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Abstract

The upper chromatic number χ(H) of a hypergraph H = (X, E)
is the maximum number of colors that can occur in a vertex color-
ing φ : X → N such that no edge E ∈ E is completely multicolored.
A hypertree (also called arboreal hypergraph) is a hypergraph whose
edges induce subtrees on a fixed tree graph. It has been shown that
on hypertrees it is algorithmically hard not only to determine exactly
but also to approximate the value of χ, unless P = NP. In sharp con-
trast to this, here we prove that if the input is restricted to hypertrees
H of bounded maximum vertex degree, then χ(H) can be determined
in linear time if an underlying tree is also given in the input. Con-
sequently, χ on hypertrees is fixed parameter tractable in terms of
maximum degree.
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1 Introduction

In this note our subject is a coloring parameter of hypergraphs which was
introduced in several equivalent versions during the last four decades.

Formally, a hypergraph is a pair H = (X, E) where X is a set called vertex
set and E is a set system over X, called edge set. Throughout, we will assume
that |E| ≥ 2 holds for each E ∈ E , moreover we use the notations n = |X|
and m = |E| for the number of vertices and edges, respectively.

Definition 1 A C-coloring of a hypergraph H = (X, E) is an assignment
of colors to the vertices, φ : X → N, such that each edge E ∈ E contains at
least two vertices of the same color. The upper chromatic number χ(H) of H
is the maximum number of colors that can occur in a C-coloring of H. We
say that a C-coloring φ : X → N is an optimal C-coloring if it uses exactly
χ(H) distinct colors.

1.1 Some related notions and facts

We will use the following standard terminology:

• A graph G = (V,E) is a host graph of the hypergraph H = (X, E) if
V = X and each edge of H induces a connected subgraph in G. A host
tree is a host graph which is a tree. A hypergraph admitting a host
tree is called hypertree1.

• A vertex set S ⊆ X is a transversal2 of H = (X, E) if it intersects
every edge of H. The minimum cardinality of a transversal of H is
the transversal number and denoted by τ(H). The complement of a
transversal is a set S ′ ⊆ X, which contains no edge of H entirely. Such
a vertex set S ′ is called independent set3 and the maximum cardinality
α(H) of an independent set is the independence number of H.

• The decrement of H = (X, E) is defined as dec(H) = |X| − χ(H),
and similarly the decrement of a C-coloring φ : X → N is dec(φ) =
|X| − |φ(X)| (introduced in [2]).

Some simple relations satisfied by every hypergraph H = (X, E) are:
1same as ‘arboreal hypergraph’ in part of the literature
2same as ‘hitting set’ or ‘vertex cover’
3also called ‘stable set’, but some papers use the two terms differently for hypergraphs
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• The Gallai-type equality α(H) + τ(H) = |X| follows directly from the
definitions.

• Selecting one vertex from each color class of a C-coloring is independent,
therefore χ(H) ≤ α(H). Equivalently, dec(H) ≥ τ(H) always holds.

• The upper chromatic number is additive with respect to vertex-disjoint
union, hence the optimal C-colorings of a disconnected hypergraph are
composed of those of its connected componens.

Throughout this paper, the host tree of a hypertree H is denoted by T ,
moreover T is considered with an arbitrarily fixed root r. To avoid misunder-
standing, we refer to the edges of T as lines while we keep the term edge for
the edges of H. Additionally, we use the following notation for each vertex
xi of T :

• Ti – the subtree of T rooted at xi, induced by those vertices xj for
which the xj–r path contains xi (also including j = i),

• Xi – the vertex set of Ti,

• Hi – the subhypergraph of H induced by Xi, consisting of those edges
of H which are entirely contained in Xi.

1.2 Earlier results

C-coloring of hypergraphs was proposed by Berge and first investigated in
detail by Sterboul [9] in the early 1970s. The parameter equal to χ(H)+1 is
called the ‘cochromatic number’ and the ‘heterochromatic number’ of H due
to Berge [3, p. 151] and Arocha et al. [1], respectively. For more about history,
relations to other important notions, and for earlier results on C-coloring we
refer to the survey [4].

Another track of related research started in 1993 when Voloshin [10, 11]
introduced the concept of mixed hypergraphs. This combines two opposite
types of coloring conditions making difference between two families D and C
of edges. Then, in a proper vertex coloring, each D-edge must have at least
two vertices with different colors whilst each C-edge must have at least two
vertices with a common color. This leads to two fundamental parameters
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instead of one: the minimum and the maximum number of colors, which are
called the lower and the upper chromatic number of a mixed hypergraph,
respectively. Clearly, a proper coloring of a mixed hypergraph which has
only C-edges is just a C-coloring in our terminology.

For the determination of the upper chromatic number of mixed hyper-
graphs, there is no polynomial-time o(n)-approximation algorithm in general
[6] and there is no polynomial-time approximation scheme (PTAS) even if
the maximum degree is fixed to be 2, unless P=NP [7]. On the other hand,
for mixed hypergraphs of maximum degree 2 the upper chromatic number
has a linear-time 5

3
-approximation and a O(m3 + n)-time 3

2
-approximation

[7]. All the results cited above assume the presence of D-edges in the input
mixed hypergraph.

More related to our current subject, approximability results for C-coloring
of hypergraphs were obtained in [5]. As proved there, dec(H) is (2+2 ln 2m)-
approximable on the class of all hypergraphs, and it is (1+lnm)-approximable
on the class of hypertrees. On the other hand, assuming that NP * DTIME
(nO(log log n)), for every ϵ > 0 one cannot approximate dec(H) within (1 −
ε) lnm, neither χ(H) within O(n1−ε) in polynomial time. Both negative re-
sults are valid already on the class of hypertrees and the latter one also holds
if all the edges are of cardinality 3. Further, on the class of hypertrees in
which every edge is of size at most 7, neither χ(H) nor α(H)− χ(H) can be
approximated within additive error o(n), unless P=NP.

The main result of our paper is that the determination of χ(H) becomes
tractable on hypertrees if some (any) upper bound is put on the vertex de-
grees. It may be of interest to note that it is not necessary to assume any
bounds on the size of edges; an efficient algorithm can be designed without
this kind of restriction.

Theorem 1 For every d ∈ N, there exists a polynomial-time algorithm that
solves the following optimization and search problems:

Given an input hypertree H of maximum vertex degree at most d, de-
termine the upper chromatic number χ(H) and find a C-coloring of H
with exactly χ(H) colors.

Moreover, if a host tree T of maximum degree at most
(

d
⌊d/2⌋

)
+1 is also given

in the input, then the running time of the algorithm is linear.
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This theorem will be proved in Section 3. In the next Section 2 we de-
scribe some general properties of C-colorings of hypertrees, which will be
important in proving the main result. Among them, we should invite atten-
tion to our All-Optimality Lemma (Proposition 4) which states that every
rooted hypertree admits a C-coloring in which every rooted subhypertree ac-
commodates the maximum possible number of colors and at the same time
it satisfies a useful connectivity condition, too.

2 The structure of optimal C-coloring of hy-

pertrees

The observations presented in this section are simple but will be very useful,
and also are interesting on their own right. They can be applied to reduce
the number of candidates for optimal C-colorings in hypertrees substantially,
and will simplify several arguments later on. We introduce two notions; the
first of them makes sense not only for hypertrees but also for any hypergraph.

Definition 2 (Connected C-coloring) Let H be a hypergraph over a host
graph G. A C-coloring φ of H is connected if each color class induces a
connected subgraph of G.

Definition 3 (All-optimal C-coloring) Let H = (X, E) be a hypertree over
a rooted host tree T . Then, a C-coloring φ of H is all-optimal if for each
xi ∈ X, the set Xi (of vertices in the rooted subtree Ti) contains χ(Hi)
distinct colors.

Note that every all-optimal C-coloring uses precisely χ(H) colors.
The next assertion states that any C-coloring of a hypertree can be trans-

formed to a connected C-coloring, without decreasing the number of colors.
(This is false in general if cycles are allowed in the host graph.)

Proposition 2 If a hypertree H admits a C-coloring with k colors, then it
also has a connected C-coloring with k colors, over any fixed host tree T .

Proof We view the host tree T of H as a rooted tree, and consider any
χ-coloring of H. Traverse T in preorder and let a be the first vertex whose
color, say α occurred earlier, but not on its parent b; i.e., vertex b separates
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some connected components of this color class. We denote by A the set of
vertices in the subtree rooted at a, by β the color of b, and set B = X \ A.

Inside A, we recolor all occurrences of color α with β. This operation does
not decrease the number of colors as there exists a vertex outside A which
is colored with α. We claim that all edges of H remain properly colored.
Indeed, if an edge is inside B, its colors have not been changed. Inside A,
only α has been switched to β, therefore any monochromatic vertex pair
remains monochromatic after recoloring. Finally, if an edge meets both A
and B, then it contains the monochromatic pair {a, b}.

Continuing the process, after every recoloring, vertices with the properties
of a occur later and later, until all color classes become connected in the host
tree, and a required χ-coloring is found. �

In calculating the coloring invariants of hypergraphs, connected C-colorings
have some advantage, as one can easily observe:

Proposition 3 If φ is a connected C-coloring of hypergraph H over a fixed
host graph G, then

(i) the number of colors in φ is equal to the number of monochromatic
components in G;

(ii) if H is a hypertree, then the decrement of φ is the number of monochro-
matic lines in the host tree.

The observation above makes it possible to switch our view from vertex
coloring to a selection of monochromatic lines. This leads to an argument
strengthening Proposition 2 as follows.

Proposition 4 (All-Optimality Lemma) Every hypertree H, over any
host tree T , admits a C-coloring which is connected and all-optimal.

Proof Due to Proposition 3(ii), to obtain a connected and optimal C-
coloring, we have to select a set F of lines in the host tree such that each
edge E ∈ E contains at least one line f ∈ F , moreover, |F | is as small as
possible. In analogy to optimal C-colorings, we call F optimal if it consists
of the monochromatic lines of an optimal connected C-coloring of H.

Having fixed a preorder traversal xn, xn−1, . . . , x1 of the host tree, let
F be optimal with the additional property that the index i is as small as
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possible such that the restriction of F to each of Tn, Tn−1, . . . , Ti is optimal.
Clearly, i is well-defined because i ≤ n holds for any optimal F . If i = 1
holds, then the proof is done as the corresponding C-coloring of H is all-
optimal. Suppose for a contradiction that i > 1. Then, by assumption, F
is not optimal in Ti−1, i.e. an optimal Fi−1 for Ti−1 has fewer lines than F
has inside Ti−1. Let F ′ be the set of lines obtained from F by removing
F ∩ E(Ti−1), inserting all lines of Fi−1, and also inserting the line that joins
xi−1 to its parent. This modification does not increase the number of lines in
any Tj with i− 1 ≤ j ≤ n; in particular, |F ′| ≤ |F | holds and F ′ is optimal
in each of those Tj. This will contradict the choice of F (by the minimality
of i) once we show that F ′ determines a C-coloring of H.

Let Ek ∈ E be any edge of H. If Ek is disjoint from Ti−1, then its
intersection with F ′ is the same as that with F , hence it is C-colored. If Ek

is entirely contained in Ti−1, then it is C-colored by Fi−1 which is part of F ′.
Finally, if neither of those two situations occur, then Ek contains both xi−1

and its parent, hence is C-colored by the newly inserted line that joins those
two vertices of the host tree. �

Although the argument above is non-constructive, we shall see in the proof
of the main result that a connected all-optimal C-coloring can be found by a
polynomial-time algorithm, too, whenever the maximum degree of input hy-
pergraphs is bounded above. Observe, on the other hand, that all-optimality
is guaranteed for every hypertree, with no assumption on vertex degrees.

3 Linear-time algorithm for bounded degree

and edge size

The goal of this section is to prove the main result of the paper. Before
designing an efficient algorithm, we first show how the too high degrees of
a host tree can be decreased to respect a well-defined upper bound. The
essential part of the coloring algorithm will then be described in the second
subsection.

3.1 Host tree construction and degree reduction

As a preparation for the proof of Theorem 1, here we prove that hypertrees
of bounded degree always admit host trees of bounded degree, and the latter
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can also be found efficiently. We begin with noting that some host tree can
be determined in polynomial time.

Lemma 5 If H is a hypertree, then a host tree of H can be constructed in
polynomial time.

Proof We apply the following lemma from pages 187–188 of [3]:

(⋆) If H = (X, E) is a hypertree (without 1-element edges), then there
exists a vertex x such that all the edges of H containing x have a
common vertex y ̸= x.

For a hypertree Ti = (Yi, Ei) and for a vertex x ∈ Yi, let Ei(x) denote the
set of all edges containing x. Now, we set T1 = H, Y1 = X, E1 = E and
consider the algorithm whose ith step (for 1 ≤ i ≤ n − 1) is determined as
follows.

• Select a vertex pair xi, yi ∈ Yi for which Ei(xi) ⊆ Ei(yi) holds and there
is no vertex z ∈ Yi with Ei(z) ( Ei(xi). Further, we define p(xi) = yi,
which means that yi will be the parent of xi in the rooted host tree
under construction.

• If i < n − 1, delete xi from each edge of Ti and delete the possibly
arising 1-element edges; that is, Ti+1 = (Yi+1, Ei+1) where

Yi+1 = Yi \ {xi} and Ei+1 = {E \ {xi} : E ∈ Ei ∧ |E \ {xi}| > 1}.

Due to (⋆), if Ti is a hypertree, such a vertex pair (xi, yi) exists. Moreover,
if Ti is a hypertree with a host tree T , then deleting xi from T and joining
its children to yi, a host tree of Ti+1 is obtained. Thus, Ti+1 is a hypertree as
well. Therefore, the procedure can be executed and the graph on the vertex
set X and with the edge set {xip(xi) : 1 ≤ i ≤ n− 1}) is a host tree of H. �

We now turn to degree reduction.

Lemma 6 If a hypertree H has maximum vertex degree at most d, then
there exists a rooted host tree of H in which every vertex has at most

(
d

⌊d/2⌋

)
children. Moreover, from any host tree T of H, another host tree with such
small degrees can be constructed in O(n2) time.

8



Proof Consider a hypertree H = (X, E) with ∆(H) ≤ d, and let T be
any rooted host tree of H. Suppose that there is a vertex x with more than
D =

(
d

⌊d/2⌋

)
children in T . We assume that, among all such vertices, x is

nearest to the root. We denote by x1, . . . , xk the children of x, and consider
x1, . . . , xD+1.

By assumption, the set Ex ⊆ E of all edges involving x contains not
more than d elements. For each i in the range 1 ≤ i ≤ D + 1 we set
Ei = {E ∈ Ex | xi ∈ E}. This can be viewed as a set system over at most d
elements, namely over the members of Ex. Hence, by Sperner’s theorem [8],
there exist two children xi and xj of x such that Ej ⊆ Ei. In this situation,
we replace the line xxj with xixj in T .

We are going to prove that the obtained T ′ is also a host tree of H. Let
E ∈ E be an arbitrary edge of H. Since T is a host tree, the subgraph
induced by E in T is connected. We show that E induces a subtree in T ′,
too.

• If xj /∈ E then the subtree induced by E remains unchanged.

• If xj ∈ E but x /∈ E then E is contained entirely in the subtree of T
rooted in xj, hence it induces a connected subgraph also in T ′.

• If xj ∈ E and x ∈ E then xi ∈ E also holds and the path xxixj can
replace the omitted line xxj in T ′. Hence the subgraph induced by E
remains connected in T ′.

Thus, the degree of x is decreased by one, and the modification cannot
cause any increase in degrees of vertices not farther from the root than x.
Repeatedly applying this procedure, the vertices having more than

(
d

⌊d/2⌋

)
children will be at greater and greater distance apart from the root. After
finite number of steps we obtain a host tree T ∗ satisfying the requirements.

Since we restrict our attention to the first D+1 children of x, for fixed d
a reducible pair (i, j) in the neighborhood of x can be detected in constant
time. Define now the function

f(T ) :=
∑

e∈E∗(T )

(n− dT (r, e))

where n is the number of vertices, E∗(T ) is the set of lines rooted at vertices
of degree larger than D in the current host tree, and dT (r, e) denotes the
distance of line e from the root r. Originally we have f(T ) < n2, the reduction
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decreases the value of f(T ) in each step, and we have nothing to do once we
reach f(T ) = 0. Thus, the entire procedure runs in time O(n2). In fact it
may take Θ(n2), e.g. if the initial host tree is a star. �

3.2 Proof of Theorem 1

Here we complete the proof of the main result of the paper, by designing a
linear-time algorithm that determines χ on all hypertrees of bounded degree
over host trees of low maximum degree.

Preliminaries. Consider a hypertree H with ∆(H) ≤ d and its rooted host
tree T , moreover, introduce the notation D =

(
d

⌊d/2⌋

)
+ 1. Due to Lemma 6

we may assume that ∆(T ) ≤ D. From this point on, we use D as a universal
upper bound for the vertex degrees in both T and H. We also assume that
the indexing x1, x2, . . . , xn of vertices is consistent with a postorder traversal
of T .

Based on Proposition 2 it suffices to consider C-colorings in which each
color class induces a connected subgraph of T . Such color partitions are
unambiguously characterized by the monochromatic lines of the host tree.
Recall that Ti denotes the subtree rooted at xi, moreover Xi = V (Ti) and
Hi = {E ∈ E | E ⊆ Xi} have been introduced for every 1 ≤ i ≤ n. Now, we
partition the set of edges containing xi into two classes:

• H∗
i — the set of edges whose highest (closest-to-root) vertex is xi;

• Mi — the set of edges which contain xi and the parent of xi, too.

As a preliminary observation, we note that the set systems Hi, H∗
i , and Mi

can be generated in linear time.

The algorithm. During the process of selecting monochromatic lines, in each
step we investigate the optimal C-colorings of Ti, in increasing order of i.
Bookkeeping will include:

• the value wi := dec(Hi);

• the family Fi of subcollections F ⊆ Mi with the following property: Ti

admits a C-coloring with just wi monochromatic lines, in which each
edge of F contains a monochromatic line, and F is maximal under
inclusion with this property.
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If these properties are ensured for all i, then the value wn at the root is equal
to n− χ(H).

The steps of the computation can be executed as follows.

1. If xi is a leaf of T , then let wi = 0 and Fi = {∅}. (Since Hi = ∅, we
have wi = dec(Hi) and no edge of Mi contains any monochromatic
lines.)

2. If the set of children of xi is Si = {xi1 , . . . , xis} (s ≥ 1), and when wiℓ

and Fiℓ have already been determined for all xiℓ (1 ≤ ℓ ≤ s), then we
apply the following procedure.

(a) Initially let k = 0 and Fi = {∅}.
(b) Informally speaking — based on the optimal C-colorings of the

children subtrees — for k = 0, 1, . . . , s we try to color properly all
edges of Hi with precisely k monochromatic lines incident with
xi, and while doing so, we keep track of those edges in Mi which
then become properly colored. More specifically, we consider each
k-element subset C = {xj1 , . . . , xjk} ⊂ Si and each sequence S =
(F1, . . . ,Fs) where, for all 1 ≤ ℓ ≤ s, we have chosen Fℓ ∈ Fiℓ .
Every Fℓ corresponds to a set of monochromatic lines in Tiℓ ; we
extend the union of those sets with making also the k lines xixjq

monochromatic (i.e., the lines between xi and C). Then, among
the edges incident with xi, the following set becomes properly
colored:

F = (F1 ∪ · · · ∪ Fs) ∪ (Mj1 ∪ · · · ∪Mjk).

Hence,

• if H∗
i \ F ̸= ∅, then Hi is not colored properly;

• if H∗
i \ F = ∅ holds for some C and S, then the k monochro-

matic lines joining xi with C yield a C-coloring of Hi. In this
case if F∗ = F \ H∗

i is not contained in any current element
of Fi as a subset, then we insert F∗ into Fi and remove its
subsets from Fi (if there occur any).

(c) Having investigated all k-tuples of children of xi paired with all
sequences S = (F1, . . . ,Fs), and having obtained H∗

i \ F ̸= ∅ in
each case, we proceed with 2(b) putting k := k+1 and Fi := {∅},
as long as the updated k does not exceed s.
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(d) If H∗
i \ F = ∅ occurs for some choice of C and S, then we obtain

wi = k +
s∑

j=1

wj.

We still investigate all remaining k-tuples of children of xi in com-
bination with all sequences S, but do not continue the procedure
with any larger value of k afterwards. If xi = xn (i.e., i = n), then
the solution wn = dec(H) and χ(H) = n − wn has been reached;
otherwise i := i + 1 is taken and the steps are executed for the
next vertex xi.

Soundness of the algorithm. By Proposition 4, it is enough to consider the
connected and all-optimal C-colorings of H. The algorithm proceeds by
constructing such a C-coloring φ; we prove this by induction.

In Step 1, the value w(xi) = 0 corresponds to the decrement of the
“subtree” rooted at a leaf vertex and ∅ is the only possible set of properly
colored edges containing xi.

Then, in Step 2 we identify the minimum number of monochromatic
lines between xi and its children xi1 , xi2 , . . . , xis subject to that the sub-
trees Hi1 ,Hi2 , . . . ,His have connected and all-optimal colorings. Clearly, it
is enough to consider only those colorings of the subtrees Hiℓ where the sets
F ⊆ E of edges containing a monochromatic line from Tiℓ are maximal under
inclusion. Hence, the computed value of wi is indeed the decrement of Hi,
for all 1 ≤ i ≤ n. In particular, since Hn = E , the algorithm determines the
exact value of χ(H) correctly.

Time analysis. The edge sets Hi and Mi can be constructed in time pro-
portional to

∑
H∈H |H| ≤ nD. Since every vertex xi in H and also in T

has degree at most D, every Fi has fewer than 2D elements4 For an xi, in
Step 2 we have to consider at most 2D different sets C together with at
most (2D)s ≤ 2D

2
sequences S = (F1, . . . ,Fs). This means not more than

2D
2+D pairs (C,S) for each vertex xi. Therefore, if D is fixed and a host

tree of maximum vertex degree not greater than D is given in the input, the
algorithm can be executed in time linear in n. �

4In fact, the stronger inequality |Fi| ≤
(

D
⌊D/2⌋

)
also holds, since we have a Sperner

family.
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4 Concluding remarks

In this paper we investigated the upper chromatic number of hypertrees. We
described several structural properties of optimal colorings and proved that χ
can be determined for hypertrees of bounded maximum degree in polynomial
time. (With unbounded degrees the problem is known to be intractable.) An
important question that remains open is as follows.

Problem 7 What is the complexity of determining the exact value of χ for
hypertrees if the degrees are bounded only in their host trees?

Under the assumption of bounded edge size, restricting the input to hy-
pergraphs of bounded degree is equivalent to restriction to hypergraphs over
host trees of bounded degree. For unbounded edge size, however, bounded
degrees in the host tree do not guarantee the same in the hypergraph.
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