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ON THE EXISTENCE OF FLAT ORTHOGONAL

MATRICES

PHILIPPE JAMING AND MATÉ MATOLCSI

Abstract. In this note we investigate the existence of flat or-
thogonal matrices, i.e. real orthogonal matrices with all entries
having absolute value close to 1

√

n
. Entries of ± 1

√

n
correspond to

Hadamard matrices, so the question of existence of flat orthogonal
matrices can be viewed as a relaxation of the Hadamard problem.

1. Introduction

Let M be a real orthogonal matrix of size n × n. We are interested
in the smallest and largest modulus among the entries of M :

(1) lM := min
1≤i,j≤n

|mi,j|, and uM := max
1≤i,j≤n

|mi,j|

and, more precisely, in estimating the maximal possible value for lM
and the minimal possible value of uM . In other words, we want to
estimate the following quantities:

(2) ln := max
M∈O(n)

lM and un := min
M∈O(n)

uM ,

where O(n) denotes the group of orthogonal matrices.

In order to determine ln (respectively, un) one has to control the
lowest (resp. uppermost) absolute value in an orthogonal matrix M .
It is also natural to ask whether one can control both quantities simul-
taneously. For this purpose we introduce the measure of “flatness” of
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2 PH. JAMING AND M. MATOLCSI

an n× n orthogonal matrix M as

(3) fM = min{ε > 0 :
1− ε√

n
≤ |mi,j| ≤

1 + ε√
n

, for all 1 ≤ i, j ≤ n},

and we are interested in how flat an orthogonal matrix can be:

(4) fn := min
M∈O(n)

fM .

It is trivial to see that ln ≤ 1√
n
, un ≥ 1√

n
for all n, and the famous

Hadamard conjecture states that if 4|n then ln = un = 1√
n
. It is

also easy to see that fn ≥ c
n
, unless there exists an n × n Hadamard

matrix (Proposition 2.1 below). This note was motivated by the natural
question of L. Baratchart (personal communication), as to whether
ln ≥ c√

n
for some absolute constant c. The answer to this question

is positive and provided by Theorem 2.2 below. We will also prove
un ≤ c√

n
with another absolute constant c in Theorem 2.3. However,

we list here some more restrictive questions on flat orthogonal matrices,
all of which we have only partial answers to.

Problem 1.1. Is it true that ln = (1 + o(1)) 1√
n
?

Problem 1.2. Is it true that un = (1 + o(1)) 1√
n
?

Can we control ln and un simultaneously?

Problem 1.3. Is it true that fn = o(1)?

These questions can be seen as relaxations of the Hadamard prob-
lem, and the matrices leading to such bounds could be called almost
Hadamard matrices. However, a different notion of almost Hadamard
matrices was already introduced and considered in [3, 2] (in those pa-
pers the emphasis is on various matrix norms and not on the entries
of the matrix). Therefore, to make a clear distinction, we prefer to use
the terminology flat orthogonal matrices here.
Finally, circulant matrices play a special role in applications, there-

fore we can add this as an additional constraint.

Problem 1.4. Let f circ
n := minM∈O(n)∩Circ(n) fM , where Circ(n) de-

notes the set of n× n circulant matrices and fM was defined in (3). Is
it true that f circ

n = o(1)?

We firmly believe that the answer to the first three problems is posi-
tive, while we are undecided as to the last one. Recall that a conjecture
of Ryser asserts that there are no n × n circulant Hadamard matrices
if n > 4.
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The remaining of this paper is split into two sections. The first one is
devoted to general constructions that lead to bounds on un and ln valid
in arbitrary dimension. We then devote the last section to improved
bounds when the size of the matrix have various arithmetic properties.

2. General constructions

We begin by a simple result which shows that the flatness parameter
fn cannot be expected to be very small. In other words, requiring fn
to be very small is equivalent to requiring a Hadamard matrix of order
n to exist.

Proposition 2.1. Let n ≥ 3 and let ε > 0 be such that

ε <

{

1/n if n is odd

2/n if n is even
.

Assume there exists an orthogonal matrix M such that for every j, k =
1, . . . , n,

(5)

(

1− ε

n

)1/2

≤ |mj,k| ≤
(

1 + ε

n

)1/2

.

Then n is a multiple of 4 and there exists a Hadamard matrix of order
n.

Proof. Let S denote the matrix defined by the sign of the entries of M ,
i.e. sj,k =

1√
n
signmj,k. Consider two rows sj and sk of S. Let r denote

the number of columns where the entries in sj and sk match, and n− r
where they differ. Then, for the corresponding rows mj ,mk of M we
have

0 = 〈mj ,mk〉










≤ r

n
(1 + ε)− n− r

n
(1− ε) =

2r − n + εn

n

≥ r

n
(1− ε)− n− r

n
(1 + ε) =

2r − n− εn

n

.

However, if n is odd the interval (2r − n − εn, 2r − n + εn) does not
contain zero (or any even number), a contradiction. If n is even, the
interval (2r − n − εn, 2r − n + εn) contains zero if and only if r = n

2
,

in which case the corresponding rows sj , sk are also orthogonal, and we
conclude that S is a Hadamard matrix. �

We continue with a simple block construction which proves that ln
is at least as large as 1

2
√
n
.

Theorem 2.2. For any dimension n we have ln ≥ 1
2
√
n
.
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Proof. Assume n = 2r + q where q < 2r, and introduce the notation
s = 2r − q for brevity. Let H be a Hadamard matrix of order 2r (of
course, such a matrix exists, e.g. the tensorial power F⊗r

2 ). We use
the normalization that H has entries ± 1√

2r
instead of ±1. Let M̃ be

the extension of H by an identity matrix of order q in the lower right.
Split M̃ into blocks of size s and q and q as follows (the indexes simply
indicating the sizes of the blocks):

M̃ =





Hs,s Hs,q 0
Hq,s Hq,q 0
0 0 Iq



 .

Let U denote the following orthogonal block-matrix:

U =





Is 0 0
0 1√

2
Iq − 1√

2
Iq

0 1√
2
Iq

1√
2
Iq



 ,

and let M := UT M̃U . A direct calculation shows that

M =







Hs,s
1√
2
Hs,q − 1√

2
Hs,q

1√
2
Hq,s

1
2
(Hq,q + Iq)

1
2
(−Hq,q + Iq)

− 1√
2
Hq,s

1
2
(−Hq,q + Iq)

1
2
(Hq,q + Iq)






.

The smallest modulus among the entries of M is 1
2
√
2r

≥ 1
2
√
n
, which

proves the theorem. (Note, however, that the largest appearing modu-
lus is 1

2
+ 1√

2r
, so this construction gives no indication with respect to

Problem 1.3.) �

Proving that un ≤ c√
n
is also fairly easy, as one can use a block-

diagonal construction.

Theorem 2.3. For any dimension n we have un ≤ 2+o(1)√
n

.

Proof. If A1 ∈ O(n1) and A2 ∈ O(n2) are orthogonal matrices then
the block-diagonal matrix A1 ⊕ A2 is an orthogonal matrix of order
n1 + n2. This implies un+m ≤ max{un, um}. Also, Propositions 3.1

and 3.2 below show that up = 1+o(1)√
p

whenever the dimension p is a

prime. For general n we must invoke the following weak-Goldbach
type result from number theory: for every ε > 0, every large enough
odd number n can be written as a sum of three primes n = p1+p2+p3
where each pi lies in the interval [(1 − ε)n/3, (1 + ε)n/3], while every
large enough even number n can be written as a sum of four primes n =
p1+p2+p3+p4 where each pi lies in the interval [(1−ε)n/4, (1+ε)n/4].
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This follows from the method of Vinogradov [8]. Hence, the block-
diagonal construction together with this weak-Goldbach type result

implies un ≤
√
3+o(1)√

n
if n is odd, and un ≤ 2+o(1)√

n
if n is even. �

Remark 2.4. In connection with ln and un it is natural to examine
how the entries of a typical random orthogonal matrix behave. It is
well known that for any coordinate z of a random unit vector we have
Pr(|z| > t√

n
) ≤ e−t2/2 (this can be seen by upper bounding the area of a

spherical cap of radius r by that of a sphere of radius r). This implies,

via a simple calculation, that uM ≤ c
√
logn√
n

for a random orthogonal

matrix M , with high probability. Therefore, a random orthogonal ma-
trix is typically “not far” from the bound uM ≤ c√

n
given in Theorem

2.3. On the contrary, the lowest absolute value in a random unit vector
is smaller than c

n
with high probability (this can be seen by generat-

ing a random unit vector as the normalized vector of n independent
Gaussian random variables). The same holds, a fortiori, for a random
orthogonal matrix, which shows that the lowest entry is typically very
far from the optimal bound given in Theorem 2.2. �

Remark 2.5. If we assume that the Hadamard conjecture holds then
ln = un = 1√

n
for all n divisible by 4. By the simple construction of

Proposition 3.1 we also conclude that for n ≡ 3 (mod 4) the quantities
ln and un are both of the magnitude (1 + o(1)) 1√

n
. However, we could

not prove such a statement for the case n ≡ 1, 2 (mod 4).

3. Specific constructions

In the rest of this note we give some positive partial results with
respect to Problems 1.1, 1.3, 1.4. As noted in [3, Section 3] symmetric
balanced incomplete block designs give rise to orthogonal matrices with
two entries. If the parameters of the block design are suitable then the
entries will be close to ± 1√

n
. Namely, we have the following special

case.

Proposition 3.1. (i) If the dimension n is such that a Hadamard
matrix H of size (n+1)×(n+1) exists, then there exists an orthogonal
matrix M of size n × n with all entries having modulus (1 + o(1)) 1√

n
.

In particular, this is the case if n = pr where p = 4k − 1 is a prime
and r is odd.
(ii) If the dimension n is a prime of the form 4k− 1, then M can be

chosen to be circulant.

Proof. (i) We can assume that the Hadamard matrix H is in standard
form, i.e. the first row and column of H consist of 1’s. Delete the
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first row and column of H , and in the remaining matrix H ′ replace the
entries +1 and −1 by the variables x and y, respectively. Orthogonality
of any two rows of H ′ is now equivalent to n−3

4
x2+ n+1

4
y2+ n+1

2
xy = 0,

and the unit length of the rows of H ′ is ensured by n−1
2
x2+ n+1

2
y2 = 1.

This system of equations admits the (non-unique) solution

x =
−1√

n+ 1− 1

y =
2√
n + 1

− 1√
n + 1− 1

,

and we define M as the n × n matrix with these values. Note that
both x and y have the order of magnitude (1 + o(1)) 1√

n
. In fact, the

error term o(1) here has the order of magnitude O( 1√
n
). We remark

that M corresponds to the Hadamard design associated to H , and this
construction is a special case of the one described in [3, Section 3]. If
n = pr where p = 4k − 1 is a prime and r is odd, then a Hadamard
matrix of size (n+ 1)× (n + 1) exists by the Paley construction.
(ii) If n is a prime of the form 4k − 1 then the Paley construction

essentially leads to a circulant matrix. Namely, consider the following
circulant matrix M corresponding to the quadratic character of Fp:
[M ]i,j = x if i − j is a quadratic residue, and [M ]i,j = y if i − j is a
non-residue or zero. The above values of x, y ensure orthogonality of
M . �

When n is a prime of the form 4k + 1, the construction is much less
trivial, as described below.

Proposition 3.2. If the dimension is a prime p = 4k + 1, then there
exists a circulant orthogonal matrix M of size p × p with all entries
having modulus (1 + o(1)) 1√

p
.

Proof. For this proof it will be convenient to identify the cyclic group
Zp with the numbers (−p+1

2
, . . . , p−1

2
), and use coordinates of vectors

accordingly. Also, let Q,NQ ⊂ Zp denote the set of quadratic residues
and non-residues, respectively (0 is not included in either Q or NQ).
Consider the vector v = (v−p+1

2

, . . . , v p+1

2

) given by the quadratic char-

acter, i.e. v0 = 0, and for nonzero j we have vj = ±1 according to
whether j ∈ Q or j ∈ NQ. Note that v is symmetric, vj = v−j , be-
cause p = 4k + 1. Note also that v̂(k) =

∑

j vje
2πijk/p = ±√

p for

k 6= 0, and v̂(0) = 0. We will need a random modification of v. The
construction is analogous to the one given in [6, Theorem 9.2].
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Fix ε > 0, and let ρ = 1√
p
. As NQ is symmetric, it can be written as

a disjoint union of a set H and its negative, NQ = H ∪ −H , in other
words NQ = ∪y∈H{y,−y}. For each y ∈ H consider independent
random variables ξy such that P(ξy = 1/2) = ρ, P(ξy = 0) = 1 − ρ.
For y = 0 set P(ξy = 1/4) = ρ, P(ξy = 0) = 1 − ρ. Consider the
random vector w = (w−p+1

2

, . . . , w p−1

2

) given by wy = ξy if y ∈ H or

y = 0, wy = ξ−y if −y ∈ H , and wy = 0 if y ∈ Q. Let us evaluate the
Fourier transform of the random vector w.

(6) E(ŵ(k)) =
1

2
ρ

(

1

2
+
∑

y∈NQ

e2πiyk/p

)

=

{√
p/4 if k = 0,

±1/4 if k 6= 0

and, for all k,

(7) D2(ŵ(k)) =
1

4
ρ(1− ρ)

(

1

4
+
∑

y∈H
(e2πiyk/p + e−2πiyk/p)2

)

≤ 1

4

√
p.

We invoke here a large deviation inequality of Chernov as stated
in [7, Theorem 1.8]: let X1, . . . , Xn be independent random variables
satisfying |Xi − E(Xi)| ≤ 1 for all i. Put X = X1 + . . . +Xn and let
σ2 be the variance of X . For any t > 0 we have

P(|X − E(X)| ≥ tσ) ≤ 2max
(

e−t2/4, e−tσ/2
)

.

Using this estimate with t = pε we obtain

(8) P

(

|ŵ(0)−√
p/4| ≥ 1

2
p

1

4
+ε

)

≤ 2e−
p2ε

4 ,

(9) P

(

|ŵ(k)∓ 1

4
| ≥ 1

2
p

1

4
+ε

)

≤ 2e−
p2ε

4 for all k 6= 0.

Therefore, with high probability none of the above events occur, and
we have |ŵ(0) − √

p/4| ≤ O(p
1

4
+ε) and |ŵ(k)| ≤ O(p

1

4
+ε). Fix such

a favourable vector w. We can also assume without loss of generality
that ξ0 = 1/4 and hence w0 = 1/4 (we are free to change w0 from 0 to
1/4, if necessary, without altering the order of magnitude of ŵ).

Finally, consider the vector z = v+ 4w, and let u = 1
p
ẑ. The vector

z is unimodular (some of the −1 entries in v were changed to +1 and
the value at 0 was changed to +1). Therefore the circulant matrix M
with first row u is orthogonal. Also, the entries of u are all of absolute
value 1√

p
(1 + p−

1

4
+ε), by construction.
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We remark that a similar construction works if the dimension p is of
the form 4k−1 but the result is inferior to Proposition 3.1 in the sense
that the error term is larger. �

By combining the results of the propositions above we can answer
Problem 1.3 and 1.4 for dimensions n which are composed of large
prime factors.

Corollary 3.3. For any fixed m let Nm denote the set of positive in-
tegers n = 2sp1 . . . pr such that each odd prime factor pj ≥ n1/m (the
primes may appear with multiplicity).
(i) For every m and every n ∈ Nm there exists an orthogonal matrix
M of size n× n with all entries having modulus (1 + om(1))

1√
n
.

(ii) If all the odd primes pj appearing in the factorization of n are dis-
tinct and s = 0 or s = 2 then there exists a circulant orthogonal matrix
M of size n× n with all entries having modulus (1 + om(1))

1√
n
.

Proof. (i) Let n = 2sp1 . . . pr ∈ Nm. Then r ≤ m by the definition of
Nm. Let H denote a Hadamard matrix of size 2s (such matrix exists, of
course, e.g. H = F⊗s

2 ), and let Mpj denote the matrices corresponding
to the primes pj, as constructed in Propositions 3.1 and 3.2. Let M be
the tensorial product of all the matrices H andMpj (where Mpj is taken
with the same multiplicity as pj in n). As r ≤ m for any n ∈ Nm, the
errors do not accumulate, and we still have |[M ]i,j | = (1 + om(1))

1√
n
.

(ii) The matrices Mpj are circulant by the constructions of Propo-
sitions 3.1 and 3.2. Let xj denote the first row of Mpj . If s = 0,
n = p1 . . . pr with all pj distinct, then Zn ≡ Zp1 . . .Zpr . Let k =
(k1, . . . , kr) ∈ Zp1 . . .Zpr and let y(k) =

∏r
j=1 xj(kj). Then y gener-

ates a circulant matrix which is orthogonal (because all x̂j are uni-
modular, and hence so is ŷ), and the entries of y are of absolute value
(1+ om(1))

1√
n
. When s = 2 we can incorporate the 4× 4 real circulant

Hadamard matrix in the same manner. �

Remark 3.4. Problem 1.4 concerning the circulant case has an in-
teresting connection to ultraflat polynomials. It is well-known that
x = (x1, . . . , xn) generates a circulant orthogonal matrix if and only

if the Fourier transform x̂ = (w1, . . . , wn) is unimodular on Ẑn, i.e.
|wj| = |wk| for all j, k. If x is real, then w is conjugate symmet-
ric, i.e. wj = wn−j. We also want that all |xj | ≈ 1√

n
. Considering

w1, . . . , wn as variables we are led to the problem of constructing a
polynomial P (z) =

∑n
j=1wjz

j where wj = wn−j and |wj| = 1 (after

re-normalization), such that P (z) is “flat” at the nth roots of unity,
i.e. |P (ωj)| = (1 + o(1))

√
n, where ω = e2iπ/n and j = 0, . . . n − 1.
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Dropping the restriction wj = wn−j one can require P (z) to be flat
all over the unit circle (i.e. |P (z)| = (1 + o(1))

√
n for all |z| = 1),

and such polynomials are called ultraflat. The existence of ultraflat
polynomials was proven by Kahane [5]. However, the extra condition
wj = wn−j prevents P (z) from being ultraflat as shown by Remark 5.1
in [4]: the restriction wj = wn−j implies max|z|=1 |P (z)| ≥ (1 + ε)

√
n

with ε =
√

4/3 − 1. However, this does not answer Problem 1.4 be-
cause we require P (z) to be flat only at the nth roots of unity. Problem
1.4 can therefore be regarded as a discretized version (at the nth roots
of unity) of the question of existence of ultraflat polynomials with the
self-conjugacy restriction wj = wn−j.
Notice also that Corollary 3.3 gives an affirmative answer to Prob-

lem 1.4 for some dimensions n (e.g. when n = 4p, p being a prime).
Therefore, trying to prove Ryser’s conjecture on the non-existence of
circulant Hadamard matrices by giving a negative answer to Problem
1.4 cannot possibly work. In the other direction, hoping to construct
a circulant Hadamard matrix by first constructing a circulant flat or-
thogonal matrix and then modifying its entries is also rather naive and
hopeless in our opinion. �

We saw in Proposition 3.1 that given any Hadamard matrix H one
can reduce the dimension by 1, and construct a flat orthogonal matrix.
It is natural to try also to increase the dimension by 1. The general
construction given in Proposition 2.1 allows to do so, but will introduce
an entry of size 1/2, thus destroying the flatness. Our last specific
construction concerns the increase of dimension by 1 without destroying
flatness, but it only works under some restrition on the dimension. We
recall that a Hadamard matrix is called regular if the row sums and
column sums of H are all equal.

Proposition 3.5. Assume the dimension n is such that a regular
Hadamard matrix H of order n exists (this implies n = 4k2 for some
k). Then there exists an orthogonal matrix M of size (n+1)× (n+1)
with all entries having modulus (1 + o(1)) 1√

n+1
.

Proof. Let b = 1−(n+1)−1/2

n
and replace the positive entries of H by 1√

n
−

b, while the negative entries with − 1√
n
− b (the sign of b is purposefully

negative in both cases). Next, extend this matrix by a new row and
column filled with entries a = −1√

n+1
, and let M be the arising matrix.

The entries of M are of modulus (1 + o(1)) 1√
n+1

(in fact, the error

term is of the order 1√
n
), and an easy calculation shows that M is

orthogonal. �
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We end this note by emphasizing that Problems 1.1, 1.3, 1.4 all
remain open for dimensions n with small prime factors, i.e. for dimen-
sions n which are not covered by Corollary 3.3.
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