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Abstract. A hyperconvex disc of radius r is a planar set with nonempty

interior that is the intersection of closed circular discs of radius r. A convex

disc-polygon of radius r is a set with nonempty interior that is the intersection
of a finite number of closed circular discs of radius r. We prove that the

maximum area and perimeter of convex disc-n-gons of radius r contained in

a hyperconvex disc of radius r are concave functions of n, and the minimum
area and perimeter of disc-n-gons of radius r containing a hyperconvex disc of

radius r are convex functions of n. We also consider hyperbolic and spherical

versions of these statements.

1. Introduction and results

LetK denote a convex disc, that is, a compact convex set with non-empty interior
in the Euclidean plane E2. Confirming a conjecture of Kershner, Dowker [9] proved
that the maximum area of n-gons inscribed in K is a concave function of n, while
the minimum area of n-gons circumscribed about K is a convex function of n.
Dowker observed that the argument of his proof also shows that if K is centrally
symmetric, then among the 2n-gons of maximum area inscribed in K, as well as
among the 2n-gons of minimum area circumscribed about K, there is one that is
centrally symmetric with the same centre as K.

Dowker’s theorems play an important role in the theory of packing and covering
in the Euclidean plane. For example, they are essential to L. Fejes Tóth’s proof
about the packing density of convex discs in a convex hexagon, cf. [12]. L. Fejes
Tóth [13], Molnár [20], and Eggleston [10] observed independently of each other that
Dowker’s results remain true if the word “area” is replaced by “perimeter”. The
results about centrally symmetric discs was generalized in [11] for kn-gons inscribed
in and circumscribed about a convex disc with k-fold rotational symmetry.

Convex sets in the plane are intersections of half-planes. As a natural strength-
ening of convexity we study sets that are the intersection of discs of radius r.
Properties of such sets were studied in several papers and different authors used
different names for them. It appears that it was Mayer [19] who first investigated
such sets. He studied them in the more general setting of Minkowski geometry
and called them “überkonvex”. He characterized such sets with the property that
together with any two points of them the shorter arcs of both circles of radius r
connecting the two points belong to the set. Mayer’s paper inspired further re-
search in the 1930s and the 1940s (cf. for example Blanc [5], Buter [6], Pasqualini
[21], Santaló [22], van der Corput [23], Vincensini [24], see also the survey paper by
Danzer, Grünbaum, and Klee [8]), which, however, was forgotten by the turn of the
century. More than seven decades after Mayer, Bezdek et al. [4] and Kupitz et al.
[17,18] made a thorough investigation of such sets in En (for more information see
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also [1] and [2]). Bezdek et al. [4] and Kupitz et al. [17, 18] call such sets spindle
convex, while L. Fejes Tóth [15,16], who proved packing and covering theorems for
them, used the term r-convex. We use the English translation of Mayer’s phrase.
A planar set is hyperconvex with radius r if it is the intersection of circular discs
of radius r. Note that if we consider half-planes as circles of infinite radius, then
we obtain the family of linearly convex sets for r = ∞. A hyperconvex disc of
radius r is a compact hyperconvex set with radius r and with nonempty interior. A
disc-polygon of radius r <∞ is the intersection of a finite number of discs of radius
r in such a way that the interior of the set is nonempty. We shall assume that
whenever a disc-polygon is represented as the intersection of some discs, each disc
is essential, that is, if discarded, then the intersection changes. Thus, the boundary
of a disc-polygon of radius r consists of a finite number of radius r circular arcs
of positive length, called sides, each of which is part of the boundary of a unique
generating disc. The sides follow in a natural cyclic order on the boundary of the
disc-polygon. Two consecutive sides in this order meet in a vertex, except in the
case of disc-2-gons in which two consecutive sides intersect in a pair of vertices.
Therefore, if a disc-polygon of radius r is the intersection of n > 1 essential discs,
then it has exactly n sides and n vertices. We will call such sets disc-n-gons of
radius r.

In this article we extend Dowker’s theorem for the case when K is a hyperconvex
disc of radius r and the approximating objects are disc-polygons of radius r. Since
the value of r is fixed throughout the article, we suppress its notation unless this
omission may cause confusion.

Let ai(n) and pi(n) denote the maximum area and maximum perimeter of convex
disc-polygons with at most n vertices contained in K. Let ac(n) and pc(n) denote
the minimum area and minimum perimeter of convex disc-polygons with at most
n vertices containing K. It is easily seen that ai(n) and pi(n) are realized by
disc-polygons that are inscribed in K in the sense that their vertices are on the
boundary of K. Similarly, ac(n) and pc(n) are realized by disc-polygons that are
circumscribed about K meaning that their sides are tangential to the boundary of
K.

Theorem 1. We have, for n ≥ 4,

i) ac(n− 1) + ac(n+ 1) ≥ 2ac(n),
ii) pc(n− 1) + pc(n+ 1) ≥ 2pc(n),
iii) ai(n− 1) + ai(n+ 1) ≤ 2ai(n),
iv) pi(n− 1) + pi(n+ 1) ≤ 2pi(n).

Theorem 2. If K has k-fold rotational symmetry, then there are disc-polygons Pca

and Pcp with at most kn vertices circumscribed about K, as well as disc-polygons
Pia and Pip with at most kn vertices inscribed in K such that all of them have
k-fold rotational symmetry with the same centre as K and area (Pca) = ac(kn),
per(Pcp) = pc(kn), area (Pia) = ai(kn), and per(Pip) = pi(kn).

We note that the above theorems were proved by Bezdek et al. in [4] for the
special case when K is a closed circular disc of radius r < 1. We stated Theorem 1
for n ≥ 4, so that it includes the case r = ∞, as well. If r < ∞, then also digons
can occur and Theorem 1 holds for n ≥ 3.
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2. Proofs

Since the case r =∞ of our theorems is well-known, we shall restrict our atten-
tion to the case when r is finite. We will use circle-polygons of radius r. Following
Bezdek et al. (cf. [4], page 224) we define such circle-polygons as described below.
Let v1, . . . , vn be a sequence of points such that d(vi, vi+1) ≤ 2r for i = 1, . . . , n and
with the convention that vn+1 = v1. Let vivi+1 denote one of the shorter circular
arcs of radius r incident with vi and vi+1. The union of the arcs v1v2, . . . , vnv1 is
called a circle-polygon of radius r, which we denote by C. We call the points vi the
vertices and the circular arcs vivi+1 the sides of C. Note that a circle-polygon of ra-
dius r does not necessarily bound a convex domain and it may be self-intersecting.
The boundary of a convex disc-polygon of radius r is an example of circle-polygons
of radius r. Since r is fixed, henceforth we omit it from our notation.

We fix an orientation of the plane which induces a natural orientation of any
circular arc. Thus, a circular arc has a well-defined initial and terminal point.
We say that a circle-polygon is orientable (or proper) if the induced orientation
of its sides determines an orientation of the entire circle-polygon. Disc-polygons
are obviously orientable. In this paper we only consider orientable circle-polygons.
Subsequently, we will omit the word “orientable”.

Let P = {C1, . . . , Cn} be a finite collection of closed circle-polygons. We call
such a collection a multiple circle-polygon. It encloses a signed multiset in which
the multiplicity of a point p is defined as

∑n
i=1 χi(p), where χi(p) is the winding

number of Ci around p while going around Ci in the positive direction. The area
and the perimeter of P are defined as

area (P ) =
∑
k∈Z

k · area ({p : χ(p) = k}),

and

per(P ) =

n∑
i=1

per(Ci),

respectively. The intersection of the discs corresponding to the sides of the circle-
polygons C1, . . . , Cn is the core of P . In the proofs of Theorem 1 and 2 double
circle-polygons play a crucial role. These are those multiple circle-polygons for
which the core is not empty and the points of the core have multiplicity 2.

Following Bezdek, Csikós, and Connelly (cf. [3], p. 55) and Bezdek et al. (cf.
[4], p. 203), we introduce the arc-distance of radius r of two points. More precisely,
let x, y ∈ E2 such that d(x, y) ≤ 2r. Then their arc-distance of radius r, denoted by
%r(x, y), is defined as the length of the shorter circular arc of radius r connecting x
and y. It is noted in [3] that the arc-distance is not a metric. In fact, its behaviour
is described in the following two statements from [3], which we cite in slightly
modified forms.

Proposition 1 (Bezdek, Csikós, and Connelly [3], Lemma 1). Let r > 0 and
x, y, z ∈ E2 such that d(x, y) ≤ 2r, d(x, z) ≤ 2r, and d(y, z) ≤ 2r. Let I denote the
intersection of the two discs of radius r whose boundary contains x and z. Then
%r(x, y) + %r(y, z) > %r(x, z), %r(x, y) + %r(y, z) = %r(x, z) or %r(x, y) + %r(y, z) <
%r(x, z) according as y /∈ I, y ∈ bd I or y ∈ int I.

Proposition 2 (Bezdek, Csikós, and Connelly [3], Lemma 2). Let r > 0 and
x, y, z, w ∈ E2 be the vertices of a disc-quadrilateral of radius r, listed in a cyclic
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order. Then
%r(x, y) + %r(z, w) < %r(x, z) + %r(y, w),

that is, the sum of the arc-lengths of the diagonals is larger than the sum of the
arc-lengths of any two nonadjacent sides.

We begin with the proofs of i) and ii) of Theorem 1 and the corresponding cases
of Theorem 2.

Let K be a hyperconvex disc and P a double circle-polygon circumscribed about
K. Let s1, . . . , sn be the sides of P . We choose the notation so that si−1 and si
are neighbors meeting in a vertex vi. If P is a single circle-polygon winding twice
around the core of P , this can be achieved by the convention sn = s0 and sn+1 = s1.
On the other hand, if P is the union of two circle-polygons, with l and m sides,
say, then we label the sides of the l-gon by s1 = sl+1, s2, . . . , sl = s0 and the sides
of the m-gon by sl+3 = sl+m+3, sl+4, . . . , sl+m+2 = sl+2. Let Ci denote the circle
containing the side si, oi its centre and Di the discs bounded by Ci. To each side
of P we assign a point ti ∈ si ∩ bdK. If si ∩ bdK is not a single point, then we
can choose ti arbitrarily with the restriction that if Ci = Cj then ti = tj .

We note that to any permutation of the points ti corresponds a double circle-
polygon in which the side associated with ti is the arc of Ci lying in the intersection
of the discs associated with the points preceding and following ti in the permutation.
Arrange the points ti in the order as they follow on bdK while going around in the
positive direction. As there might be coincident points among the ti’s, we have to
specify the order of such points. If ti = tj and Ci = Cj , then the order of ti and
tj can be chosen arbitrarily. Suppose that ti = tj but Ci 6= Cj . If the arc vi−1ti is
contained in Dj then ti precedes tj , and if the arc vj−1tj is contained in Di then
tj precedes ti.

Enumerate the points ti by taking every second from the above natural order and
let P ∗ be the double circle-polygon corresponding to this order. The statements
of our theorems for circumscribed disc polygons are immediate corollaries of the
following

Lemma 1. We have

area (P ) ≥ area (P ∗) and per(P ) ≥ per(P ∗).

Note that if K is a disc-polygon with at most n sides, then inequalities i) and ii)
of Theorem 1 are obvious. Thus, we may assume that K is not a disc-polygon with
at most n sides. Then there are disc-l-gons circumscribed about K for all l ≤ n+1.
Now, if P is the union of two simple circle-polygons Q and R circumscribed about
K with n − 1 and n + 1 sides, respectively, then P ∗ consists of two simple circle-
polygons Q′ and R′ with n sides. Thus

area (Q) + area (R) = area (P ) ≥ area (P ∗) = area (Q′) + area (R′)

≥ 2 min{area (Q′), area (R′)},
and

per(Q) + per(R) = per(P ) ≥ per(P ∗) = per(Q′) + per(R′)

≥ 2 min{per(Q′),per(R′)}.
Suppose now that K has k-fold rotational symmetry. Again, we may assume that

K is not a disc-polygon with at most kn vertices, as otherwise the statement of
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Theorem 2 is obvious. Consider a disc-polygon Q0 with nk vertices circumscribed
about K. The rotations through 2π/j, j = 1, . . . , k − 1 carrying K onto itself
transform Q0 into Q1, . . . , Qk−1. As above, we associate with each side of these
disc-polygons a point of tangency with bdK. Any pair Qi, Qj , 0 ≤ i < j ≤ k − 1,
forms a double circle-polygon P . If P does not coincide with the corresponding
P ∗, then we replace Qi and Qj by the two disc-polygons forming P ∗. Obviously,
the new polygons have nk vertices. By this replacement neither the total area nor
the total perimeter of the disc-polygons Q0, . . . , Qk−1 increases. We repeat this
process until all double circle-polygons P formed by a pair Qi, Qj coincide with
the corresponding P ∗.

Let T be the union of the selected points of tangency of all sides of Q0, . . . , Qk−1.
Let us order the elements of T cyclically on bdK. T has k2n elements, and by con-
struction, it has k-fold rotational symmetry. Therefore a rotation around the centre
of K by an angle of 2π/k carries each element of T in the kn-th element following
it in the cyclic order. The disc-polygons resulting from the above procedure have
the property that between any two tangency points of consecutive sides there are
exactly k−1 tangency points of sides of other Qi’s. Thus any of these disc-polygons
arises by taking the intersection of the discs corresponding to every k-th tangency
point. Therefore all of them have k-fold rotational symmetry.

Proof of Lemma 1. With each vertex vi of P we associate the arc ai = t̂i−1ti
of bdK between ti−1 and ti. If P = P ∗, then the statement of Lemma 1 is
obvious. If P 6= P ∗, then for some i and j we have aj ⊂ ai. Let Cj−1 in-
tersect si in v′j and let Cj intersect si−1 in v′i. We obtain a new double circle-
polygon P ′ by replacing the sides si−1, si, sj−1, and sj by the arcs vi−1v

′
i, v
′
jvi+1,

vj−1v
′
j , and v′ivj+1, respectively, so that the cyclic order of the vertices of P ′ is

. . . vi−2vi−1v
′
ivj+1 . . . vj−1v

′
jvi+1vi+2 . . . vi−2 . Let t denote the area of the region R

enclosed by the arcs viv
′
j , v
′
jvj , vjv

′
i, and v′ivi, where we allow that R is degenerate

and its area is zero (see Figure 1).

vj−1

vj

vj+1

tj tj−1

vi−1

vi

vi+1

ti ti−1

K

v′i
v′j

si−1

si

sj−1sj

p

p

v′′j v′′i

p p

C C ′

Figure 1.

Then

area (P ) = area (P ′) + t ≥ area (P ′).
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We show that also

per(P ) ≥ per(P ′).

We have

per(P ′) = per(P ) + %r(v′j , vj) + %r(vj , v
′
i)− %r(v′i, vi)− %r(vi, v

′
j),

thus we have to show that

%r(v′i, vi) + %r(vi, v
′
j) ≥ %r(v′j , vj) + %r(vj , v

′
i) .

Let p be the point of intersection of Ci−1 and Ci different from vi. Let C and
C ′ be the circles of radius r passing through the points vj and p. Denote their
centres with o and o′, respectively. Since p ∈ Dj−1 ∩Dj , one of these circles, say
C intersects the arc v′ivi, while C ′ intersects the arc viv

′
j . Write v′′i = C ∩ v′ivi and

v′′j = C ′ ∩ viv′j .
Observe that ]poivi = π−]oi−1poi, ]poiv′′j = π−]oipo′, ]pov′′i = π−]oi−1po,

and ]povj = π − ]opo′. Hence

]vioiv
′′
j = ]poivi − ]poiv′′j = ]oipo

′ − ]oi−1poi = ]oi−1po
′(1)

and

]v′′i ovj = ]pov′′i − ]povj = ]o′po− ]oi−1po = ]oi−1po
′.(2)

It follows that %r(vi, v
′′
j ) = %r(v′′i , vj). In the same way we see that %r(vi, v

′′
i ) =

%r(v′′j , vj).
Obviously, v′′i is not contained in the interior of the intersection of the two

circles of radius r passing through vi and v′i. It follows by Proposition 1 that
%r(vj , v

′
i) ≤ %r(vj , v

′′
i ) + %r(v′i, v

′′
i ). Similarly we have %r(vj , v

′
j) ≤ %r(vj , v

′′
j ) +

%r(v′j , v
′′
j ). Therefore

%r(v′i, vi) + %r(vi, v
′
j) =%r(v′i, v

′′
i ) + %r(v′′i , vi) + %r(v′j , v

′′
j ) + %r(v′′j , vi)

=%r(v′i, v
′′
i ) + %r(vj , v

′′
i ) + %r(v′j , v

′′
j ) + %r(vj , v

′′
j )

≥%r(v′j , vj) + %r(vj , v
′
i),

as claimed.
We obtain a sequence of double circle-polygons with non-increasing areas and

perimeters by iterating this construction until there are no vertices with the prop-
erty that the arc of bdK assigned to one contains the arc assigned to the other.
Thus the result of this process is P ∗. �

Now we turn to the proof of the statements of our theorems dealing with inscribed
disc-polygons. Let P be a double circle-polygon inscribed in K with sides s1, . . . , sn.
Again, we assume that si−1 and si are neighbours meeting in the vertex vi and we
index the sides of P in the same way as described before Lemma 1. Our goal is to
find a new double circle-polygon inscribed in K whose area and perimeter is not
less than that of P . We do not consider cases when the area and perimeter of P
can be increased in an obvious way. We assume that the vertices of P are not all on
an open arc of the boundary of K lying between points of tangency of two parallel
supporting lines.

Arrange the vertices of P in the order as they follow on the boundary of K. If
two vertices coincide, then we may order them arbitrarily. Observe that for two
points that are second neighbours in this cyclic order one of the circles passing
through the two points contains the core of P . By taking every second vertex and
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connecting them by the shorter arc of the respective circle we obtain a new double
circle-polygon P ∗ inscribed in K.

Lemma 2. We have

area (P ) ≤ area (P ∗) and per(P ) ≤ per(P ∗).

From Lemma 2 the statements of our theorems for the inscribed case follow by
essentially the same arguments as above. There is one important difference. The
union of two simple circle-polygons circumscribed about K is always a double circle-
polygon. For inscribed circle-polygons this is not the case. In order to ensure that
we get a double circle-polygon we have to start with circle-polygons which have
maximum area or maximum perimeter for the given number of sides. Then the
vertices of such a circle-polygon cannot all be on an open arc of the boundary of K
lying between points of tangency of two parallel supporting lines. This guarantees
that the core of the multiple circle-polygon formed by two such circle-polygons is
not empty.

Proof of Lemma 2. With each side si = vi−1vi of P , we associate the arc ai =
v̂i−1vi of bdK between vi−1 and vi. If P = P ∗, then the statement of Lemma 2
is obvious. If P 6= P ∗, then aj ⊂ ai for some i and j. Let P ′ denote the double
circle-polygon inscribed in K whose vertices, listed in positive cyclic order, are the
following:

. . . vj−2vj−1vivi+1 . . . vi−1vjvj+1 . . . .

Applying Proposition 2 to the circle-quadrangle vi−1vj−1vjvi (which may degener-
ate into a circle-triangle), we obtain that

per(P ′) ≥ per(P ).

We need to show that

area (P ′) ≥ area (P )

as well.
We begin the proof of this inequality with a technical statement. Consider three

parallel lines L1, L2 and M such that the distance between L1 and L2 is less than
2r and M is at equal distance from L1 and L2. Let C be a circle of radius r
intersecting both L1 and L2. We choose a coordinate system with origin in M so
that the points of intersection of L1 and C are u = (−x0,−y0) and v = (x0,−y0).
For a point w = (x, y0) inside C we define the region T = T (x) bounded by the
circular arcs of radius r connecting the points u and v, v and w and w and u,
respectively, so that the arcs between u and v and the arc between v and w are
outside the triangle ∆ = uvw, while the arc between u and w is on the same side
of the line uw as ∆ (see Figure 2).

We are going to show that

(∗) area (T (x)) is a monotonically decreasing function of x.

Let S(u, v), S(v, w) and S(w, v) denote the circular segments determined by
T (x), respectively, as shown on Figure 2. Then

area (T (x)) = area (∆) + area (S(u, v)) + area (S(v, w))− area (S(u,w)).

Clearly, area (∆) and area (S(u, v)) are independent of x, so we have to show the
monotonicity of area (S(v, w)) − area (S(u,w)). This is obvious in the case when
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u v

w

S(u,w)
S(v, w)

S(u, v)

x

C

y0

T

L2

M

L1

Figure 2.

x ∈ [−x0, x0] since in this interval area (S(u,w)) is monotonically increasing and
area (S(v, w)) is monotonically decreasing. Observe that

area (T (x)) + area (T (−x)) = 2 area (∆) + 2 area (S(u, v)) = constant.

Thus we may assume that x ≥ x0.
Let s(l) denote the area of a circular segment cut off from a circle of radius r

by a chord of length l. Further define the function l(z) for z ≥ 0 as the distance
from the point (x,−y0) to (x + z, y0). It is easily seen that both s(l) and l(z) are
monotonically increasing convex functions. It follows that the compound function
f(z) = s(l(z)) is also monotonically increasing and convex on its domain. We have

area (S(v, w))− area (S(u,w)) = f(x+ x0)− f(x− x0).

Now the statement in (∗) follows by observing that the right hand side increases
by the convexity of f .

vi−1

vj−1

vj

vi

v′i

v∗

K

L

Figure 3.

Let v∗ be the intersection point of the circular arcs vj−1vi and vi−1vj as shown
on Figure 3. In order to prove the inequality area (P ′) ≥ area (P ) we have to
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show that the area of the region bounded by the arcs vivi−1, vi−1v
∗ and v∗vi is

not smaller than the area of the region bounded by the arcs vjvj−1, vj−1v
∗ and

v∗vj . Equivalently, we can compare the area of the region R1 bounded by the arcs
vi−1vj−1, vj−1vi and vivi−1 to that of R2 bounded by the arcs vi−1vj−1, vj−1vj
and vjvi−1. Let L be the line through vj that is parallel to the line incident with
vi−1 and vj−1. It follows by the assumption that the vertices of P are not all
on an open arc of the boundary of K lying between points of tangency of two
parallel supporting lines that L intersects the circular arc vj−1vi in a point v′i.
Let R′1 denote the region bounded by the arcs vi−1vj−1, vj−1v

′
i and v′ivi−1. It

is clear that area (R1) ≥ area (R′1), and by the auxiliary statement proved above
area (R′1) ≥ area (R2).

We obtain a sequence of double circle-polygons with non-decreasing areas and
perimeters by iterating this construction until there are no sides with the property
that the arc of the boundary of K assigned to one contains the arc assigned to the
other. Thus, this process results in P ∗ in a finite number of steps. �

3. Concluding remarks

The theorems of Dowker and their extensions for the perimeter hold also on
the sphere and in the hyperbolic plane. This was shown by Molnár [20] with the
exception of the case concerning the perimeter of circumscribed polygons on the
sphere. This last case was settled by L. Fejes Tóth [14] who observed that on the
sphere the statements for the perimeter of circumscribed polygons and for the area
of inscribed polygons are equivalent by spherical polarity.

With the exception of the case concerning the perimeter of circumscribed disc-
polygons on the sphere the proofs of our theorems can be carried over to the sphere
(for r ≤ π/2) and the hyperbolic plane. The arguments deducing the theorems
from Lemma 1 and Lemma 2 do not use the special structure of the geometry.
The proofs of the case of area in Lemma 1 and the case of perimeter in Lemma 2
carry over to the hyperbolic plane and the sphere without change. We outline the
changes needed in the proofs of the case of perimeter of Lemma 1 in the hyperbolic
plane and the case of area of Lemma 2 in the hyperbolic plane and on the sphere.

Proof of the case of perimeter in Lemma 1 in the hyperbolic plane. In this argu-
ment we use the same notations as on Figure 1. On the hyperbolic plane we have
]poivi = 2 arccot cosh r tan( 1

2]oi−1poi), ]poiv′′j = 2 arccot cosh r tan( 1
2]oipo

′),

]pov′′i = 2 arccot cosh r tan( 1
2]oi−1po), and ]povj = 2 arccot cosh r tan( 1

2]opo
′).

Hence

]vioiv
′′
j = ]poivi − ]poiv′′j(1∗)

= 2 arccot cosh r tan(]oi−1poi/2)− 2 arccot cosh r tan(]oipo
′/2)

and

]v′′i ovj = ]pov′′i − ]povj(2∗)

= 2 arccot cosh r tan(]oi−1po/2)− 2 arccot cosh r tan(]opo′/2).

It is easily seen that the function y = arccot(cosh r tanx) is increasing and
convex. We have

]oi−1poi/2− ]oipo′/2 = −]oi−1po
′/2 = ]oi−1po/2− ]opo′/2
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and

]oi−1po ≥ ]oi−1poi.

It follows that

]vioiv
′′
j ≥ ]v′′i ovj ,

and similarly

]vioiv
′′
j ≥ ]v′′i ovj .

¿From here the proof of the inequality

%r(v′i, vi) + %r(vi, v
′
j) ≥ %r(v′i, vj) + %r(vj , v

′
j)

follows in the same way as for the Euclidean plane.
Proof of the case of area in Lemma 2 on the sphere and on the hyperbolic plane.

The main tool in the Euclidean argument is the technical statement (∗). We will
show how direct analogues of (∗) can be proved on the sphere and on the hyperbolic
plane.

The locus of the points w′ for which the triangles uvw and uvw′ have the same
orientation and area (uvw′) = area (uvw) is a constant distance curve for the line
M through w, that is, a hypercycle on the hyperbolic plane and the so called Lexell
circle on the sphere. Thus the role of the lines L1 an L2 are played by hypercycles
and small circles, respectively. We introduce coordinates so that the origin is the
intersection of M and the perpendicular bisector of the segment uv, the y coordinate
of a point p is the signed distance from p to the orthogonal projection pM of p on
M , and the x coordinate of p is the signed distance from pM to the origin. Let
α denote the central angle of a circular segment of radius r cut off by a chord of
length l. Then we have

s(l) =


π − α cos r − 2 arccot

(
cos r
cot α2

)
, α = 2 arcsin

(
sin l

2

sin r

)
on the sphere,

α cosh r + 2 arccot
(

cosh r
cot α2

)
− π, α = 2 arcsin

(
sinh l

2

sinh r

)
on the hyperbolic plane,

and

l(z) =

{
2 arccos

(
cos z

2cos y0

)
on the sphere,

2 arcosh
(
cosh z

2 cosh y0

)
on the hyperbolic plane.

It can be checked by direct calculation, which is straightforward but tedious, that
both s(l) and l(z) are strictly monotonically increasing and convex in both geome-
tries. The anonymous referee suggested the following alternate argument to verify
the monotonicity and convexity of s(l) and l(z).

The function l(z) is twice the length of the hypotenuse of a right triangle whose
catheti have lengths y0 and z/2, and where y0 is fixed. If we draw two such right
triangles in a way that they share the right angle and the leg of length y0, cf.
Figure 4, then the monotonicity of l is clear from the fact that in a triangle the
larger side is opposite to the larger angle. Convexity of l is a consequence of the
theorem that the length of a median of a triangle is less than the mean of the sides
sharing a vertex with it. (This follows easily from the triangle inequality applying
a central reflection in the midpoint of the third side of the triangle.)

The convexity of s(l) can be proved as follows. If K = ±1 is the sectional
curvature of the plane, then the sides a, b, c of a right triangle, where c (≤ π/2 in



DOWKER-TYPE THEOREMS FOR HYPERCONVEX DISCS 11

y0

z1
2

z2
2

l(z2)
2

z1+z2
4

l(z1)
2

l(z1+z2)
2

Figure 4. The function l(z).

the spherical case) is the hypothenuse, are related to one another by the formula

cos(
√
Ka) cos(

√
Kb) = cos(

√
Kc).

If we fix the hypotenuse c and express b as a function b = fc(a) of a ∈ [0, c], then
by differentiating the equation

cos(
√
Ka) cos(

√
Kfc(a)) = cos(

√
Kc)

with respect to a, we obtain that

(3) f ′c(a) = − tan(
√
Ka)

tan(
√
Kfc(a))

.

This yields that f ′c(a) is negative for all a ∈ [0, c], and hence, fc is strictly decreasing
on [0, c]. By differentiating (3) one more time with respect to a and using the
monotonicity of the tangent and hyperbolic tangent functions, we obtain that f ′c is
also strictly monotonically decreasing on [0, c], which yields that fc is concave.

Denote by p(r) = 2π sin(
√
Kr)√
K

the perimeter of a circle of radius r and by ar(l)

the length of the shorter arc of this circle cut off by a chord of length l. Consider
a circle of perimeter p(r) in the Euclidean plane and denote by Wr(l) the length of
the chord of this circle that cuts off an arc of length ar(l).

The area s(l) is half the area of the intersection of two discs of radius r that
share a chord of length l. Thus, using Theorem 5.1 of Csikós [7], we obtain that

s′(l) = −f ′r(l/2)Wr(l).

Since Wr is positive and strictly increasing and f ′r is negative and decreasing, it
follows that s′ is positive and increasing, which, in turn, yields that s is increasing
and convex.

Now we can finish the proof in the same way as in the Euclidean case with the
only difference that the role of the line L is played by the constant distance curve
for the line vi−1vj−1 through vj .
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0.9

1

h

o′

o

p1p2
p′1p′2

K

Figure 5.

For two convex discs K1 and K2 let their area deviation δa(K1,K2) and perimeter
deviation δp(K1,K2) be defined as

δa(K1,K2) = area (K1 ∪K2)− area (K1 ∩K2)

and

δp(K1,K2) = per(K1 ∪K2)− per(K1 ∩K2).

For a convex disc K let da(n) and dp(n) denote the minimum area deviation and
the minimum perimeter deviation of an n-gon from K, respectively. Eggleston [10]
proved that both da(n) and dp(n) are convex functions of n. It is an interesting
question whether the minimum area deviation and the minimum perimeter devia-
tion of a disc-n-gon of radius r from a hyperconvex disc K are also convex functions
of n. To answer this question seems to be difficult. As one source of the difficulty in
the case of the perimeter deviation we mention the following. Eggleston [10] proved
that for a convex disc K among all convex n-gons the one closest to K in the sense
of perimeter deviation is always inscribed in K. The following example shows that
if K is a hyperconvex disc, then its best approximating disc-n-gon in the sense of
perimeter deviation may neither be inscribed in nor circumscribed about K. Let
K be the closed circular discs of radius 0.9 centred at the origin o. Let p1 be an
arbitrary point with d(p1, o) = h for some arbitrary fixed 0 < h < 1. Then there
exists a unique regular disc-pentagon P5(h) of radius 1 centred at o with one of its
vertices equal to p1. Note that the disc-pentagon P5(0.9) is inscribed in K. Let h1

be the value of h for which P5(h1) is circumscribed about K.
Theorem 2 implies, on one hand, that pi(5) = per(P5(0.9)) = 5.565 . . ., on

the other hand, that pc(5) = per(P5(h1)) = 5.690 . . .. Hence δp(P5(0.9),K) =
1.8π − 5.565 . . . = 0.080 . . ., δp(P5(h1),K) = 5.690 . . . − 1.8π = 0.04 . . .. Thus,
P5(h1) is closer to K than P5(0.9) in the sense of perimeter deviation. Now, we
will examine the case when h ∈ (0.9, h1). Let the vertices of P5(h) be labeled
in the positive direction and let p′1 and p′2 be the intersection points of the unit
radius arc p1p2 and bdK as shown on Figure 5. Let α = ]oo′p1, β = ]oo′p′1, and
γ = π − ]p′1oo′, cf. Figure 5. It is clear that

δp(P5(h),K) = per(P5(h) ∪K)− per(P5(h) ∩K)

= (10(α− β) + 9 · γ)− (10β + (2π − 10γ) · 0.9).(4)
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Figure 6. The graph was drawn by Maple 13.0

The right hand side of (4) can be expressed explicitly in terms of h using basic
trigonometry; we leave the detailed calculations to the reader. The graph of (4) is
shown on Figure 6.

It is apparent from Figure 6 that there is a whole subinterval of positive length
of (0.9, h1) in which P5(h) approximates K better than both P5(0.9) and P5(h1)
in the sense of perimeter deviation. Thus the best approximating disc-pentagon of
unit radius of K is neither inscribed in nor circumscribed about K.
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u. 13-15., H-1053, Budapest, Hungary
E-mail address: gfejes@renyi.hu

Department of Geometry, Bolyai Institute, University of Szeged, Aradi vértanúk
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