A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity

Zoltán Füredi *

Alfréd Rényi Institute of Mathematics, 13–15 Reáltanoda Street, 1053 Budapest, Hungary. E-mail: z-furedi@illinois.edu

Abstract

The following sharpening of Turán's theorem is proved. Let $T_{n,p}$ denote the complete ppartite graph of order n having the maximum number of edges. If G is an n-vertex K_{p+1} -free
graph with $e(T_{n,p}) - t$ edges then there exists an (at most) p-chromatic subgraph H_0 such
that $e(H_0) \ge e(G) - t$.

Using this result we present a concise, contemporary proof (i.e., one using Szemerédi's regularity lemma) for the classical stability result of Simonovits [21].

1 The Turán problem

Given a graph G with vertex set V(G) and vertex set $\mathcal{E}(G)$ its number of edges is denoted by e(G). The neighborhood of a vertex $x \in V$ is denoted by N(x), note that $x \notin N(x)$. For any $A \subset V$ the restricted neighborhood $N_G(x|A)$ stands for $N(x) \cap A$. Similarly, $\deg_G(x|A) := |N(x) \cap A|$. If the graph is well understood from the text we leave out subscripts. The $Tur\acute{a}n$ graph $T_{n,p}$ is the largest p-chromatic graph having n vertices, $n, p \geq 1$. Given a partition (V_1, \ldots, V_p) of V the complete multipartite graph $K(V_1, \ldots, V_p)$ has vertex set V and all the edges joining distinct partite sets. $A \triangle B$ stands for the symmetric difference of the sets A and B. For further notations and notions undefined here see, e.g., the monograph of Bollobás [4].

Turán [23] proved that if an n vertex graph G has at least $e(T_{n,p})$ edges then it contains a complete subgraph K_{p+1} , except if $G = T_{n,p}$. Given a class of graphs \mathcal{L} , a graph G is called

2010 Mathematics Subject Classifications: 05C35.

Key Words: Turán number, extremal graphs, stability.

furedi 2015 01 12 sim stability January 14, 2015

^{*}Research supported in part by the Hungarian National Science Foundation OTKA 104343, by the Simons Foundation Collaboration Grant #317487, and by the European Research Council Advanced Investigators Grant 267195.

 \mathcal{L} -free if it does not contain any subgraph isomorphic to any member of \mathcal{L} . The Turán number $\operatorname{ex}(n,\mathcal{L})$ is defined as the largest size of an n-vertex, \mathcal{L} -free graph. Erdős and Simonovits [11] gave a general asymptotic for the Turán number as follows. Let $p+1:=\min\{\chi(L): L\in\mathcal{L}\}$. Then

 $\operatorname{ex}(n,\mathcal{L}) = \left(1 - \frac{1}{p}\right) \binom{n}{2} + o(n^2) \quad \text{as} \quad n \to \infty.$ (1)

They also showed that if G is an extremal graph, i.e., $e(G) = \exp(n, \mathcal{L})$, then it can be obtained from $T_{n,p}$ by adding and deleting at most $o(n^2)$ edges. This result is usually called Erdős–Stone–Simonovits theorem, although it was proved first in [11], but indeed (1) easily follows from a result of Erdős and Stone [12].

The aim of this paper is to present a new proof for the following stronger version of (1), a structural stability theorem, originally proved by Erdős and Simonovits [11], Erdős [7, 8], and Simonovits [21]. For every $\varepsilon > 0$ and forbidden subgraph class \mathcal{L} there is a $\delta > 0$, and n_0 such that if $n > n_0$ and G is an n-vertex, \mathcal{L} -free graph with

$$e(G) \ge \left(1 - \frac{1}{p}\right) \binom{n}{2} - \delta n^2,$$

then

$$|\mathcal{E}(G_n) \triangle \mathcal{E}(T_{n,p})| \le \varepsilon n^2. \tag{2}$$

I.e., one can change (add and delete) at most εn^2 edges of G and obtain a complete p-partite graph. In other words, if an n-vertex \mathcal{L} -free graph G is almost extremal, $\min\{\chi(L): L \in \mathcal{L}\} = p+1$, then the structure of G is close to a p-partite Turán graph. This result is usually called Simonovits' stability of the extremum.

Our main tool is a very simple proof for the case $\mathcal{L} = \{K_{p+1}\}.$

Stability results are usually more important than their extremal counterparts. That is why there are so many investigations concerning the *edit distance* of graphs. Let $G_1 = (V, \mathcal{E}_1)$ and $G_2 = (V, \mathcal{E}_2)$ be two (finite, undirected) graphs on the same vertex set. The *edit distance* from G_1 to G_2 is $\operatorname{ed}(G_1, G_2) := |\mathcal{E}_1 \triangle \mathcal{E}_2|$. Let \mathcal{P} denote a class of graphs and G be a fixed graph. The edit distance from G to \mathcal{P} is $\operatorname{ed}(G, \mathcal{P}) = \min\{\operatorname{ed}(G, F) : F \in \mathcal{P}, V(G) = V(F)\}$. This notion was explicitly introduced in [3], Alon and Stav [2] proved connections with Turán theory. For more recent results see Martin [18].

2 How to make a K_{p+1} -free graph p-chromatic

Ever since Erdős [5] observed that one can always delete at most e/2 edges from any graph G to make it bipartite there are many generalizations and applications of this (see, e.g., Alon [1] for a more precise form). Here we prove a version dealing with a narrower class of graphs. Recall that $e(T_{n,p}) := \max\{e(K(V_1, \ldots, V_p)) : \sum |V_i| = n\}$, the maximum size of a p-chromatic graph.

Theorem 1 Suppose that $K_{p+1} \not\subset G$, |V(G)| = n, $t \ge 0$, and

$$e(G) = e(T_{n,p}) - t.$$

Then there exists an (at most) p-chromatic subgraph H_0 , $\mathcal{E}(H_0) \subset \mathcal{E}(G)$ such that

$$e(H_0) \geq e(G) - t$$
.

Corollary 2 (Stability of $ex(n, K_{p+1})$) Suppose that G is K_{p+1} -free with $e(G) \ge e(T_{n,p}) - t$. Then there is a complete p-chromatic graph $K := K(V_1, \ldots, V_p)$ with V(K) = V(G), such that

$$|\mathcal{E}(G) \triangle \mathcal{E}(K)| \leq 3t.$$

Indeed, delete t edges of G to obtain the p-chromatic H_0 . Since $e(H_0) \ge e(T_{n,p}) - 2t$ one can add at most 2t edges to make it a complete p-partite graph. (Here $V_i = \emptyset$ is allowed).

There are other more exact stability results, e.g., Hanson and Toft [15] showed that for t < n/(2p) - O(1) the graph G itself is p-chromatic, there is no need to delete any edge. Some results of E. Győri [14] implies a stronger form, namely that $e(H_0) \ge e(G) - O(t^2/n^2)$. Erdős, Győri, and Simonovits [10] considers only dense triangle-free graphs. The advantage of our Theorem 1 is that it contains no ε, δ, n_0 , it is true for every n, p and t.

The inequality in Corollary 2 is simple because we estimate the edit distance of G from a not necessarily balanced p partite graph K. If we are interested in $\operatorname{ed}(G, T_{n,p})$ then we can use the following inequality. If $e(K((V_1, \ldots, V_p)) \ge e(T_{n,p}) - 2t$, then a simple calculation shows that the sizes of V_i 's should be 'close' to n/p (more exactly we get $4t \ge \sum_i (|V_i| - (n/p))^2$) and hence

$$ed(K, T_{n,p}) \le n\sqrt{t/p} \tag{3}$$

Proof of Theorem 1. We find the large p-partite subgraph $H_0 \subset G$ by analyzing Erdős' degree majorization algorithm [6] what he used to prove Turán's theorem. Our input is the K_{p+1} -free graph G and the output is a partition V_1, V_2, \ldots, V_p of V(G) such that $\sum_i e(G|V_i) \leq t$.

Let $x_1 \in V(G)$ be a vertex of maximum degree and let $V_1 := V \setminus N(x_1)$, $V_1^+ := V \setminus V_1$. Note that $x_1 \in V_1$ and $\deg(x) \leq |V_1^+|$ for all $x \in V_1$. Hence

$$2e(G|V_1) + e(V_1, V_1^+) = \sum_{x \in V_1} \deg(x) \le |V_1||V_1^+|.$$

In general, define $V_0^+ := V(G)$ and let x_i be a vertex of maximum degree of the graph $G|V_{i-1}^+$, let $V_i := V_{i-1}^+ \setminus N(x_i), \ V_i^+ := V(G) \setminus (V_1 \cup \cdots \cup V_i)$. We have $x_i \in V_i, \deg(x_i, V_{i-1}^+) = |V_i^+|$ and

$$2e(G|V_i) + e(V_i, V_i^+) = \sum_{x \in V_i} \deg(x|V_{i-1}^+) \le |V_i||V_i^+|.$$
(4)

The procedure stops in s steps when no more vertices left, i.e., if $V_1 \cup \cdots \cup V_s = V(G)$. Note that $s \leq p$ because $\{x_1, x_2, \ldots, x_s\}$ span a complete graph.

Add up the left hand sides of (4) for $1 \le i \le s$, we get $e(G) + (\sum_i e(G|V_i))$. The sum of the right hand sides is exactly $e(K(V_1, V_2, \dots, V_s))$. We obtain

$$e(T_{n,p}) - t + \left(\sum_{i} e(G|V_i)\right) = e(G) + \left(\sum_{i} e(G|V_i)\right) \le e(K(V_1, V_2, \dots, V_p)) \le e(T_{n,p})$$
 implying $\sum_{i} e(G|V_i) \le t$.

3 Az application of the Removal Lemma

We only need a simple consequence of Szemerédi's Regularity Lemma. Recall that the graph H contains a homomorphic image of F if there is a mapping $\varphi:V(F)\to V(H)$ such that the image of each F-edge is an H-edge. There is a $\varphi:V(F)\to V(K_s)$ homomorphism if and only if $s\geq \chi(H)$. If there is no any $\varphi:V(F)\to V(H)$ homomorphism then H is called hom(F)-free.

Lemma 3 (A simple form of the Removal Lemma) For every $\alpha > 0$ and graph F there is an n_1 such that if $n > n_1$ and G is an n-vertex, F-free graph then it contains a hom(F)-free subgraph H with $e(H) > e(G) - \alpha n^2$.

This means that H does not contain any homomorphic image of F as a subgraph, especially if $\chi(F) = p + 1$ then H is K_{p+1} -free. The Removal Lemma can be attributed to Ruzsa and Szemerédi [20]. It appears in a more explicit form in [9] and [13]. For a survey of applications of Szemerédi's regularity lemma in graph theory see Komlós-Simonovits [16] or Komlós-Shokoufandeh-Simonovits-Szemerédi [17].

Proof of (2) using Lemma 3 and Corollary 2. Suppose that $F \in \mathcal{L}$, $\chi(F) = p + 1$ and $\alpha > 0$ an arbitrary real. Suppose that G is F-free with $n > n_1(F, \alpha)$ and $e(G) > e(T_{n,p}) - \alpha n^2$. We have to show that the edit distance of G to $T_{n,p}$ is small. First we claim that the edit distance of G to a complete p-partite graph $K(V_1, \ldots, V_p)$ is at most $7\alpha n^2$. Indeed, using the Removal Lemma we obtain a K_{p+1} -free subgraph H of G such that $e(H) > e(G) - \alpha n^2 > e(T_{n,p}) - 2\alpha n^2$. Apply Theorem 1 to H we get a p-partite H_0 with $e(H_0) > e(T_{n,p}) - 4\alpha n^2$. Then Corollary 2 yields a $K := K(V_1, \ldots, V_p)$ with $e(K, H) < 6\alpha n^2$, giving $e(K, G) \le 7\alpha n^2$.

Since
$$e(K) \ge e(H_0) > e(T_{n,p}) - 4\alpha n^2$$
, we can use (3) with $t = 2\alpha n^2$ to get $\operatorname{ed}(K, T_{n,p}) \le n^2 \sqrt{2\alpha/p}$. This completes the proof that $\operatorname{ed}(G, T_{n,p}) \le (7\alpha + \sqrt{2\alpha/p})n^2$.

Acknowledgments. The author is greatly thankful to M. Simonovits for helpful conversations. This result was first presented in a public lecture at Charles University, Prague, July 2006. Since then there were several references to it, e.g., in [19].

References

- [1] N. Alon: Bipartite subgraphs. Combinatorica 16 (1996), 301–311.
- [2] N. Alon and U. Stav: The maximum edit distance from hereditary graph properties. J. Combin. Theory, Ser. B 98 (2008), 672–697.
- [3] M. Axenovich and R. Martin: Avoiding patterns in matrices via a small number of changes. SIAM J. Discrete Math. 20 (2006), 49–54.
- [4] B. Bollobás: Extremal Graph Theory. London Math. Soc. Monographs, Academic Press, 1978.
- [5] P. Erdős: On even subgraphs of graphs. (Hungarian), Mat. Lapok 18 (1967), 283–288.
- [6] P. Erdős: On the graph theorem of Turán. (Hungarian) Mat. Lapok 21 (1970), 249–251 (1971).
- [7] P. Erdős: Some recent results on extremal problems in graph theory. Theory of Graphs, International Symp. Rome, 1966, 118–123.
- [8] P. Erdős: On some new inequalities concerning extremal properties of graphs. *Theory of Graphs*, Proc. Coll. Tihany, (Hungary) 1966, 77–81.
- [9] P. Erdős, P. Frankl, and V. Rödl: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. *Graphs Combin.* 2 (1986), 113–121.
- [10] P. Erdős, E. Győri, and M. Simonovits: How many edges should be deleted to make a triangle-free graph bipartite? Sets, graphs and numbers (Budapest, 1991), 239–263, Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam, 1992.
- [11] P. Erdős and M. Simonovits: A limit theorem in graph theory. Studia Sci. Math. Hungar. 1 (1966), 51–57.
- [12] P. Erdős and A. H. Stone: On the structure of linear graphs. Bull. Amer. Math. Soc. 52 (1946), 1089–1091.
- [13] Z. Füredi: Extremal hypergraphs and combinatorial geometry. *Proc. Internat. Congress of Mathematicians*, Vol. 1, 2 (Zürich, 1994), 1343–1352, Birkhäuser, Basel, 1995.
- [14] E. Győri: On the number of edge disjoint cliques in graphs of given size. Combinatorica 11 (1991), 231–243.
- [15] D. Hanson and B. Toft: k-saturated graphs of chromatic number at least k. Ars Combin. **31** (1991), 159–164
- [16] J. Komlós and M. Simonovits: Szemerédi's regularity lemma and its applications in graph theory. Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), 295–352, Bolyai Soc. Math. Stud., 2, Budapest, 1996.
- [17] J. Komlós, Ali Shokoufandeh, M. Simonovits, and E. Szemerédi: The regularity lemma and its applications in graph theory. *Theoretical aspects of computer science* (Tehran, 2000), 84–112, *Lecture Notes in Comput. Sci.*, **2292**, Springer, Berlin, 2002.
- [18] R. R. Martin: On the computation of edit distance functions. Discrete Math. 338 (2015), 291–305.
- [19] D. Mubayi: Books versus triangles, Journal of Graph Theory 70 (2012), 171–179.
- [20] I. Z. Ruzsa and E. Szemerédi: Triple systems with no six points carrying three triangles. Combinatorics Proc. Fifth Hungarian Colloq., Keszthely, 1976, Vol. II, pp. 939–945, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978.

- [21] M. Simonovits: A method for solving extremal problems in graph theory. *Theory of Graphs*, (P. Erdős and G. Katona, eds.) Proc. Coll. Tihany (1966), 279–319.
- [22] E. Szemerédi: Regular partitions of graphs. *Problemes Combinatoires et Theorie des Graphes* (ed. I.-C. Bermond et al.), CNRS, **260** Paris, 1978, pp. 399–401.
- [23] P. Turán: On an extremal problem in graph theory. Matematikai Lapok, 48 (1941), 436–452 (in Hungarian). Reprinted in English in: Collected papers of Paul Turán. Akadémiai Kiadó, Budapest, 1989. Vol 1–3.