector instead of v_{1}. Define $a_{i}=v_{i+1}-v_{i}$ for

[^0]$i=1, \ldots, n-1$ and $a_{n}=-v_{1}-v_{n}$ and set $w=a_{1}-a_{2}+a_{3}-\cdots+a_{n}$. It simply follows from the definition of a_{i} that
$$
w=-2\left(v_{1}-v_{2}+v_{3}-\cdots-v_{n-1}+v_{n}\right)=-u
$$

Consequently $\|u\|=\|w\|$ and we have to show that $\|w\| \leq 2$.
Consider the line L in direction w passing through the origin. It intersects the boundary of P at points b and $-b$. Because of symmetry we may assume, without loss of generality, that b lies on the edge $\left[v_{1},-v_{n}\right]$ of P. Then w is just the sum of the projections onto L, in direction parallel with $\left[v_{1},-v_{n}\right]$, of the edge vectors $a_{1},-a_{2}, a_{3},-a_{4}, \ldots, a_{n}$. These projections do not overlap (apart from the endpoints), and cover exactly the segment $[-b, b]$ from L. Thus $\|w\| \leq 2$, indeed.

Remark. There is another proof based on the following fact. P is a zonotope defined by the vectors a_{1}, \ldots, a_{n}, translated by the vector v_{1}. Here the zonotope defined by a_{1}, \ldots, a_{n} is simply

$$
Z=Z\left(a_{1}, \ldots, a_{n}\right)=\left\{\sum_{1}^{n} \alpha_{i} a_{i}: 0 \leq \alpha_{i} \leq 1(\forall i)\right\} .
$$

The polygon $P=v_{1}+Z$ contains all sums of the form $v_{1}+a_{i_{1}}+\cdots+a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. In particular with $i_{1}=2, i_{2}=$ $4, \ldots, i_{k}=2 k$

$$
v_{1}+a_{2}+a_{4}+\ldots a_{2 k}=v_{1}-v_{2}+v_{3}-\cdots-v_{2 k}+v_{2 k+1} \in P
$$

This immediately implies a strengthening of Theorem 1 (which also follows from Theorem 2).

Theorem 3. Assume $V \subset \mathbb{R}^{2}$ consists of n unit vectors in the norm $\|$.$\| . Then there is an ordering \left\{w_{1}, \ldots, w_{n}\right\}$ of V, together with signs $\varepsilon_{i} \in\{-1,+1\}(\forall i)$ such that $\left\|\sum_{1}^{k} \varepsilon_{i} w_{i}\right\| \leq 1$ for every odd $k \in\{1, \ldots, n\}$.

Of course, for the same ordering, $\left\|\sum_{1}^{k} \varepsilon_{i} w_{i}\right\| \leq 2$ for every $k \in$ $\{1, \ldots, n\}$. We mention that similar results are proved by Banaszczyk [2] in higher dimension for some particular norms.

In [1 the following theorem is proved. Given a norm $\|$.$\| with unit$ ball B in R^{d} and a sequence of vectors $v_{1}, \ldots, v_{n} \in B$, there are signs $\varepsilon_{i} \in\{-1,+1\}$ for all i such that $\left\|\sum_{1}^{k} \varepsilon_{i} w_{i}\right\| \leq 2 d-1$ for every $k \in$ $\{1, \ldots, n\}$. Theorem 1 implies that this result can be strengthened when the v_{i} s are unit vectors in \mathbb{R}^{2} and k is odd.

Theorem 4. Assume $v_{1}, \ldots, v_{n} \in \mathbb{R}^{2}$ is a sequence of unit vectors in the norm $\|$.$\| . Then there are signs \varepsilon_{i} \in\{-1,+1\}$ for all i such that $\left\|\sum_{1}^{k} \varepsilon_{i} w_{i}\right\| \leq 2$ for every odd $k \in\{1, \ldots, n\}$.

The bound 2 here is best possible as shown by the example of the max norm and the sequence $(-1,1 / 2),(1,1 / 2),(0,1),(-1,1),(1,1)$.

The proof goes by induction on k. The case $k=1$ is trivial. For the induction step $k \rightarrow k+2$ let s be the signed sum of the first k vectors
with $\|s\| \leq 2$. There are vectors u and w (parallel with s) such that $s=u+w,\|u\|=1,\|w\| \leq 1$. Applying Theorem 1 to u, v_{k+1} and v_{k+2} we have signs $\varepsilon(u), \varepsilon_{k+1}$ and ε_{k+2} with $\left\|\varepsilon(u) u+\varepsilon_{k+1} v_{k+1}+\varepsilon_{k+2} v_{k+2}\right\| \leq$ 1. Here we can clearly take $\varepsilon(u)=+1$. Then

$$
\left\|s+\varepsilon_{k+1} v_{k+1}+\varepsilon_{k+2} v_{k+2}\right\| \leq\left\|u+\varepsilon_{k+1} v_{k+1}+\varepsilon_{k+2} v_{k+2}\right\|+\|w\| \leq 2
$$

finishing the proof.
Acknowledgements. Research of the first author was partially supported by ERC Advanced Research Grant no 267165 (DISCONV), and by Hungarian National Research Grant K 83767.

References

[1] I. Bárány, V. S. Grinberg. On some combinatorial questions in finite dimensional spaces, Lin. Alg. Appl. 41 (1981), 1-9.
[2] W. Banaszczyk. On series of signed vectors and their rearrangements, Random Structures Algorithms 40 (2012), 301-316.

Imre Bárány

Rényi Institute of Mathematics
Hungarian Academy of Sciences
PO Box 127, 1364 Budapest
Hungary
and
Department of Mathematics
University College London
Gower Street, London WC1E 6BT
England
e-mail: barany@renyi.hu

Boris D. Ginzburg
1695 Betty Ct, Santa Clara, CA 95051
USA
e-mail: boris.d.ginzburg@gmail.com

Victor S. Grinberg
5628 Hempstead Rd, Apt 102, Pittsburgh, PA 15217
USA
e-mail: victor_grinberg@yahoo.com

[^0]: 2010 Mathematics Subject Classification. Primary 52A10, Secondary 15A39.
 Key words and phrases. unit vectors, norms, signed sum.

