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FULL GROUPS AND SOFICITY

GÁBOR ELEK

Abstract. First, we answer a question of Pestov, by proving that the full group of a
sofic equivalence relation is a sofic group. Then, we give a short proof of the theorem of
Grigorchuk and Medynets that the topological full group of a minimal Cantor homeomor-
phism is LEF. Finally, we show that for certain non-amenable groups all the generalized
lamplighter groups are sofic.

1. Introduction

1.1. Sofic groups and LEF groups. The notion of sofic groups was introduced by Weiss
[12] and Gromov [5] (in a somewhat different form) . A group Γ is sofic if for any finite
set F ⊂ Γ and ǫ > 0 there exists a finite set A and a mapping Θ : Γ → Map(A) such that
([3])

• If f, g, fg ∈ F then dH(Θ(fg)−Θ(f)Θ(g)) ≤ ǫ , where

dH(α, β) =
|{x ∈ A | α(x) 6= β(x)}|

|A|
.

• If 1 6= f ∈ F then dH(Θ(f), 1) > 1− ǫ .
• Θ(1) = 1 .

All amenable and residually finite groups are sofic. It is an open question whether non-sofic
groups exist. If we add the extra requirement that Θ(fg) = Θ(f)Θ(g), then we get the class
of LEF-groups (locally embeddable into finite groups). This class of groups was introduced
by Gordon and Vershik [11]. Clearly, all residually finite groups are LEF. However, simple,
finitely presented groups are not LEF. Nevertheless, by a recent result of Juschenko and
Monod [6] (and Theorem 2), there exist simple, finitely generated LEF-groups.

1.2. Sofic equivalence relations. Let X = {0, 1}N be the standard Borel space with
the natural product measure µ. Let Φ : F∞ y X be a (not necessarily free) Borel action
of the free group of countably infinite generators {γ1, γ

−1
1 , γ2, γ

−1
2 . . . } preserving µ. Note

that F∞ = ∪∞
r=1Fr, where Fr is the free group of rank r. Hence, we also have probability

measure preserving (p.m.p) Borel actions Φr : Fr y X . We say that x, y ∈ X are
equivalent, x ∼Φ y if there exists w ∈ F∞, such that w(x) = y. Note that slightly abusing
the notation we write w(x) instead of Φ(w)(x). Thus, the action Φ represents a countable
measured equivalence relation EΦ onX . Similarly, each Φr represents a countable measured
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2 G. ELEK

equivalence relation EΦr
on X , and EΦ = ∪∞

i=1EΦr
. Each equivalence relation EΦr

defines
a graphing [7] Gr on X :

• V (Gr) = X .
• (x, y) ∈ E(Gr) if γix = y or γiy = x for some i (so, there may be loops in Gr).

Observe that each component of Gr is a countable graph of bounded vertex degrees. We
label each directed edge (x, y) with all the generators mapping x to y. Thus an edge, even
a loop, may have multiple labels.
Now let us consider transitive actions of Fr on countable sets. If α : Fr y Y is such
an action then we have a bounded degree graph structure on Y with multiple labels on
the edges from the set {γ1, γ

−1
1 , . . . , γr, γ

−1
r }. Let Tr be the set of graphs of all countable

Fr-actions with a distinguished vertex (the root) such that all the vertices are labeled by
the elements of {0, 1}r. Let G ∈ Tr. We define the the k-ball around the root x, Bk(x)
as the induced subgraph on vertices of G in the form of w(x), where w ∈ Fr is a reduced
word of length at most k. That is, Bk(x) is the ball centered at x of radius k with respect
to the shortest path metric of G. The ball Bk(x) is a finite rooted graph with edge-colors
from the set {γ1, γ

−1
1 , . . . , γr, γ

−1
r } and vertex labels from the set {0, 1}r. We denote the

set of all possible k-balls arising from Fr-actions by Uk
r . We can define a compact metric

structure on the set Tr the following way. Let dr(G,H) = 1
2k

if k is the maximal number
such that the k-balls around the roots of G resp. H are isomorphic as rooted, labeled
graphs.

Observe that if Θ : F∞ y X is a p.m.p action then for each r ≥ 1 and x ∈ X one can
associate an element G(Θ, x) ∈ Tr. Namely, the orbit graph of x, where the vertex labels
are given by the X-values, restricted on the first r coordinates. Thus, we have a Borel
map πΘ : X → Tr . For κ ∈ Uk

r , let µk
Θr
(κ) = (πθ)⋆(µ)(Lκ), where Lκ ⊂ Tr is the set of

elements G such that the k-ball around the root of G is isomorphic to κ. In other words,
µk
Θr
(κ) is the probability that the k-ball around a µ-random element of X is isomorphic

to κ. Now let α : Fr y Y be an Fr-action on a finite set. Then for each element y of Y ,
we can associate an element of Tr. Namely, Y itself with root y. Hence, we can define a
probability distribution µk,r

α on Uk
r . Following [1] we say that the action Θ : F∞ y X is

sofic if for all r ≥ 1, there exists a sequence of finite Fr-actions {αn}
∞
n=1 such that for each

k ≥ 1 and κ ∈ Uk
r

lim
n→∞

µk,r
αn
(κ) = µk

Θr
(κ) .

In [1] the authors proved that

• Soficity is a property of the underlying equivalence relations. That is, if an action
Θ1 is orbit equivalent to a sofic action Θ2, then Θ2 is sofic as well.

• Treeable equivalence relations are sofic.
• Actions associated to Bernoulli shifts of sofic groups are sofic.

1.3. Full groups. Let E(X, µ) be a countable, measured equivalence relation on a Borel
set X with invariant measure µ. The Borel full group of E is the group [E]B of all Borel
bijections T : X → X such that for any x ∈ X , T (x) ∼E x. We call two such bijections
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T1, T2 equivalent if
µ({x ∈ X | T1(x) = T2(x)}) = 1 .

The measurable full group [E] is the group formed by the equivalence classes. Obviously,
[E] = [E]B/N , where N is the normal subgroup of elements in [E]B fixing almost all points
of X .
Now, let T : C → C be a homeomorphism of the Cantor set C. The topological full group
[[T ]] is the group of homeomorphisms S : C → C such that C can be partitioned into
finitely many clopen sets C = ∪n

i=1Ai such that S|Ai
= T ni for some integer ni.

1.4. Results. Answering a question of Pestov 1, we prove the following theorem.

Theorem 1. The measurable full group of a sofic equivalence relation is sofic.

Then, we give a very short proof of a result of Grigorchuk and Medynets [4].

Theorem 2. The topological full group of a minimal Cantor homeomorphism is LEF.

Let X be a countably infinite set and Γ be a countable group acting faithfully and tran-
sitively on X . Then Γ can be represented by automorphisms on the Abelian group
⊕x∈X{0, 1}. The groups ⊕x∈X{0, 1}⋊ Γ are called the lamplighter group of the Γ-action.
If the action is the natural translation action on Γ, then we get the classical lamplighter
group of Γ. Paunescu [10] proved that if Γ is sofic, then the classical lamplighter group
⊕γ∈Γ{0, 1} ⋊ Γ is sofic. If Γ is amenable, then all its generalized lamplighter groups are
amenable hence sofic. Nevertheless, we show that there exist non-amenable groups for
which all the generalized lamplighter groups are sofic.

Theorem 3. Let Γk be the k-fold free product of the cyclic group of two elements. Then,

for any transitive, faithful action of Γk on a countable set the associated lamplighter group

is LEF.

Acknowledgement: The author thanks Nicolas Monod and Gábor Pete for valuable
discussions.

2. Compressed sofic representations

Let Γ be a countable sofic group with elements {γ1, γ2, . . . }. A compressed sofic repre-
sentation of Γ is defined the following way. For any i ≥ 1, we have a constant ǫi > 0 and
for any n ≥ 1 we have mappings Θn : Γ → Map(An) such that |An| < ∞ satisfying the
following condition: For all r > 0 and ǫ > 0 there exists Kr,ǫ > 0 such that if n > Kr,ǫ then

• dH(Θn(γiγj)Θn(γi)Θn(γj)) < ǫ if 1 ≤ i, j ≤ r.
• dH(Θn(γi), Id) > ǫi if 1 ≤ i ≤ r.

Thus, in a compressed sofic representation we allow large amount of fixed points for each
γ ∈ Γ.

Lemma 2.1. If Γ has a compressed sofic representation then Γ is sofic.

1MR2566316-MathSciNet Review



4 G. ELEK

Proof. Let Θ̃k
n : Γ → Map(Ak

n) be defined by

Θ̃k
n(γ)(x1, x2, . . . , xk) = (Θn(γ)(x1),Θn(γ)(x2), . . . ) .

Observe that if γ, δ ∈ Γ, then

• dH(Θ̃
k
n(γδ), Θ̃

k
n(γ)Θ̃

k
n(δ)) ≤ (1− dH(Θn(γδ),Θn(γ)Θn(δ))

k

• dH(Θ̃
k
n(γ), Id) > 1− (1− dH(Θn(γ), Id))

k

Hence, we can choose ǫ, n and k appropriately to obtain for any F ⊂ Γ and ǫ′ > 0 a map
Θ as in the Introduction, proving the soficity of Γ. �

3. The proof of Theorem 1

Let Φ : F∞ y {0, 1}N be a sofic action preserving the product measure µ. Let Γ ⊂ [E]
be a finitely generated group, where [E] is the equivalence relation defined by Φ. So, we
have an action ΦΓ : Γ y {0, 1}N. Our goal is to construct a compressed sofic representation
of Γ. Let {γn}

∞
n=1 be an enumeration of the elements of Γ. Let ǫn = µ(Fix(ΦΓ(γn))/2.

Since Γ is in the full group, ǫn > 0. Now, fix a subset F ⊆ Γ and ǫ > 0. We need to
construct a map Θ : F → Map(A) for some finite set A such that if γi, γj, γiγj ∈ F then

(1) dH(Θ(γiγj)Θ(γi)Θ(γj)) < ǫ

(2) dH(Θ(γi), 1) > ǫi

Let {s1, s
−1
1 , s2, s

−1
2 , . . . , sm, s

−1
m } be a symmetric generating set for Γ. Observe that

we have an action ΣΓ : Fm y {0, 1}N preserving µ such that ΣΓ(δ) = ΦΓ(τ(δ)), where
τ : Fm → Γ is the natural quotient map. A dyadic E-map of depth k is a Borel map
Q : X → X is defined the following way. For each ρ ∈ {0, 1}k we pick wQ(ρ) ∈ Fk ⊂ F∞

and define Q(x) = Φ(wQ(ρ))(x) if the first k-coordinate of x is ρ.
A dyadic approximation of Γ is a sequence of families {Qk(si)}

m
i=1, {Qk(s

−1
i )}mi=1, where for

any 1 ≤ i ≤ m

• Qk(si) : X → X , Qn(s
−1
i ) : X → X are dyadic E-maps of depth k.

• limk→∞ µ({x ∈ X | Qk(si)(x) 6= ΣΓ(si)(x)}) = 0
• limk→∞ µ({x ∈ X | Qk(s

−1
i )(x) 6= ΣΓ(si)(x)}) = 0

We do not require Qk to be a bijection. Nevertheless, Qk can be extended to a homomor-
phism from Fm to Map(X). Note that for simplicity we identified the generating set of
Fm by the set {s1, s

−1
1 , s2, s

−1
2 , . . . , sm, s

−1
m }.

Since all the ΣΓ(si)
′s are Borel bijections such dyadic approximations clearly exist. The

following lemma is an immediate consequence of the definition of the dyadic approximation.

Lemma 3.1. For any δ ∈ Fm

lim
k→∞

µ(Fix(Qk(δ))) = µ(Fix(ΣΓ(δ))) .
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Proposition 3.1. There exists a sequence of mappings Θ̂k : Fm → Map(Bk), where

|Bk| < ∞ such that for any δ ∈ Fm

lim
k→∞

(µ(Fix(Qk(δ)))−
|Fix(Θ̂k(δ))|

|Bk|
) = 0 .

That is

lim
k→∞

|Fix(Θ̂k(δ))|

|Bk|
= µ(Fix(ΣΓ(δ))) .

Proof. Let Φk : Fk y {0, 1}N be the restriction of Φ. Since Φ is sofic, there exists a
sequence of mappings {ιnk : Fk y Perm(Ck,n)}

∞
n=1, where Ck,n is a finite {0, 1}k-vertex

labeled graph such that for any t ≥ 1 and κ ∈ U t
k

lim
n→∞

µt,k
ιn
k

(κ) = µt
Φk
(κ) .

Recall that Qk is not necessarily an action, only a homomorphism from Fm to Map(X).
Hence, the local statistics of Qk can not be described using the elements of U t

k as in the
case of honest Fm-actions. So, let W t

k be the set of isomorphism classes of rooted t-balls
of vertex degrees at most 2m, where the vertices are labeled by elements of the set {0, 1}k

and the edges (possibly loops) are labeled by subsets of {s1, s
−1
1 , s2, s

−1
2 , . . . , sm, s

−1
m }. Note

that U t
k ⊂ W t

k. Let x, y ∈ X be points such that BΦk

k2
(x) and BΦk

k2
(y) represent the same

element in Uk2

k . Here BΦk

k2
(x) denotes the k-ball with respect to the graphing associated

to Φk. Then, by the definition of the dyadic approximations BQk

k (x) and BQk

k (y) represent

the same elements in W k
k . Now we construct a sequence of maps Θ̂n

k : Fm y Map(Ck,n)
the following way.

Θ̂n
k(si)(x) = ιnk(wQk(si)(ρ(x)))(x) ,

where ρ(x) is the {0, 1}k-label of x. By the previous observation, for any δ ∈ Fm

lim
n→∞

|Fix(Θ̂n
k(δ))|

|Ck,n|
= µ(Fix(Qk(δ))) .

This finishes the proof of the proposition �

Pick a section σ : Γ → Fm, that is a map such that τσ = Id. Let Θ̂k as in Proposition 3.1.
Define Θk : Γ → Map(Bk) by

Θk(γ) = Θ̂k(σ(γ)) .

Then {Θk}
∞
k=1 is a compressed sofic representation of Γ. �

4. The proof of Theorem 2

Let T : C → C be a minimal homeomorphism and Γ ⊂ [[T ]] be a finitely generated sub-
group of the topological full group of T with symmetric generating set S = {a1, a2, . . . , ak}.
It is enough to prove that Γ is LEF. Let x ∈ C and consider the T -orbit {T n(x)}∞−∞. We
define the map φ : Γ → Perm(Z) of Γ into the permutation group of the integers the



6 G. ELEK

following way. Let φ(γ)(n) = m, if γ(T n(x)) = Tm(x) . Since T acts freely on C, φ is
well-defined.

Lemma 4.1. φ is an injective homomorphism.

Proof. If φ(γ) = Id, then γ fixes all the elements of the orbit of x. Since all the orbits are
dense, this implies that γ = 1. The fact that φ is a homomorphism follows immediately,
since φ is the restriction of the Γ-action onto the orbit of x. �

Let a = max |n|, where for some p ∈ C and ai ∈ S, ai(p) = T n(p) . We define a sequence

l : Z → {−a,−a + 1, . . . , 0, 1, . . . , a− 1, a}S

the following way. Let l(n) := (ta1 , ta2 , . . . , tak), where ai(T
n(x)) = T n+tai (x) . The follow-

ing lemma is well-known, we prove it for the sake of completeness.

Lemma 4.2. l is a repetitive sequence, that is, if we find a substring σ in l, then there

exists m ≥ 1 such that for any interval of length m we can find σ.

Proof. For a point p ∈ C, we can define its n-pattern

qn(p) := {−n,−n + 1, . . . , 0, 1, . . . , n− 1, n} → {−a,−a + 1, . . . , a− 1, a}

by qn(p)(j) := (ta1 , ta2 , . . . , tak), where ai(T
j(x)) = T j+tai (x) . Observe that the set of points

with a given n pattern is closed. Now, let us suppose that for a sequence {kr}
∞
r=1 ⊂ Z

the intervals (kr − r, kr + r) do not contain σ as a substring. Then, if z is a limit point of
{T kr(x)}∞r=1, no translates of z have σ as a part of their n-patterns. Therefore the orbit
closure of z does not contain x, in contradiction with the minimality of T . �

Now let r ≥ 1 and consider the string σr = l|{−ar,−ar+1,...,ar−1,ar}, where a is the constant
defined above. Note that if γ ∈ Γ is the product of at most r generators then |φ(γ)(i)−i| ≤
ar. Pick n > 10ar such that

• l|{−ar+n,−ar+1+n,...,ar−1+n,ar+n} = σr,
• for any γ ∈ Γ that is the product of at most r generators there is 0 < j < n such
that γ(j) 6= j.

Now we define φr : W r → Perm(Zn), where W r is the set of elements in Γ that are
products of at most r generators by φr(i) = φ(i)(modn). Clearly, φr is injective and if
x, y, xy ∈ W r then φr(x)φr(y) = φr(xy). This implies that Γ is LEF. �

5. The proof of Theorem 3

Let α : Γk → X be a transitive and faithful action of the free product group. Consider
the Schreier graph Gα of the action with respect to the generators of the k cyclic groups
{a1, a2, . . . ak}. Recall that V (Gα) is X and (x, y) ∈ E(G) if y = aix for some i ≥ 1. Hence
Gα is a connected graph of vertex degree bound k.

Proposition 5.1. Let α be as above. Then for any 1 6= w ∈ Γk, there exist infinitely many

y ∈ X such that α(w)(y) 6= y.
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Proof. We will need the following lemma.

Lemma 5.1. For any finite set S ⊆ X, there exists g ∈ Γk such that gS ∩ S = ∅.

Proof. We define a lazy random walk on X the following way. For y ∈ X the transition
probability p(x, y) = l/k, where l is the number of generators ai such that aix = y. It
is well-known (see e.g. [9],[8]) that the probabilities pn(x, y) tend to zero for each pair
x, y ∈ X . Now consider the standard random walk on the Cayley graph of Γk, the k-
regular tree. Let Pn(g) be the probability being at g after taking n steps starting from the
identity. Then,

pn(x, y) =
∑

g∈Γ,gx=y

Pn(g) .

By the previous observation, if n is large enough, then
∑

Pn(g) < 1 ,

where the summation is taken for all g ∈ Γk such that gx ∈ S, for some x ∈ S. Hence,
there exists g ∈ Γk such that gS ∩ S = ∅. �

Now let us suppose that w ∈ Γk fixes all points of X outside a finite set S. That is
α(w)(S) = S. Let gS ∩S = ∅. Then gwg−1 fixes all the points of X outside gS. Therefore
the commutator [w, gwg−1] fixes all elements of X , in contradiction with the assumption
that the action is faithful. �

Now fix a vertex x ∈ X and consider the ball of radius n, Bn(x) around x. We define
an action αn : Γk

y Bn(x) the following way. Let ∂Bn(x) be the boundary of the ball
Bn(x), that is, the set of all y ∈ Bn(x) such that there exists ai for which α(ai)y /∈ Bn(x).
If y /∈ ∂Bn(x), then let αn(ai)y = α(ai)y . If y ∈ ∂Bn(x) and α(ai)y /∈ Bn(x), then let
αn(ai)(y) = y . Finally, if y ∈ ∂Bn(x) and α(ai)y ∈ Bn(x), then let αn(ai)(y) = α(ai)(y).
Now let Ln

k = {0, 1}Bn(x)
⋊αn

αn(Γ
k) be the associated finite lamplighter group and Lk =

⊕x∈X{0, 1} ⋊α Γk. Our goal is to embed Lk into Ln
k locally. That is, for any finite set

F ⊂ Lk we construct an injective map Θ : F → Ln
k such that Θ(fg) = Θ(f)Θ(g) . Recall,

that each element of Lk can be uniquely written in the form a · w, where a ∈ ⊕x∈X{0, 1}
and w ∈ Γk. We regard the elements of the lamplighter group as permutations of the set
⊕x∈X{0, 1}. If κ ∈ ⊕x∈X{0, 1} and p ∈ X then

(a · w)(κ)|p = a(p) + κ(α(w−1)(p)) .

We will also use the product formula

(a2 · w2)(a1 · w1) = (a2 + α(w2)(a1), w2w1) ,

where α(w2)(a1)(q) = a1(α(w
−1
2 )(q)). For l ≥ 1, let Hl be the set of elements of Lk in the

form of a · w, where w is a word of length at most l and the support of a is contained in
Bl(x). For n ≥ l we define the map τnl : Hl → Ln

k by τnl (a · w) := a · αn(w).

Lemma 5.2. If n is large enough then τnl is injective.
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Proof. If n is large enough then Bn(x) contains a point y such that

• α(w)(y) 6= y
• d(y, ∂Bn(x)) > l
• d(y, Bl(x)) > l,

where d is the shortest path distance on the Schreier graph Gα. Let κ ∈ ⊕x∈X{0, 1} be
the element which is 1 at y and zero otherwise. Then

τnl (a · w)(κ)|αn(w)(y) = 1 ,

hence τnl (a · w) is not trivial. �

The following lemma finishes the proof of Theorem 3.

Lemma 5.3. Suppose that (a1 · w1), (a2 · w2) and (a2 · w2)(a1 · w1) ∈ Hl and n is large

enough. Then

τnl ((a2 · w2))τ
n
l ((a1 · w1)) = τnl ((a2 · w2)(a1 · w1)) .

Proof. We need to prove that

(a2 · αn(w2))(a1 · αn(w1)) = (a2 + α(w2)(a1)) · αn(w2w1)

holds in Ln
k . Fix an element κ ∈ {0, 1}Bn(x) . Let n > 10l and d(p, ∂Bn(x))) > 5l . Then

(a2 · αn(w2))(a1 · αn(w1))(κ)|p = (a2 · w2)(a1 · w1)(κ)|p

and
(a2 + α(w2)(a1) · αn(w2w1))(κ)|p = (a2 + α(w2)(a1) · (w2w1)(κ)|p ,

where κ is an extension of κ onto X . On the other hand, if d(p, ∂Bn(x))) ≤ 5l , then

(a2 · αn(w2))(a1 · αn(w1))(κ)|p = αn(w2)αn(w1)(κ)|p =

= αn(w2w1)(κ)|p = (a2 + α(w2)(a1)) · αn(w2w1))(κ)|p �
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