
ar
X

iv
:1

30
8.

24
52

v4
  [

m
at

h.
C

O
] 

 2
2 

Ju
n 

20
14

BLOCK PARTITIONS OF SEQUENCES

IMRE BÁRÁNY, VICTOR S. GRINBERG

Abstract. Given a sequence A = (a1, . . . , an) of real numbers, a
block B of the A is either a set B = {ai, ai+1, . . . , aj} where i ≤ j

or the empty set. The size b of a block B is the sum of its elements.
We show that when each ai ∈ [0, 1] and k is a positive integer, there
is a partition of A into k blocks B1, . . . , Bk with |bi − bj| ≤ 1 for
every i, j. We extend this result in several directions.

1. Introduction

Assume A = (a1, . . . , an) is a sequence of real numbers ai ∈ [0, 1]. A
block B of the sequence is either the empty set or it is {ai, ai+1, . . . , aj}
with i ≤ j. The size of the block B, to be denoted by b, is just the
sum of the elements in B. Blocks B1, . . . , Bk form a partition of A if
every element of A belongs to exactly one block. We always assume
that if ah is the last element of a non-empty block, then ah+1 is the
first element of the next non-empty block.

It is easy to see that, for a given k ∈ N, there is a k-partition of A
into blocks B1, . . . , Bk, of sizes b1, . . . , bk, such that

(1.1) |bi − bj | ≤ 2 for all i, j ∈ [k].

Here and later, [k] stands for the set {1, 2, . . . , k}. To see this define

Sj =
∑j

1 ai and set S = Sn. The condition ai ∈ [0, 1] implies that for
every h ∈ [k − 1] there is a subscript m(h) such that hS/k − 1/2 ≤
Sm(h) ≤ hS/k + 1/2 and m(h) is a non-decreasing function of h. The
partial sums S0, Sm(1), . . . , Sm(k−1), Sn split A into k blocks B1, . . . , Bk

that satisfy S/k−1 ≤ bi ≤ S/k+1 for all i and consequently |bi−bj | ≤ 2
for all i, j.

In the first part of this paper we show the existence of a k-partition
with |bi − bj | ≤ 1. Then we extend this result to infinite sequences.
Finally we show that the bound in (1.1) holds under much weaker
conditions. Related problems are treated in [1] and [2].
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2. Finite sequences

Our starting result is the following theorem.

Theorem 2.1. Given a sequence A = (a1, . . . , an) of real numbers
ai ∈ [0, 1] and a positive integer k, there is a partition of A into k
blocks B1, . . . , Bk with max bi ≤ min bi + 1.

Remarks. This result is best possible in the sense that, in general,
max bi − min bi cannot be made smaller than 1. There are many ex-
amples showing this, for instance A = (1/2, 1, . . . , 1, 1/2) with k − 1
ones in the middle, or when every ai = 1 and k does not divide n.
When k > n, the last example shows also that empty blocks have to
be allowed. But no empty block can be present when

∑n

1 ai > k, and
actually even when

∑n

1 ai > k − 1.

Proof. Given a k-partition P of A with blocks (B1, . . . , Bk) let
M(P ) = maxi∈[k] bi and m(P ) = mini∈[k] bi. We give an algorithm that
finds the required partition. It starts with an arbitrary k-partition P .
On each iteration, the current partition P is changed to another one,
P ∗, and the only difference is that either the last element of Bh is
moved to Bh+1 or the first element of Bh is moved to Bh−1 for a unique
h ∈ [k].

Here comes the algorithm plus some comments.

(1) Fix p ∈ [k] with M(P ) = bp. So Bp is a maximal block of P .
(2) If M(P ) ≤ m(P ) + 1, then stop.
(3) If M(P ) > m(P ) + 1, then let m(P ) = bq for the q ∈ [k] which

is closest to p (ties broken arbitrarily). Thus Bq is a minimal
block of P . Let Bh be the block next to Bq between Bp and Bq.
(Note that Bh is a non-empty block: if it were, then m(P ) = 0
and we should have chosen Bh instead of Bq.) So either p < q
and then h = q−1 and we define P ∗ by moving the last element
from Bh = Bq−1 to Bq, or q < p, and then h = q + 1 and P ∗ is
obtained by moving the first element of Bh = Bq+1 to Bq. Set
P = P ∗. If p = h, then go to (1), else go to (2).

We prove next that this algorithm terminates with the required par-
tition. Note first that in step (3) the size of every block in P ∗ is at
most M(P ). Indeed, the size of Bh does not increase, and the size of
Bq increases by some ai ≤ 1 and since we have m(P ) + 1 < M(P ),
m(P ) + ai < M(P ) follows. This shows that M(P ∗) ≤ M(P ), that is,
the size of maximal block does not increase during the algorithm. Note
also that no new block of size M(P ) is created in step (3).

Claim 2.2. Step (3) is repeated at most kn times with Bp being the
same block in P ∗ and in P .
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For the proof, let us define f(P, p) =
∑k

i=1 |i−p||Bi| where, as usual,
|Bi| denotes the number of elements in Bi. It is clear that f(P, p) takes
positive integral values and is always less than kn. It is also evident
that f(P, p) < f(P ∗, p), which proves the claim. �

Thus after at most kn iteration of (3), the algorithm decreases the
size of Bp and so goes to (1). Consequently it decreases either the
number of maximal blocks or M(P ). As there are only finitely many
block partitions, the algorithm eventually terminates with (2). �

Proposition 2.3. The above algorithm takes at most O(kn3) steps.

The proof follows from three simple facts. Note that a block is just
a set of consecutive elements of the sequence.

(a) No block can be fixed at step (1) more than once.
(b) No block can serve as maximal block for more than kn iterations

of the loop “go to (2)” (and due to (a), in total, as well).
(c) There are no more than O(n2) blocks.

�

Theorem 2.1 can be strengthened by removing the condition ai ≥ 0:

Theorem 2.4. Given a sequence A = (a1, . . . , an) of real numbers ai ≤
1 for every i ∈ [n] with S =

∑n

1 ai ≥ 0 and a positive integer k, there
is a partition of A into k blocks B1, . . . , Bk with max bi ≤ min bi + 1.

The proof is based on a lemma that can suitably preprocess the
sequence A.

Lemma 2.5. Given a sequence A = (a1, . . . , an) of real numbers ai ≤ 1
for every i ∈ [n] with

∑n

1 ai ≥ 0, there is a partition of A into blocks
(C1, . . . , Cm) such that ci =

∑
aj∈Ci

aj ∈ [0, 1] for every i ∈ [m].

The proof is by induction on n and the case n = 1 is trivial. Assume
the statement holds for sequences with fewer than n entries (n ≥ 2).
We show that the statement holds for A = (a1, . . . , an). If S ≤ 1,
then we can choose a single block C1 = A. Otherwise S > 1 and we
choose the smallest subscript h ∈ [n] such that the size, c1, of the block
C1 = (a1, . . . , ah) is positive. It is clear that c1 ∈ (0, 1]. The sequence
A∗ = (ah+1, . . . , an) has fewer than n elements, every ai ≤ 1, and the
sum of its elements is S − c1 > 0. So induction gives a partition of
A∗ into blocks (C2, . . . , Cm) with all ci ∈ [0, 1]. They, together with C1

form the required partition of A. �

Remark. There is a simple algorithm that produces the partition
(C1, . . . , Cm). Namely, starting with A = (a1, . . . , an), check if there is
an i ∈ [n− 1] with aiai+1 ≤ 0. If there is no such i, then the partition
with blocks Ci = (ai) satisfies the requirements. If there is such an i
replace A by the sequence (a1, . . . , ai−1, ai+ai+1, ai+2, . . . , an) of length
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n−1 and continue. The algorithm terminates either with the sequence
(0) consisting a single zero, or with a sequence (c1, . . . , cm) where each
ci ∈ (0, 1]. Note that preprocessing takes O(n) iterations with this
algorithm.

The proof of Theorem 2.4 is quite easy now. Just apply the prepro-
cessing lemma to A to obtain the partition into blocks (C1, . . . , Cm).
The sequence C = (c1, . . . , cm) satisfies the conditions ci ∈ [0, 1] so
Theorem 2.1 applies and gives the suitable partition of C which is, in
fact, a suitable partition of A as well. �

Corollary 2.6. Given a sequence A = (a1, ..., an) of real numbers with
ai ∈ [−1, 1] for all i and a positive integer k, there is a partition of A
into k blocks B1, ..., Bk such that max bi −min bi ≤ 1.

The proof follows immediately from Theorem 2.4 if a1 + ... + an ≥
0. When a1 + ... + an < 0, replace each ai by −ai, and apply the
same theorem. The resulting block partition is a block partition of the
original sequence which satisfies max bi −min bi ≤ 1. �

3. Infinite sequences

Assume now that A = (a1, a2, . . . ) is an infinite sequence of real
numbers an ∈ [0, 1] and a is a non-negative real. To extend our main
theorem, we wish to find a partition of A into blocks (B1, B2, . . . ) such
that inf bn ≤ a ≤ sup bn ≤ inf bn +1. This may not be possible if

∑
an

is finite: for instance with
∑

an = 1000 and a = 400 the size of the
blocks must lie in [399,401]. No set of blocks of this type can partition
A, clearly. The case is different when

∑
an = ∞.

Theorem 3.1. Given a sequence A = (a1, a2, . . . ) of real numbers
ai ∈ [0, 1] with

∑
an = ∞ and a real number a ≥ 0, there is a partition

of A into blocks B1, B2, . . . with inf bi ≤ a ≤ sup bi ≤ inf bi + 1.

Proof. The case a = 0 is easy: just choose B1 to be the empty block
and Bi = (ai−1), a singleton, for i = 2, 3, . . . . So assume a > 0. Recall
that Sn =

∑n

1 aj .
For every k ∈ N let n(k) be the smallest subscript with

(3.1) ka ≤ Sn(k) < ka + 1, so Sn(k) = ka+ ε(k),

where ε(k) ∈ [0, 1). We can apply Theorem 2.1 to the finite sequence
Ak = (a1, . . . , an(k)) giving a k-partition of Ak into blocks (Bk

1 , . . . , B
k
k)

satisfying

min
i∈[k]

bki ≤ a +
ε(k)

k
≤ max

i∈[k]
bki ≤ min

i∈[k]
bki + 1,

where the middle inequality expresses the fact that the average is be-
tween the maximum and the minimum.

Assume now that, for some k ∈ N, mini∈[k] b
k
i ≤ a. Then we can

produce the required partition as (Bk
1 , . . . , B

k
k , Bk+1 . . . ) by defining
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Bn for n > k recursively as follows. If Bn has been constructed, then
let Bn+1 be the next block with bn+1 ≤ mini∈[k] b

k
i + 1.

Assume now that mini∈[k] b
k
i > a for every k ∈ N. Then bki = a + εki

for all i ∈ [k] and
∑k

1 ε
k
i = ε(k) < 1. This implies that maxi∈[k] b

k
i =

a+ εki < a+ 1 (for some suitable i ∈ [k]).
It follows that there is an infinite subset I1 of N such that Bk

1 is the
same block for all k ∈ I1. Call this block B1. Further, there is an
infinite I2 ⊂ I1 such that Bk

2 is the same block for all k ∈ I2, call this
block B2, etc. We get a partition (B1, B2, . . . ). Here sup bi ≤ a + 1
follows from the inequality at the end of the last paragraph.

We show finally that inf bj = a. Observe first that bj = a+ εkj for all
k ∈ Ij so we may write bj = a+ εj . Then, for k ∈ Ij,

ε1 + · · ·+ εj = εk1 + · · ·+ εkj ≤ ε(k) < 1,

showing that lim εj = 0. This proves that, indeed, inf bj = a. �

Remark. We could have chosen, instead of (3.1), n(k) as the mini-
mal subscript with

ka− 1 < Sn(k) ≤ ka, so Sn(k) = ka− ε(k),

starting only for k > 1/a, say. Essentially the same proof works with
this choice.

Again one can get rid of the condition an ≥ 0.

Theorem 3.2. Let A = (a1, a2, . . . ) be a sequence of real numbers
ai ≤ 1 satisfying the condition that for every k ∈ N there is Sn > k.
Then for every real number a ≥ 0, there is a partition of A into blocks
B1, B2, . . . with inf bi ≤ a ≤ sup bi ≤ inf bi + 1.

Proof. We prove the theorem by reducing it to Theorem 3.1. We
construct a block partition of A so that the size of every block lies in
(0, 1]. The construction is straightforward. Find the smallest i such
that Si > 0. Such an i exists because the sequence Sn is not bounded
from above. Clearly, Si ≤ 1; let (a1, . . . , ai) be the first block. The
sequence Sn − Si is also unbounded from above, and we continue this
process. Apply Theorem 3.1 to the constructed sequence. It is clear
that its block partition is in fact a block partition of the sequence A
satisfying the requirements. �

4. More general settings

Assume now that our sequence is A = (a1, . . . , an). Let s be a
function defined on the blocks that satisfies the conditions

(i) s(∅) = 0 and s(B) ≥ 0 for every block B,
(ii) s(B1) ≤ s(B2) ≤ s(B1)+1 if B1 ⊂ B2 and B2\B1 is a singleton.
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Theorem 4.1. Assume A = (a1, . . . , an) and k is positive integer.
Under the above conditions on s there is a partition of A into k blocks
B1, . . . , Bk such that |s(Bi)− s(Bj | ≤ 1 for every i, j ∈ [k].

The proof consists of checking that, under conditions (i) and (ii),
the algorithm for Theorem 2.1 works without any change. �

For instance, assume every ai is a d-dimensional vector with non-
negative coordinates in the unit ball of the ℓp norm, p ≥ 1. When
s(B) = ||

∑
ai∈B

ai||, conditions (i) and (ii) are satisfied. (Simple ex-
amples show that this in not true for an arbitrary norm.) So there is
a block partition B1, . . . , Bk of A such that the norms of the sums of
the elements in the blocks differ by at most one. However, unlike in
the 1-dimensional case, this does not mean that corresponding vectors
are “almost” equal.

Now we relax condition (ii):

(iii) |s(B1)− s(B2)| ≤ 1 if B1 and B2 differ by one element.

In this case we can prove the same bound as in (1.1).

Theorem 4.2. Assume A = (a1, . . . , an) and k is positive integer. If
s is non-negative and satisfies conditions (i) and (iii), then there is a
partition of A into k blocks B1, . . . , Bk such that |s(Bi) − s(Bj)| ≤ 2
for every i, j ∈ [k].

Before the proof some preparation is in place. We are to consider
intervals [x, y) where 0 ≤ x ≤ y ≤ n. The interval [i− 1, i) is identified
with the element ai of the sequence A. The interval [x, y) is a block
if x and y are integers. Thus block B = (ai, . . . , aj) can and will be
identified with the interval [i − 1, j); here i − 1 ≤ j. Further, [i, i) is
the empty block positioned between ai and ai+1.

Define next

T k−1
n = {x = (x1, . . . , xk−1) ∈ R

k−1 : 0 ≤ x1 ≤ · · · ≤ xk−1 ≤ n},

and set x0 = 0, xk = n. Every x ∈ T k−1
n determines a unique partition

of [0, n) into k intervals

[x0, x1), [x1, x2), . . . , [xk−1, xk).

Let P (x) denote this partition. Also, conversely, every partition of
[0, n) into k intervals determines a unique x ∈ T k−1

n such that P (x) is
equal to this partition. Note that P (x) is a block partition if and only
if all coordinates of x are integers. In this case P (x) = (B1, . . . , Bk)
and we define

S(x) = (s(B1), . . . , s(Bk)).

The size s(B) of block B = (ai, . . . , aj) depends only on the interval
[i − 1, j) so we may (and do) define s([i − 1, j)) = s(B). For simpler
notation we write s[i, j) instead of s([i, j)). Note that s[i, j) is always
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non-negative and s[i, i) = 0. Condition (iii) says or rather implies that
for all 0 ≤ i ≤ j ≤ n and all 0 ≤ i′ ≤ j′ ≤ n

|s[i, j)− s[i′, j′)| ≤ |i− i′|+ |j − j′|.

In other words, the map s defined on pairs (i, j) (with 0 ≤ i ≤ j ≤ n )
is non-expanding in the ℓ1 norm.

We are going to extend s from blocks [i, j) to intervals [x, y). Assume
that i, j ∈ [n], i ≤ j and x ∈ [i− 1, i), y ∈ [j− 1, j). The point (x, y) ∈
R

2 is then either in the triangle with vertices (i−1, j−1), (i, j−1), (i, j)
or in the triangle with vertices (i− 1, j − 1), (i− 1, j), (i, j) or in both.
Such triangles triangulate T 2

n and so we can extend s on each triangle
linearly. This is the usual simplicial extension of s onto T 2

n . We denote
it invariably by s so we have now an s : T 2

n → R map. It is very
easy to check (and we omit the details) that the extended s is also
non-expanding, that is, for all 0 ≤ x ≤ y ≤ n and all 0 ≤ x′ ≤ y′ ≤ n

|s[x, y)− s[x′, y′)| ≤ |x− x′|+ |y − y′|.

The map S was defined on the lattice points of T k−1
n . We can extend

it now to the whole T k−1
n : for x ∈ T k−1

n let

S(x) = (s[x0, x1), . . . , s[xk−1, xk)) ∈ R
k.

Proof of Theorem 4.2. Write R(a, b) for the halfline starting at a and
going through b where a, b ∈ R

k are distinct. Set e = (1, 1, . . . , 1) ∈ R
k.

We are going to show that there is an x ∈ T k−1
n such that S(x) lies on

the halfline R(0, e). This is trivial if S(x) coincides with the origin for
some x. So we assume that S(x) 6= 0 for any x ∈ T k−1

n .
Let e1, . . . , ek be the standard basis of Rk and write△ for the simplex

with vertices e1, . . . , ek. We define a map g : T k−1
n → △ by setting

g(x) = R(0, S(x)) ∩ △. As all coordinates of S(x) are non-negative
and S(x) 6= 0, g is a continuous map.

The simplex T k−1
n has k facets, F1, . . . , Fk, where Fi is given by the

equation xi−1 = xi. The facet Fi is mapped by g to points whose ith
coordinate is zero. This implies that a (k − 1 − h)-dimensional face
Fi1 ∩ · · · ∩ Fih of T k−1

n is mapped by g onto the (k − 1− h)-face of △,
defined by zi1 = · · · = zih = 0 where zi is the ith coordinate of z ∈ △.
In particular, g is a one-to-one correspondence between the vertices
of T k−1

n and the vertices of △. Let f : △ → T k−1
n be the linear (or

simplicial) extension of g−1 from the vertices of △ to the whole simplex
△. It follows that g ◦ f : △ → △ maps each face of △ onto itself.

Lemma 4.3. If h : △ → △ is continuous and maps each face of △
onto itself, then h is surjective.

This result is known, see for instance Lemma 1 in [3] or Lemma 8.2
in [4] and also [5]. For the convenience of the reader we give another
short proof at the end of this paper.
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The lemma implies that g is also surjective. So there is an x∗ ∈ T k−1
n

with g(x∗) = (1/k, . . . , 1/k). Then S(x∗) = (t, . . . , t) for some t > 0 or
for t = 0 when S(x∗) = 0 for some x∗ ∈ △.

It is easy to finish the proof now. The point x∗ defines a partition
P (x∗) of [0, n) into k intervals [x∗

i−1, x
∗
i ) and s[x∗

i−1, x
∗
i ) = t for all

i ∈ [k]. Round each x∗
i to the nearest integer yi, ties broken arbitrarily.

So |x∗
i − yi| ≤ 1/2. Now y = (y1, . . . , yk−1) defines a block partition

B1, . . . , Bk of [0, n) (or A, if you wish). As s is non-expanding,

|s(Bi) − s(Bj)| = |s[yi−1, yi)− s[yj−1, yj)|

≤ |s[yi−1, yi)− s[x∗

i−1, x
∗

i )|+ |s[x∗

i−1, x
∗

i )− s[x∗

j−1, x
∗

j )|+

+ |s[x∗

j−1, x
∗

j )− s[yj−1, yj)| ≤ 1 + |t− t|+ 1 ≤ 2,

for all i, j ∈ [k], proving the theorem. �

Proof of Lemma 4.3. Given such an h, the map hτ : △ → △ where
τ ∈ [0, 1] defined by hτ (z) = (1 − τ)z + τh(z) is a homotopy between
h and the identity. Note that hτ (z) ∈ ∂△ if z ∈ ∂△ for all τ ∈ [0, 1].

Take now two disjoint copies, △+ and △−, of △ and identify their
boundaries. This is an Sd, the d-dimensional unit sphere. Define a
map H : Sd → Sd by setting H(x) equal to h(x) ∈ △+ if x ∈ △+ and
h(x) ∈ △− if x ∈ △−. The map H is well-defined and continuous since
x ∈ ∂△± is mapped to H(x) ∈ ∂△±. The homotopy hτ extends to a
homotopy Hτ between H and the identity on Sd. Thus the degree of
H is one. This proves the lemma as H|△+ : △+ → △+ is the same as
h : △ → △ and Hτ (z) ∈ △+ for all τ ∈ [0, 1] if z ∈ △+. �
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[1] I. Bárány, B. Doerr. Balanced partitions of vector sequences, Lin. Alg. Appl.,
414 (2006), 464–469.
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