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Abstract

A well known consequence of the Borsuk-Ulam theorem is that if the d-dimensional
sphere Sd is covered with less than d + 2 open sets, then there is a set containing a
pair of antipodal points. In this paper we provide lower and upper bounds on the
minimum number of open sets, not containing a pair of antipodal points, needed to
cover the d-dimensional sphere n times, with the additional property that the northern
hemisphere is covered m > n times. We prove that if the open northern hemisphere
is to be covered m times then at least

⌈
d−1
2

⌉
+ n + m and at most d + n + m sets are

needed. For the case of n = 1 and d ≥ 2, this number is equal to d + 2 if m ≤
⌊
d
2

⌋
+ 1

and equal to
⌊
d−1
2

⌋
+ 2 + m if m >

⌊
d
2

⌋
+ 1. If the closed northern hemisphere is to

be covered m times then d+ 2m− 1 sets are needed, this number is also sufficient. We
also present results on a related problem of independent interest. We prove that if Sd

is covered n times with open sets, not containing a pair of antipodal points, then there
exists a point that is covered at least

⌈
d
2

⌉
+ n times. Furthermore, we show that there

are covers in which no point is covered more than n + d times.

1 Introduction

The Lusternik-Schnirelmann [5] version of the Borsuk-Ulam theorem states that in any
covering of the d-dimensional sphere Sd with at most d+1 open sets, there is a set containing
a pair of antipodal points. A natural generalization of this result has been introduced by
Stahl [9]; he considered n-fold covers, in which every point of Sd must be covered at least n
times. He showed that in every n-fold cover of Sd with at most d+2n−1 open sets, there is
a set containing a pair of antipodal points. Using a construction of Gale [2], it can easily be
shown that this bound is tight. For every n ≥ 1, Gale constructed a set of d+ 2n points on
the d-dimensional unit sphere, with the property that every open half-space that contains
the origin contains at least n points of the set. Placing an open hemisphere with its pole at
each of these points provides an n-fold cover of Sd with d + 2n open sets, in which no set
contains a pair of antipodal points. We refer to this cover as the Gale n-fold cover of Sd.
An n-fold cover of Sd is said to be antipodal if none of its sets contains a pair of antipodal
points.
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We consider a variation on this theme. Let m > n ≥ 1. An (n,m)-fold cover of Sd is
an n-fold cover of Sd, in which every point of the open northern hemisphere is covered m
times. An (n,m)-fold cover of Sd is an n-fold cover of Sd, in which every point of the closed
northern hemisphere is covered m times. Let f(d, n,m) be the minimum number of sets in
an antipodal (n,m)-fold cover of Sd with open sets. In a similar way, let f(d, n,m) be the
minimum number of sets in an antipodal (n,m)-fold cover of Sd with open sets. Since the
case of d = 0 is trivial, we will always assume that d ≥ 1.

In this paper we show lower and upper bounds on f(d, n,m) (Theorem 3.4) and provide
the exact value of f(d, n,m) (Theorem 3.1). We also compute the exact value of f(d, 1,m)
(Theorem 3.2 and Proposition 3.3). The search for a lower bound of f(d, n,m) lead us to
study the problem of finding a point covered many times in an antipodal n-fold cover of
Sd with open sets. Let then Q(d, n) be the maximum integer such that in every antipodal
n-fold cover of Sd with open sets there exists a point that is covered Q(d, n) times. This
paper is organized as follows. In Section 2 we show upper and lower bounds on Q(d, n)
(Theorem 2.2). In Section 3 we give our results on f(d, n,m) and f(d, n,m).

2 Bounds on Q(d, n)

The problem of determining Q(d, 1) has been studied before. Its exact value of Q(d, 1) =⌊
d
2

⌋
+ 2 has been settled in a series of papers by Ščepin [6], Izydorek and Jaworowski [3],

and Jaworowski [4]. An explicit cover yielding the upper bound for Q(d, 1) was given by
Simonyi and Tardos [8]. They started by covering Sd with the projections from the origin
of the closed facets of a regular (d + 1)-simplex. Afterwards, they replaced the points of
these sets that were covered more than

⌊
d
2

⌋
+ 1 times with a new closed set. (Although

this gives a cover with closed sets, sufficiently small open neighborhoods of these sets give
the desired cover.) At first glance, it seems sensible to use a similar idea to upper bound
Q(d, n). However, our attempts of cutting out neighborhoods of often-covered points of an
n-fold cover, and placing patches of n sets instead, always produced points that were covered
an excessive amount of times. Finally, we decided to use Gale’s n-fold cover of Sd.

Ky Fan’s theorem [1] can be used to prove a lower bound of
⌈
d
2

⌉
+ 1 for Q(d, 1). For

proving a lower bound ofQ(d, n), we will use the following reformulation of Ky Fan’s theorem
that has been presented in [8].

Theorem 2.1. (Ky Fan’s Theorem.)
Let F be an antipodal cover of Sd. Assume that a linear order is given on F . Then there

exist F1 < F2 < · · · < Fd+2 sets of F such that

F1 ∩ −F2 ∩ F3 ∩ −F4 ∩ · · · ∩ (−1)d+1Fd+2 6= ∅.

�

We now give our bounds on Q(d, n).

Theorem 2.2.
⌈
d
2

⌉
+ n ≤ Q(d, n) ≤ d+ n.

Proof. First we prove the lower bound. Let F be an antipodal n-fold cover of Sd with open
sets. The intersections of all intersecting subsets of F consisting of n sets form an antipodal
1-fold cover F ′ of Sd with open sets. Explicitly, F ′ := {

⋂
C : C ⊂ F , |C| = n and

⋂
C 6= ∅}.

For an arbitrary linear order of F , every set of F ′ is of the form C =
⋂n

i=1 Fi for some

2



F1 < F2 < · · · < Fn in F . Hence, we may assign the tuple v(C) := (F1, F2, . . . , Fn) to C
and define a linear order on F ′, by setting C1 < C2 if and only if v(C1) < v(C2) in the
lexicographical order of the tuples v(C1) and v(C2). By Ky Fan’s theorem there exist sets

C1 < C2 < · · · < Cd+2 of F ′ such that
⋂d+2

i=1 (−1)i−1Ci is not empty. Since F ′ is an antipodal
cover, the first coordinates of the tuples associated to consecutive Ci’s are different; by the
additional assumption that v(C1) < · · · < v(Cd+2), all of these first coordinates are also

pairwise different. Let x ∈
⋂d(d+2)/2e

j=1 C2j−1. This point is in all the first coordinates (sets)
of the tuples v(C2j−1), and in all the coordinates (sets) of the last tuple. As all of these sets
are different, x is in at least d(d+ 2)/2e+ n− 1 =

⌈
d
2

⌉
+ n different sets of F .

The upper bound is given by Gale’s n-fold cover of Sd. In this cover a point x ∈ Sd is
not covered by precisely those hemispheres (sets) whose poles are separated from x by the
hyperplane through the origin and orthogonal to ~x. Since there are at least n of these sets
and there are d+ 2n sets in this cover, x is covered at most d+ n times.

We conjecture that the upper bound of Theorem 2.2 is tight.

Conjeture 2.3. Q(d, n) = d+ n for n ≥ 2.

3 Bounds on f(d, n,m) and f(d, n,m).

In this section we prove our results for f(d, n,m) and f(d, n,m). We start by showing the
exact values of f(d, n,m) and f(d, 1,m).

Theorem 3.1. f(d, n,m) = d+ 2m− 1 for m > n.

Proof. Let F be an antipodal (n,m)-fold cover of Sd with open sets. Note that the intersec-
tion of F with the equator is an antipodal m-fold cover of Sd−1 with open sets. Therefore,
as shown by Stahl [9], |F| ≥ d + 2m − 1, which proves the lower bound. For the upper
bound, rotate Gale’s m-fold cover of Sd so that one of the hemispheres (sets) in this cover
coincides with the southern hemisphere. Remove this hemisphere to obtain an antipodal
(n,m)-fold cover of Sd with d+ 2m− 1 open sets.

Theorem 3.2. For d ≥ 2, f(d, 1,m) is equal to:

f(d, 1,m) =

{
d+ 2 if m ≤

⌊
d
2

⌋
+ 1,⌊

d−1
2

⌋
+ 2 +m if m ≥

⌊
d
2

⌋
+ 1.

Proof. First we prove the lower bound. Let F be an antipodal (1,m)-fold cover of Sd with
open sets. Since F covers the equator once, there is a point in the equator of Sd covered at
least Q(d− 1, 1) =

⌊
d−1
2

⌋
+ 2 times. Just below this point there is a point in the southern

hemisphere covered by the same sets; its antipodal point in the northern hemisphere is
covered by at least m other sets. Thus there are at least

⌊
d−1
2

⌋
+2+m sets in F . This lower

bound is tight for m ≥
⌊
d
2

⌋
+ 1. For m <

⌊
d
2

⌋
+ 1, the better lower bound of d + 2 follows

immediately from Lusternik-Schnirelmann theorem [5] and the fact that F is a 1-fold cover
of Sd.

For the upper bound we carefully construct an antipodal
(
1,
⌊
d
2

⌋
+ 1
)
-fold cover of Sd

with d + 2 open sets. This cover proves the tight upper bound of d + 2 for m ≤
⌊
d
2

⌋
+ 1.

3



Figure 1: The 1-fold cover of the equator in the proof of Theorem 3.2.

For m >
⌊
d
2

⌋
+ 1, we add m−

⌊
d
2

⌋
− 1 open northern hemispheres to this cover to produce

an antipodal (1,m)-fold cover of Sd with
⌊
d−1
2

⌋
+ 2 +m open sets.

Assume that Sd is the unit sphere centered at the origin. We start by constructing a
1-fold cover of its equator Sd−1 (the intersection of Sd with the hyperplane xd+1 = 0) in
the following way. Fix a regular d-simplex τ centered at the origin and having its vertices
on Sd−1. Project its closed facets from the origin to Sd−1 and let F ′1, . . . , F

′
d+1, be these

projections. This produces an antipodal cover of Sd−1 with d+ 1 closed sets. Let D′ be the
set of points of Sd−1 that are covered at least

⌈
d+2
2

⌉
=
⌈
d
2

⌉
+1 times in this cover. Note that

V ′ is closed, and since there are only d + 1 sets F ′i , it does not contain a pair of antipodal
points. Choose ε2 > ε1 > 0. Let D be the open ε2-neighborhood of D′, in Sd−1. Further,
let Fi be the open ε1-neighborhood of F ′i \D, also in Sd−1. Choose ε2 small enough such
that none of F1, F2, . . . , Fd+1 and D contain a pair of antipodal points. Choose ε1 small
enough with respect to ε2, so that every point x ∈ Sd−1 has an open neighborhood that
is covered by at most

⌈
d
2

⌉
of the sets Fi. Then F := {F1, F2, . . . , Fd+1, D} is an antipodal

1-cover of Sd−1 with d+ 2 open sets. See Figure 1 for an illustration of the d = 2 case.
We now extend F to an antipodal

(
1,
⌊
d
2

⌋
+ 1
)
-fold cover of Sd with open sets. Roughly

speaking, we first extend all sets of F to parts of a “belt”. Afterwards, we further extend
the “facet” sets Fi of F to cover the northern hemisphere and the set D of F to cover
the southern hemisphere. Let π be the orthogonal projection of Rd+1 to the hyperplane
xd+1 = 0. Let 0 < δ′1 < δ′2 < 1. Let C ′′i be the set of points x ∈ Rd+1 with π(x) ∈ Fi, whose
last coordinate satisfies −δ′2 < xd+1 < δ′2. Similarly, let C ′′d+2 be the set of points x ∈ Rd+1

with π(x) ∈ D, whose last coordinate satisfies −δ′2 < xd+1 < δ′1. Note that while the facet
sets Fi are extended symmetrically to the north and the south, the set D is extended further
to the south than to the north.

Next, for each 1 ≤ i ≤ d + 2, let C ′i be the set of points x ∈ Sd such that the infinite
ray with apex in the origin and passing through x intersects C ′′i . The sets C ′i the parts of
“belts” on the sphere. Let δi = sin tan−1(δ′i) be the corresponding heights of the belt parts,

4



Figure 2: The covering of the northern hemisphere in the proof of Theorem 3.2

for i = 1, 2.
Finally, for 1 ≤ i ≤ d+ 1, let Ci be the union of the open northern hemisphere with C ′i,

minus the closure of −C ′i. Further, let Cd+2 be the union of the southern hemisphere with
C ′d+2, minus the closure of −C ′d+2. See Figures 2 and 3 for an illustration of the northern
and southern hemispheres respectively (for the case d = 2 and m = 2). By construction, all
these sets are open and do not contain a pair of antipodal points of Sd. What remains to
show is that C := {C1, . . . , Cd+2} is in fact a

(
1,
⌊
d
2

⌋
+ 1
)
-cover of Sd.

We distinguish a few cases with respect to the value of the last coordinate of the points
of Sd. The set of points of Sd whose last coordinate is greater than δ2 are covered d + 1
times by C1, . . . , Cd+1. The set of points of Sd whose last coordinate is less than or equal
to −δ2 are covered once by Cd+2.

To each point x ∈ Sd whose last coordinate satisfies −δ2 < xd+1 ≤ δ2, we assign the
point x′ in the equator such that π(x) lies on the infinite ray from the origin to x′. Suppose
that the last coordinate of x is greater than zero. By our choice of ε1 and ε2, there is an open
neighborhood of x′ in Sd−1 that is covered by at most

⌈
d
2

⌉
sets of −F1, . . . ,−Fd+1. Assume

without loss of generality that −F1,−F2, . . . ,−Fb d
2 c+1 do not cover this neighborhood, then

at least C1, C2, . . . , Cb d
2 c+1 cover x. Therefore C covers the open northern hemisphere

⌊
d
2

⌋
+1

times. If the last coordinate of x is greater than −δ2 and at most zero, then x is covered
by the extensions of the sets in F that cover x′. Thus, x is covered at least once and C is a(
1,
⌊
d
2

⌋
+ 1
)
-cover of Sd.

Proposition 3.3. f(1, 1,m) = 2 +m.

Proof. For the upper bound, note that an antipodal (1,m)-cover of S1 with 2 +m open sets
can be obtained by adding m− 1 open northern hemispheres to an antipodal 1-cover of S1

5



Figure 3: The covering of the southern hemisphere in the proof of Theorem 3.2

with three open sets. For the lower bound, suppose first that there exist two points x and y
on the open upper hemisphere that are not covered by the same m sets. Then on the path
from x to y on the northern hemisphere, there exists a point z that is covered by at least
m+ 1 different sets. As its antipodal point −z needs at least one set to be covered as well,
this gives a total of at least m+ 2 sets. Hence, assume that all points on the open northern
hemisphere are covered by the same m sets. But then none of the two points on the equator
can be covered by any of these sets, again resulting in a total of at least m+ 2 sets.

In the remaining part of this section, we present lower and upper bounds for f(d, n,m)
for arbitrary values of n and m.

Theorem 3.4.
⌈
d−1
2

⌉
+ n+m ≤ f(d, n,m) ≤ d+ n+m.

Proof. Let F be an antipodal (n,m)-fold cover of Sd with open sets. Since F covers the
equator once, by Theorem 2.2 there is a point in the equator of Sd covered at least

⌈
d−1
2

⌉
+n

times. Just below this point there is a point in the southern hemisphere covered by the same
sets; its antipodal point in the northern hemisphere is covered by at least m other sets. Thus
in total there are at least

⌈
d−1
2

⌉
+ n+m sets in F . For the upper bound take Gale’s n-fold

cover of Sd with d+ 2n sets. Add m−n open northern hemispheres to obtain an antipodal
(n,m)-fold cover of Sd with d+ n+m open sets.

In the case where m − n <
⌈
d
2

⌉
, the following proposition gives an improvement of the

lower bound from Theorem 3.4. We omit the proof, which is a direct application of Stahl’s
result in combination with the fact that every (n,m)-fold cover is also an n-fold cover.

Proposition 3.5. f(d, n,m) ≥ d+ 2n.

In the proof of the lower bound of f(d, n,m) in Theorem 3.4 we used the lower bound
of Q(d, n) given in Theorem 2.2. Hence, any improvement on the lower bound of Q(d, n)
immediately improves the lower bound of f(d, n,m). Assuming that Conjecture 2.3 holds,
the proof of Theorem 3.4 would leave a gap of only one between the lower and upper bounds
of f(d, n,m).
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