Regular graphs are antimagic

Kristóf Bérczi∗ Attila Bernáth† Máté Vizer‡

May 1, 2015

Abstract
In this note we prove - with a slight modification of an argument of Cranston et al. [2] - that k-regular graphs are antimagic for k ≥ 2.

1 Introduction
Throughout the note graphs are assumed to be simple. Given an undirected graph G = (V, E) and a subset of edges F ⊆ E, F(v) denotes the set of edges in F incident to node v ∈ V, and dF(v) := |F(v)| is the degree of v in F. A labeling f is an injective function f : E → {1, 2, ..., |E|}. Given a labeling f and a subset of edges F, let f(F) = ∑e ∈F f(e). A labeling is antimagic if f(E(u)) ̸= f(E(v)) for any pair of different nodes u, v ∈ V. A graph is said to be antimagic if it admits an antimagic labeling.

Hartsfield and Ringel conjectured [3] that all connected graphs on at least 3 nodes are antimagic. The conjecture has been verified for several classes of graphs (see e.g. [3]), but is widely open in general. In [2] Cranston et al. proved that every k-regular graph is antimagic if k ≥ 3 is odd. Note that 1-regular graphs are trivially not antimagic. We have observed that a slight modification of their argument also works for even regular graphs, hence we prove the following.

Theorem 1. For k ≥ 2, every k-regular graph is antimagic.

It is worth mentioning the following conjecture of Liang [5]. Let G = (S, T; E) be a bipartite graph. A path P = {uw, vw} of length 2 with u, w ∈ S is called an S-link.

Conjecture 2. Let G = (S, T; E) be a bipartite graph such that each node in S has degree at most 4 and each node in T has degree at most 3. Then G has a matching M and a family P of node-disjoint S-links such that every node v ∈ T of degree 3 is incident to an edge in M ∪ (∪P∈P P).

Liang showed that if the conjecture holds then it implies that every 4-regular graph is antimagic. The starting point of our investigations was proving Conjecture 2. As Theorem 1 provides a more general result, we leave the proof of Conjecture 2 for a forthcoming paper [1].

2 Proof of Theorem 1

A trail in a graph G = (V, E) is an alternating sequence of nodes and edges v0, e1, v1, ..., e_t, v_t such that e_i is an edge connecting v_{i−1} and v_i for i = 1, 2, ..., t, and the edges are all distinct (but there might be repetitions among the nodes). The trail is open if v_0 ̸= v_t, and closed otherwise. The length of a trail is the number of edges in it. A closed trail containing every edge of the graph is called an Eulerian trail. It is well known that a graph has an Eulerian trail if and only if it is connected and every node has even degree.

Lemma 3. Given a connected graph G = (V, E), let T = {v ∈ V : dE(v) is odd}. If T ̸= ∅, then E can be partitioned into |T|/2 open trails.

Proof. Note that |T| is even. Arrange the nodes of T into pairs in an arbitrary manner and add a new edge between the members of every pair. Take an Eulerian trail of the resulting graph and delete the new edges to get the |T|/2 open trails.

∗MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Budapest, Hungary. E-mail: berkri@cs.elte.hu.
†MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Budapest, Hungary. E-mail: bernath@cs.elte.hu.
‡MTA-Árpád Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary. Email: vizermate@gmail.com
The main advantage of Lemma 3 is that the edge set of the graph can be partitioned into open trails such that at most one trail starts at every node of V. Indeed, there is a trail starting at v if and only if v has odd degree in G. This is how we see the Helpful Lemma of [2].

Corollary 4 (Helpful Lemma of [2]). Given a bipartite graph $G = (U, W; E)$ with no isolated nodes in U, E can be partitioned into subsets $E^i', T_1, T_2, \ldots, T_l$ such that $d_{E'}(u) = 1$ for every $u \in U$, T_i is an open trail for every $i = 1, 2, \ldots, l$, and the endpoints of T_i and T_j are different for every $i \neq j$.

Proof. Take an arbitrary $E' \subseteq E$ with the property $d_{E'}(u) = 1$ for every $u \in U$. A component of $G - E'$ containing more than one node is called nontrivial. If there exists a nontrivial component of $G - E'$ that only contains even degree nodes then let $uw_1 \in E - E'$ be an edge in this component with $u \in U$ and $w_1 \in W$, and let $uw_2 \in E'$. Replace uw_2 with uw_1 in E'. After this modification, the component of $G - E'$ that contains u has an odd degree node, namely w_1. Iterate this step until every nontrivial component of $G - E'$ has some odd degree nodes. Let $E'' = E'$ and apply Lemma 3 to get the decomposition of $E - E''$ into open trails.

In what follows we prove that regular graphs are antimagic: for sake of completeness we include the odd regular case, too. We emphasize the differences from the proof appearing in [2].

Proof of Theorem 7. Note that it suffices to prove the theorem for connected regular graphs. Let $G = (V, E)$ be a connected k-regular graph and let $v^* \in V$ be an arbitrary node. Denote the set of nodes at distance exactly i from v^* by V_i and let q denote the largest distance from v^*. We denote the edge-set of $G[V_i]$ by E_i. Apply Corollary 4 to the induced bipartite graph $G[V_{i-1}, V_i]$ with $U = V_i$ to get E_i^* and the trail decomposition of $G[V_{i-1}, V_i] - E_i^*$ for every $i = 1, \ldots, q$. The edge set of $G[V_{i-1}, V_i] - E_i^*$ is denoted by E_i^*.

Now we define the antimagic labeling f of G as follows. We reserve the $|E_i^*|$ smallest labels for labeling E_i, the next $|E_i^*| - 1$ smallest labels for labeling E_i^*, the next $|E_i^*| - 2$ smallest labels for labeling E_i^*, the next $|E_i^*| - 3$ smallest labels for labeling E_i^*, etc. There is an important difference here between our approach and that of [2] as we switched the order of labeling E_i^* and E_i, and we don’t yet define the labels, we only reserve the intervals to label the edge sets. Next we prove a claim that tells us how to label the edges in E_i^*.

Claim 5. Assume that we have to label the edges of E_i^* from interval $s, s + 1, \ldots, \ell$ (where $|E_i^*| = \ell - s + 1$), and that we are given a trail decomposition of E_i^* into open trails. We can label E_i^* so that successive labels (in a trail) incident to a node $v_i \in V_i$ have sum at most $s + \ell$, and successive labels (in a trail) incident to a node $v_{i-1} \in V_{i-1}$ have sum at least $s + \ell$.

Proof. Our proof of this claim is essentially the same as the proof in [2]: we merely restate it for self-containedness. Let T be the trail decomposition of E_i^* into open trails. Take an arbitrary trail $T = u_0, e_1, u_1, \ldots, e_t, u_t$ of length t from T and consider the following two cases (see Figure 4 for an illustration).

- **Case A:** If $u_0 \in V_{i-1} \subseteq V_{i-1}$ then label e_1, \ldots, e_t by $s, \ell, s + 1, \ell - 1, \ldots$, in this order. In this case the sum of 2 successive labels is $s + \ell$ at a node in V_i, and it is $s + \ell + 1$ at a node in V_{i-1}.

- **Case B:** If $u_0 \in V_{i-1}$ then label e_1, e_2, e_t by $\ell, s, \ell - 1, s + 1, \ldots$, in this order. In this case the sum of 2 successive labels is $s + \ell - 1$ at a node in V_i, and it is $s + \ell$ at a node in V_{i-1}.

We prove by induction on $|T|$. The proof is finished by the following cases.

1. If T contains a trail of even length, then let T be such a trail (and again t denotes the length of T). If the endpoints of T fall in V_{i-1} then apply Case A. On the other hand, if the endpoints of T fall in V_i then apply Case B. In both cases we use $\frac{t}{2}$ labels from the lower end of the interval, and $\frac{t}{2}$ labels from the upper end, therefore we can label the edges of the trails in $T - T$ from the (remaining) interval $s + \frac{t}{2}, s + \frac{t}{2} + 1, \ldots, \ell - \frac{t}{2}$, so that the lower bound $s + \frac{t}{2} + \ell - \frac{t}{2} = s + \ell$ holds for the sum of two successive labels at every $v_{i-1} \in V_{i-1}$, and the same upper bound holds at each node $v_i \in V_i$.

2. Every trail in T has odd length. If T contains only one trail then label it using either of the two cases above and we are done. Otherwise let T_1 and T_2 be two trails from T, and let t_i be the length of T_i for both $i = 1, 2$. Label first the edges of T_1 using Case A (starting at the endpoint of T_1 that lies in V_{i-1}). Note that the remaining labels form the interval $s + \frac{t_1}{2} + 1, \ldots, \ell - \frac{t_1}{2}$. Next label the edges of T_2 using Case B (starting at the endpoint of T_2 that lies in V_i). Note that the sum of successive labels in the trail T_2 becomes $s + \frac{t_2}{2} + (\ell - \frac{t_2}{2}) - 1 = s + \ell$ at a node in V_i, and it is $s + \frac{t_1}{2} + (\ell - \frac{t_1}{2}) = s + \ell + 1$ at a node in V_{i-1}, which is fine for us. Finally, the remaining labels form the interval $s + \frac{t_1}{2} + 1 + \frac{t_2}{2}, \ldots, \ell - \frac{t_1}{2} - \frac{t_2}{2}$, therefore we can label the edges of the trails in $T - (T_1, T_2)$ from the remaining interval so that the lower bound $s + \frac{t_1}{2} + 1 + \ell - \frac{t_1}{2} - \frac{t_2}{2} = s + \ell$ holds for the sum of two successive labels at every node of V_{i-1}, and the same upper bound holds at every node of V_i.

\[\square\]
Now we specify how the labels are determined to make sure \(f(E(u)) \neq f(E(v)) \) for every \(u \neq v \). We label the edges of every \(E_i \) arbitrarily from their dedicated intervals. Label the edges of every \(E_i' \) in the manner described by Claim 5. For any node \(v \in V_i \) with \(i > 0 \), let \(\sigma(v) \) denote the unique edge of \(E_i^\sigma \) incident to \(v \). Let \(p(v) = f(E(v)) - f(\sigma(v)) \) for every \(v \in V - v^* \). We label the edges in \(E_i^\sigma, E_{i-1}^\sigma, \ldots, E_1^\sigma \) as in [2]: if we already labeled \(E_i^\sigma, E_{i-1}^\sigma, \ldots, E_1^\sigma \), then \(p(v_i) \) is already determined for every \(v_i \in V_i \). So we order the nodes of \(V_i \) in an increasing order according to their \(p \)-value and assign the label to their \(\sigma \) edge in this order. This ensures that \(f(E(u)) \neq f(E(v)) \) for an arbitrary pair \(u, v \in V_i \).

We have fully described the labeling procedure. This labeling scheme ensures that \(f(E(v_i)) < f(E(v_j)) \) if \(v_i \in V_i, v_j \in V_j \) and \(i \geq j + 2 \) since \(G \) is regular and the edges in \(E(v_i) \) get larger labels than those in \(E(v_j) \). Similarly, \(f(E(v^*)) > f(E(v)) \) for every \(v \in V - v^* \) for the same reason. It is only left to show that \(f(E(v_i)) \neq f(E(v_{i-1})) \) for arbitrary \(v_i, v_{i-1} \in V_{i-1} \) and \(i \geq 2 \).

Claim 6. For arbitrary \(v_i \in V_i, v_{i-1} \in V_{i-1} \) and \(i \geq 2 \) we have

(i) \(p(v_i) \leq \frac{k-2}{2}(s + \ell) + \ell \) and \(p(v_{i-1}) \geq \frac{k-2}{2}(s + \ell) + s \), if \(k \) is even, and

(ii) \(p(v_i) \leq \frac{k-1}{2}(s + \ell) \) and \(p(v_{i-1}) \geq \frac{k-1}{2}(s + \ell) \), if \(k \) is odd.

Proof. Assume first that \(k \) is even. In this case \(p(v) \) is the sum of an odd number of labels. We pair up all but one of these labels using the trail decomposition of \(E_i^\sigma \) to get the bounds needed.

1. Take a node \(v_i \in V_i \). Note that \(f(e) < s \) for every \(e \in E(v_i) - E_i^\sigma \). Let \(t = d_{E_i^\sigma}(v_i) \).

 (a) If \(t \) is even then \(\sum_{e \in E_i^\sigma \cap E(v_i)} f(e) \leq \frac{t}{2}(s + \ell) \) by Claim 5 giving \(p(v_i) \leq \frac{t}{2}(s + \ell) + (k - 1 - t)s \leq \frac{k-2}{2}(s + \ell) + \ell \).

 (b) If \(t \) is odd then \(\sum_{e \in E_i^\sigma \cap E(v_i)} f(e) \leq \frac{t-1}{2}(s + \ell) + \ell \) by Claim 5 giving \(p(v_i) \leq \frac{t-1}{2}(s + \ell) + \ell + (k - 1 - t)s \leq \frac{k-2}{2}(s + \ell) + \ell \).

2. Now take a node \(v_{i-1} \in V_{i-1} \). Note that \(f(e) > \ell \) for every \(e \in E(v_{i-1}) - E_i^\sigma \). Let again \(t = d_{E_i^\sigma}(v_{i-1}) \).

 (a) If \(t \) is even then \(\sum_{e \in E_i^\sigma \cap E(v_{i-1})} f(e) \geq \frac{t}{2}(s + \ell) \) by Claim 5 giving \(p(v_{i-1}) \geq \frac{t}{2}(s + \ell) + (k - 1 - t)\ell \geq \frac{k-2}{2}(s + \ell) + s \).

 (b) If \(t \) is odd then \(\sum_{e \in E_i^\sigma \cap E(v_{i-1})} f(e) \geq \frac{t-1}{2}(s + \ell) + s \) by Claim 5 giving \(p(v_{i-1}) \geq \frac{t-1}{2}(s + \ell) + s + (k - 1 - t)\ell \geq \frac{k-2}{2}(s + \ell) + s \).

This concludes the proof of (i).

Although the proof of (ii) can be found in [2], we also present it here to make the paper self contained. The proof is very similar to the even case. So assume that \(k \) is odd. In this case \(p(v) \) is the sum of an even number of labels. We pair up these labels using the trail decomposition of \(E_i^\sigma \) to get the bounds needed.

1. Take a node \(v_i \in V_i \). Note that \(f(e) < s \) for every \(e \in E(v_i) - E_i^\sigma \). Let \(t = d_{E_i^\sigma}(v_i) \).

 (a) If \(t \) is even then \(\sum_{e \in E_i^\sigma \cap E(v_i)} f(e) \leq \frac{t}{2}(s + \ell) \) by Claim 5 giving \(p(v_i) \leq \frac{t}{2}(s + \ell) + (k - 1 - t)s \leq \frac{k-1}{2}(s + \ell) \).

Figure 1: An illustration for labeling trails.
(b) If \(t \) is odd then \(\sum_{e \in E_i \cap E(v_i)} f(e) \leq \frac{k-1}{2} (s + \ell) + (k - t)s \leq \frac{k-1}{2} (s + \ell) \).

2. Now take a node \(v_{i-1} \in V_{i-1} \). Note that \(f(e) > \ell \) for every \(e \in E(v_{i-1}) - E'_i \). Let again \(t = d_{E'_i}(v_{i-1}) \).

(a) If \(t \) is even then \(\sum_{e \in E_i \cap E(v_{i-1})} f(e) \geq \frac{k-1}{2} (s + \ell) \) by Claim 5, giving

\[
 p(v_{i-1}) \geq \frac{k-1}{2} (s + \ell) + \ell \geq \left(k - 1 \right) \frac{k-1}{2} (s + \ell).
\]

This concludes the proof of (ii), and we are done.

Remark 7. Observe that the proof of Theorem 1 does not really use the regularity of the graph, it merely relies on the fact that the degree of a node \(v_i \in V_i \) is not smaller than that of a node \(v_j \in V_j \) where \(i < j \). Hence the following result immediately follows.

Theorem 8. Assume that a connected graph \(G = (V, E) \) (\(|V| \geq 3\)) has a node \(v^* \in V \) of maximum degree such that \(d_{E_i}(v_i) \geq d_{E_j}(v_j) \) whenever \(v_i \in V_i, v_j \in V_j \) and \(i < j \), where \(V_\ell \) denotes the set of nodes at distance exactly \(\ell \) from \(v^* \). Then \(G \) is antimagic.

Acknowledgement

The first and the second authors were supported by the Hungarian Scientific Research Fund - OTKA, K109240. The third author would like to thank Zheijang Normal University, China - where he first heard about these problems - for their hospitality.

References

