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Abstract

The following sharpening of Turán’s theorem is proved. Let Tn,p denote the complete p–

partite graph of order n having the maximum number of edges. If G is an n-vertex Kp+1-free

graph with e(Tn,p) − t edges then there exists an (at most) p-chromatic subgraph H0 such

that e(H0) ≥ e(G)− t.

Using this result we present a concise, contemporary proof (i.e., one using Szemerédi’s

regularity lemma) for the classical stability result of Simonovits [21].

1 The Turán problem

Given a graph G with vertex set V (G) and vertex set E(G) its number of edges is denoted by e(G).

The neighborhood of a vertex x ∈ V is denoted by N(x), note that x /∈ N(x). For any A ⊂ V

the restricted neighborhood NG(x|A) stands for N(x) ∩ A. Similarly, degG(x|A) := |N(x) ∩ A|.

If the graph is well understood from the text we leave out subscripts. The Turán graph Tn,p is

the largest p-chromatic graph having n vertices, n, p ≥ 1. Given a partition (V1, . . . , Vp) of V

the complete multipartite graph K(V1, . . . , Vp) has vertex set V and all the edges joining distinct

partite sets. A△B stands for the symmetric difference of the sets A and B. For further notations

and notions undefined here see, e.g., the monograph of Bollobás [4].

Turán [23] proved that if an n vertex graph G has at least e(Tn,p) edges then it contains a

complete subgraph Kp+1, except if G = Tn,p. Given a class of graphs L, a graph G is called

∗Research supported in part by the Hungarian National Science Foundation OTKA 104343, by the Simons

Foundation Collaboration Grant #317487, and by the European Research Council Advanced Investigators Grant

267195.

2010 Mathematics Subject Classifications: 05C35. furedi˙2015˙01˙12˙sim˙stability

Key Words: Turán number, extremal graphs, stability. January 14, 2015

1

http://arxiv.org/abs/1501.03129v1
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L-free if it does not contain any subgraph isomorphic to any member of L. The Turán number

ex(n,L) is defined as the largest size of an n-vertex, L-free graph. Erdős and Simonovits [11]

gave a general asymptotic for the Turán number as follows. Let p + 1 := min{χ(L) : L ∈ L}.

Then

ex(n,L) =

(

1−
1

p

)(

n

2

)

+ o(n2) as n → ∞. (1)

They also showed that if G is an extremal graph, i.e., e(G) = ex(n,L), then it can be obtained

from Tn,p by adding and deleting at most o(n2) edges. This result is usually called Erdős–Stone–

Simonovits theorem, although it was proved first in [11], but indeed (1) easily follows from a

result of Erdős and Stone [12].

The aim of this paper is to present a new proof for the following stronger version of (1), a

structural stability theorem, originally proved by Erdős and Simonovits [11], Erdős [7, 8], and

Simonovits [21]. For every ε > 0 and forbidden subgraph class L there is a δ > 0, and n0 such

that if n > n0 and G is an n-vertex, L-free graph with

e(G) ≥

(

1−
1

p

)(

n

2

)

− δn2,

then

|E(Gn)△ E(Tn,p)| ≤ εn2. (2)

I.e., one can change (add and delete) at most εn2 edges ofG and obtain a complete p-partite graph.

In other words, if an n-vertex L-free graph G is almost extremal, min{χ(L) : L ∈ L} = p+1, then

the structure of G is close to a p-partite Turán graph. This result is usually called Simonovits’

stability of the extremum.

Our main tool is a very simple proof for the case L = {Kp+1}.

Stability results are usually more important than their extremal counterparts. That is why

there are so many investigations concerning the edit distance of graphs. Let G1 = (V, E1) and

G2 = (V, E2) be two (finite, undirected) graphs on the same vertex set. The edit distance from

G1 to G2 is ed(G1, G2) := |E1 △E2|. Let P denote a class of graphs and G be a fixed graph. The

edit distance from G to P is ed(G,P) = min{ed(G,F ) : F ∈ P, V (G) = V (F )}. This notion was

explicitly introduced in [3], Alon and Stav [2] proved connections with Turán theory. For more

recent results see Martin [18].

2 How to make a Kp+1-free graph p-chromatic

Ever since Erdős [5] observed that one can always delete at most e/2 edges from any graph G to

make it bipartite there are many generalizations and applications of this (see, e.g., Alon [1] for a

more precise form). Here we prove a version dealing with a narrower class of graphs. Recall that

e(Tn,p) := max{e(K(V1, . . . , Vp)) :
∑

|Vi| = n}, the maximum size of a p-chromatic graph.
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Theorem 1 Suppose that Kp+1 6⊂ G, |V (G)| = n, t ≥ 0, and

e(G) = e(Tn,p)− t.

Then there exists an (at most) p-chromatic subgraph H0, E(H0) ⊂ E(G) such that

e(H0) ≥ e(G) − t.

Corollary 2 (Stability of ex(n,Kp+1)) Suppose that G is Kp+1-free with e(G) ≥ e(Tn,p) − t.

Then there is a complete p-chromatic graph K := K(V1, . . . , Vp) with V (K) = V (G), such that

|E(G)△ E(K)| ≤ 3t.

Indeed, delete t edges of G to obtain the p-chromatic H0. Since e(H0) ≥ e(Tn,p)− 2t one can add

at most 2t edges to make it a complete p-partite graph. (Here Vi = ∅ is allowed). ✷

There are other more exact stability results, e.g., Hanson and Toft [15] showed that for

t < n/(2p) − O(1) the graph G itself is p-chromatic, there is no need to delete any edge. Some

results of E. Győri [14] implies a stronger form, namely that e(H0) ≥ e(G) − O(t2/n2). Erdős,

Győri, and Simonovits [10] considers only dense triangle-free graphs. The advantage of our

Theorem 1 is that it contains no ε, δ, n0, it is true for every n, p and t.

The inequality in Corollary 2 is simple because we estimate the edit distance of G from a not

necessarily balanced p partite graph K. If we are interested in ed(G,Tn,p) then we can use the

following inequality. If e(K((V1, . . . , Vp)) ≥ e(Tn,p)− 2t, then a simple calculation shows that the

sizes of Vi’s should be ’close’ to n/p (more exactly we get 4t ≥
∑

i(|Vi| − (n/p))2) and hence

ed(K,Tn,p) ≤ n
√

t/p (3)

Proof of Theorem 1. We find the large p-partite subgraph H0 ⊂ G by analyzing Erdős’

degree majorization algorithm [6] what he used to prove Turán’s theorem. Our input is the

Kp+1-free graph G and the output is a partition V1, V2, . . . , Vp of V (G) such that
∑

i e(G|Vi) ≤ t.

Let x1 ∈ V (G) be a vertex of maximum degree and let V1 := V \N(x1), V
+

1
:= V \ V1. Note

that x1 ∈ V1 and deg(x) ≤ |V +

1
| for all x ∈ V1. Hence

2e(G|V1) + e(V1, V
+

1
) =

∑

x∈V1

deg(x) ≤ |V1||V
+

1
|.

In general, define V +

0
:= V (G) and let xi be a vertex of maximum degree of the graph G|V +

i−1
,

let Vi := V +

i−1
\N(xi), V

+

i := V (G) \ (V1 ∪ · · · ∪ Vi). We have xi ∈ Vi, deg(xi, V
+

i−1
) = |V +

i | and

2e(G|Vi) + e(Vi, V
+

i ) =
∑

x∈Vi

deg(x|V +

i−1
) ≤ |Vi||V

+

i |. (4)

The procedure stops in s steps when no more vertices left, i.e., if V1 ∪ · · · ∪Vs = V (G). Note that

s ≤ p because {x1, x2, . . . , xs} span a complete graph.
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Add up the left hand sides of (4) for 1 ≤ i ≤ s, we get e(G) + (
∑

i e(G|Vi)). The sum of the

right hand sides is exactly e(K(V1, V2, . . . , Vs)). We obtain

e(Tn,p)− t+

(

∑

i

e(G|Vi)

)

= e(G) +

(

∑

i

e(G|Vi)

)

≤ e(K(V1, V2, . . . , Vp)) ≤ e(Tn,p)

implying
∑

i e(G|Vi) ≤ t. ✷

3 Az application of the Removal Lemma

We only need a simple consequence of Szemerédi’s Regularity Lemma. Recall that the graph

H contains a homomorphic image of F if there is a mapping ϕ : V (F ) → V (H) such that the

image of each F -edge is an H-edge. There is a ϕ : V (F ) → V (Ks) homomorphism if and only if

s ≥ χ(H). If there is no any ϕ : V (F ) → V (H) homomorphism then H is called hom(F )-free.

Lemma 3 (A simple form of the Removal Lemma) For every α > 0 and graph F there

is an n1 such that if n > n1 and G is an n-vertex, F -free graph then it contains a hom(F )-free

subgraph H with e(H) > e(G)− αn2.

This means that H does not contain any homomorphic image of F as a subgraph, especially

if χ(F ) = p + 1 then H is Kp+1-free. The Removal Lemma can be attributed to Ruzsa and

Szemerédi [20]. It appears in a more explicit form in [9] and [13]. For a survey of applica-

tions of Szemerédi’s regularity lemma in graph theory see Komlós-Simonovits [16] or Komlós-

Shokoufandeh-Simonovits-Szemerédi [17].

Proof of (2) using Lemma 3 and Corollary 2. Suppose that F ∈ L, χ(F ) = p+ 1 and α > 0 an

arbitrary real. Suppose that G is F -free with n > n1(F,α) and e(G) > e(Tn,p) − αn2. We have

to show that the edit distance of G to Tn,p is small. First we claim that the edit distance of G

to a complete p–partite graph K(V1, . . . , Vp) is at most 7αn2. Indeed, using the Removal Lemma

we obtain a Kp+1-free subgraph H of G such that e(H) > e(G) − αn2 > e(Tn,p) − 2αn2. Apply

Theorem 1 to H we get a p–partite H0 with e(H0) > e(Tn,p)− 4αn2. Then Corollary 2 yields a

K := K(V1, . . . , Vp) with ed(K,H) < 6αn2, giving ed(K,G) ≤ 7αn2.

Since e(K) ≥ e(H0) > e(Tn,p) − 4αn2, we can use (3) with t = 2αn2 to get ed(K,Tn,p) ≤

n2
√

2α/p. This completes the proof that ed(G,Tn,p) ≤ (7α +
√

2α/p)n2. ✷
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[22] E. Szemerédi: Regular partitions of graphs. Problemes Combinatoires et Theorie des Graphes (ed.

I.-C. Bermond et al.), CNRS, 260 Paris, 1978, pp. 399–401.

[23] P. Turán: On an extremal problem in graph theory. Matematikai Lapok, 48 (1941), 436–452 (in

Hungarian). Reprinted in English in: Collected papers of Paul Turán. Akadémiai Kiadó, Budapest,
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