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Abstract

Sufficient conditions for comparing the convolutions of heterogeneous
gamma random variables in terms of the usual stochastic order are established.
Such comparisons are characterized by the Schur convexity properties of the
cumulative distribution function of the convolutions. Some examples of the
practical applications of our results are given.
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1 Introduction and Main Result

Linear combinations (i.e., convolutions) of independent gamma random variables
(r.v’s) often naturally arise in many applications in statistics, engineering, insur-
ance, actuarial science and reliability. As such there has been extensive study of their
stochastic properties in the literature. For examples of such theoretical studies as well
as applications see [16, 17, 18, 12, 32, 19, 8, 34, 33, 21, 1, 7, 29, 25] and references
therein.

Bock et al., [6], and Diaconis and Perlman, [9], in their seminal works, first studied
the Schur convexity properties of the cumulative distribution function of the linear
combinations of independent gamma r.v’s. Ever since, this topic and its variants
have been studied by many researchers; see the references mentioned above. However
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despite all the efforts, the results in [6] remained the best available, yet far from the
best possible. Bakirov, [5] provided a tighter bound for the special case of convolutions
of chi-squared r.v’s of degree one, which often arise from quadratic forms. Here, we
prove results regarding the Schur properties of the tails of convolutions of gamma
r.v’s with respect to the mixing weights and in terms of the usual stochastic order,
and indeed sharpen some results given in [6]. As a consequence, the result in [5] is
also generalized.

More specifically, let X;, ¢« = 1,2,...,n, be n independent and identically dis-
tributed (i.i.d) gamma distributed r.v’s, parametrized by shape a > 0 and rate 5 > 0
parameters with the probability density function (PDF)
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Consider the following non-negative linear combinations of such r.v’s
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where \; > 0, ¢ =1,2,...,n, are real numbers. For a given a > 0, > 0 and x > 0,
define

PX\;a, B,x) == Pr (i ANiX; < SL’) , (1)

where A = (A1, A2, ..., \,) € R™ The aim of the present paper is to find the conditions
allowing one to compare tail probabilities of the form (1) with respect to the mixing
weights A. In [25, Theorem 2.2], results regarding the extremal values of (1) (i.e.,
maximal and minimal values with respect to A and for given «, § and z) are proved.
Here, we extend those results to be able to compare (1) for any pair of weight vectors.

To that end, let us recall that the vector A is said to majorize the vector wu,
denoted by p < A, if
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Note that there is “strict positivity” assumption on p, but not on A. Of course, it
is clear that padding p (and as a result A) with 0’s would not change the majoriza-
tion order and simply add redundant components to both vectors. Given pu < A,



P(;;a, B, x) is said to be Schur convex if P(u;a, B,x) < P(X;«, 5,x), and it is said
to be Schur concave if P(u; o, B, x) > P(X; «, 8, z). For comprehensive details on the
theory of majorization and its applications, refer to the classic book of Marshall and
Olkin [20].

It is not hard to show that the variance of " | X;X; is a Schur-convex function
of A and, indeed, it would be useful to know when P(.;«a, §, ) exhibit similar prop-
erties. For symmetric distributions a fairly general result is known. If Xy, Xo..., X,
are independent random variables with a common symmetric and log-concave PDF,
in [23], it was shown that Pr(>""  AX; < z) is Schur-convex in A for any = > 0.
However, for positive random variables with non-symmetric distributions (such as
gamma r.v’s), to the best of our knowledge, no such general results, except for those
in [6] and [5], exist.

For the case of n > 3, Bock et al., [6, Theorem 3|, showed that if u < A and
A; > 0 Vi, then

P(p;a, 3,2) > P(Xa,B,x), Vo> (na+1;maxi )\i7
P(u7a’5’x) S P()\7a,ﬁ,x), Vo < (na + 15)11"11111' )\Z

For the special case of chi-squared r.v’s of degree one (i.e., « = 8 = 1/2), Bakirov, [5],
provided the following tighter bound (for ¥n > 1) for the Schur concavity of
P(;1/2,1/2,2):
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where s = >" A = > " p. No results concerning the Schur convexity of

P(.;1/2,1/2, ) was given in [5].

Our main result is stated as follows (the details of its proof are given in the
Appendix). The discussions regarding the relative improvements compared to [6]
and [5], as well as further extensions are deferred to Section 3.

Theorem 1 Let X; ~ Gamma(a, ), ¢ = 1,2,...,n, be n i.i.d gamma r.v’s, where
a>0andp>0. If uw <A, then

Plwaspn) = Pxage), vo> 20
%, n=>2
P(p;a, B,2) < P(Aa,B,z), Vo< :
(o —1)s
, n>3 a>1

where s =Y " N =Y 0 i



This paper is organized as follows. In Section 2, we give some examples of the
practical applications of our results. In Section 3, we discuss the relative improve-
ments of our results compared to those in [6] and [5]. We also extend Theorem 1 by
weakening the majorization requirement. In addition, we give similar results for the
case where n = oco. The proofs of our results are given in the Appendix.

2 Examples

In this section, we give examples to demonstrate some practical applications of our
results.

2.1 Experimental Design in Signal Detection

Consider the additive model of observations
D(t) = 7s(t) +n(t), te€][0,T]

where D(t) is the measured data, s(t) is the signal of interest and 7(t) is the additive
noise. Suppose we have N measurements, taken at discrete time intervals, 0 = t; <
t1 < ... <ty =T. In addition, suppose that {n(t;) : i =1,2,..., N} is a collection
of i.i.d Laplace r.v’s with mean zero and variance o?. In addition, let 7 = 1 if there
is a signal, and 7 = 0 otherwise (i.e., the measured data is in fact entirely the noise).
To detect if the signal is present, we can use the signal to noise ratio (SNR)

Q) =+ > ID(e)]

Note that o; ' D(t) is a Laplace r.v, with mean 7s(t) and variance 1.

A design question to answer is that of | at least how many measurements, a priori,
is needed to make sure the probability of Type I error (i.e., when we conclude that the
signal is present, when in fact it is missing) is below a desired tolerance 0 < § < 1.

If 7 =0, then o, '|D(t)| ~ Gamma(1,+/2), so by Theorem 1 we get

3
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For a given N, we can easily compute P(Q(N) > x). Hence, in order to find the

minimum N required, we can increase N until P(Q(N) > x) <.

2.2 Matrix Trace Estimation

The need to estimate the trace of an implicit symmetric positive semi-definite (SPSD)
matrix is of fundamental importance (see [28]) and arises in many applications; see



for instance [15, 4, 3, 14, 10, 31, 27, 26, 30, 13, 2] and references therein. The standard
approach for estimating the trace of such a matrix A, denoted here by tr(A), is based
on a Monte-Carlo method, where one generates N random vector realizations w; from
a suitable probability distribution D and computes

N
triv(A) = % Z wiAw;.

i=1

One such suitable probability distribution is the standard normal, N'(0,T). This
estimator is known as the Gaussian estimator, denoted here by tr3 (A).

Now, given a pair of small positive real numbers (g, d), consider finding an appro-
priate sample size N such that

Pr (trg (A) > (1 - e)tr(A)) >1-0, (3a)
Pr (trg (A) < (1+ 5)tr(A)> >1-4. (3b)

Such question was first studied in [3] and further improved in [24]. In particular,
in [24] it was proved that the inequalities (3) hold if
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where || A|| denotes the Ly norm of the matrix A. The ratio tr(A)/||A|| is known as
the effective rank of the matrix (see [11]) and it is a stable quantity compared with
the usual rank. The appearance of effective rank in the bound (4) is an indication of a
possible relation between the “skewness” of the eigenvalues of A and the efficiency of
the Gaussian estimator. In other words, the more skewed the eigenvalue distribution
is, the worse we expect the Gaussian estimator to perform (i.e., the larger the true
sample size required would be). However effective rank is not a consistent measure for
skewness and, as such, in [24], this relationship was demonstrated only numerically
and no consistent definition for how the relative skewness could be measured was
given. Now using the majorization order among eigenvalue vectors as a consistent
measure of skewness, the new theoretical results in the present paper fully describe
the observations from the numerical examples in [24]. As in the proof of [24, Theorem
1], we see that

Pr(tr(A) < (1 - 2)tr(A)) = P (A; g g

(- a)tr<A>) , (5)

where X the vector of eigenvalues of A sorted in the decreasing order. Consider two
SPSD matrices, A; and Ay, such that tr(A;) = tr(As) and whose respective eigenvalue
vectors, A1 and Ay, are sorted in the decreasing order. If Ay < Ay, then we say that



the eigenvalue distribution of A; is more skewed that that of Ay. If N > 2/e, then
from Theorem 1 we obtain

P <A2; g g (1— 5)tr(A2)) <p (Al; g g (1— 5)tr(A1)) |

In other words, using the same sample size IV, our estimate with A; is more likely to be
located further away to the left of the true value than that with A;. Hence in order to
make the former estimate better, we need to increase the sample size which, in turn, in
some algorithms translates into more computational costs; see [14, 10, 30, 27, 26, 25].
Similar comparisons can be made for Pr (trif(A4) < (14 ¢)tr(A)).

3 Discussions and Further Extensions

The comparison between the results in Theorem 1 and those in [6] and [5] can be
summarized as follows:

e For the special case of chi-squared distribution, i.e., « = § = 1/2, our Schur
concavity result is the same as that in [5].

e For n = 2, the results of Theorem 1 coincide with [6, Theorem 1]. However,
for n > 3, our results are more uniform than [6, Theorem 3|. Namely, the
sufficient conditions given in Theorem 1 are not dependent on the dimensions
of the vectors. Additionally, our bounds for x are independent of the particular
values of the vector components, such as “min; A;” or “max; \;”. In other words,
for all vectors whose sums are equal, we give a fixed bound for z.

e For n > 3, our Schur convexity result is sharper than that of [6, Theorem 3]
when
n a+1l/n

Similarly, for n > 3 and o > 1, our Schur concavity result improves that of [6,
Theorem 3] when
Zi )\z a—1

n a+1l/n

max \; >
7

min \; <
7

e Most importantly, in [6, Theorem 3], it is required that \; > 0, i = 1,2,...,n.
This is a rather strong condition as many interesting comparisons cannot be
performed this way. Our results do not make any strict positivity assump-
tion on the components of A and it suffices if they are simply non-negative.
As a simple example, consider « = 2, § = 1 and x < 1. Then using The-
orem 1, we get P(A1;2,1,2) > P(Xg;2,1,2) > P(X3;2,1,2) > P(Ay;2,1,2)
with Ay = (1,0,0,0), A2 = (2/3,1/3,0,0), A3 = (3/6,2/6,1/6,0), and
Ay = (4/10,3/10,2/10,1/10). This comparison is not possible with [6, The-
orem 3.



e For the Schur convexity of P(.; «, 3, x) in the case of @ < 1 and n > 3, the result
in [6, Theorem 3] remains the best available, as we were not able to improve
upon it here. In fact, from our method of proof, it seems likely that obtaining
a general result for this case is impossible. Indeed, Bock et al. [6, p. 394] give
an example which corroborates this observation.

It is possible to weaken the majorization requirement and obtain even more general
results. More specifically, relaxing the equality condition in (2) gives the following
weak majorization order. Recall that the vector A is said to weakly majorize the
vector u, denoted by p <, A, if

0< A < ... <X <A
- < pe <,

0 < pn <
k k
Z SZZ, Vk < n.

In the case of weak majorization order, we have the following almost immediate
corollary.

Corollary 2 Let X; ~ Gamma(a, ), i = 1,2,...,n, be n i.i.d gamma r.v’s, where
a>0andp >0. If p <, A, then
2 1
Plia.for) = Plafoo). > 20
%, n=2
P(/L;Oz,ﬁ,.ﬁ(:) S P(A;Oé,ﬁ,l’), VSL’ < (a—l)s )
5 £ n>3, a>1

where sy = > " A and s, =Y 1, i

We can also extend Theorem 1, as well as Corollary 2, for the case where n = oco.
For any non-negative ¢, sequence X = (A1, Ay, ...), L.e., > ooy A < 00, define

P\, B, 2) = (Z)\X<x).

The (weak) majorization order is naturally extended to such ¢; sequences.

Corollary 3 Let {X; ~ Gamma(a, ), i = 1,2,...} be a countably infinite collection
of i.i.d gamma r.v’s, where a > 0 and § > 0. For any two non-negative {1 sequences,

woand X, such that p <, X, we have
2 1
Po(ps, B,2) > Po(Xa,B,z), Vo> %

-1
Poo(l’l’7avﬁ7x) S POO(A;OZ,B,LU), vx<%v Oé>1,



where sy = > 2 N and S =Y o) i

Finally, it might be worth noting that the results such as Theorem 1 show that
if p < A, then P(p;a,f,z) and P(X;«, 3, 2) must have at least one crossing on
x € (0,00). Diaconis and Perlman in [9] tried to answer whether this crossing point
is unique. However, they only proved this uniqueness for n = 2 and for n > 3, they
required to impose further restrictions. Ever since, this has been an open problem
which is known as the Unique Crossing Conjecture (UCC) and it is quite remark-
able that the UCC has remained open, although all the evidence points towards the
direction of it being true.

Acknowledgment We wish to thank Profs. Milan Merkle and Maochao Xu for their
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A Proof

In what follows X ~ Gamma(a, ) denotes a gamma r.v parametrized by shape
a > 0 and rate § > 0, fx and Fx stand, respectively, for the probability density
function (PDF) and cumulative distribution function (CDF) of a r.v X. Bold face
letters denote vectors and the vector components are denoted as v = (vy, vy, ..., v,).

For the proof of Theorem 1, we need to make use of the following additional
results. The proof of Theorem 4 is identical to the proof of [29, Theorem 4]. Note
that [29, Theorem 4] has been stated in terms of convolution of chi-squared r.v’s but
the proof, there, has been given for the more general case of arbitrary gamma r.v’s.
The details of the proofs for Lemmas 5 and 7 can be found in [25]. Lemma 6 has been
stated in [25] but the proof is omitted there. We give a detailed proof of Lemma 6
here for completeness.

Theorem 4 is essential in proving our results and it states that an arbitrary con-
volution of heterogeneous gamma random variables (not necessarily with a common
shape or a common rate) has an unique mode. Recall that a PDF, f(z), is called
unimodal if there exists a unique # = @ such that f(z) is non-decreasing for x < a
and f(x) is non-increasing for x > a. The point a is called the unique mode of f(x).

Theorem 4 Let X; ~ Gammal(o;, 5;), i = 1,2,....n, be independent r.v’s, where
@i, B; > 0Vi. The PDF of Y, =" | \;X; is unimodal where A; > 0 Vi.

Lemma 5 ([25, Lemma B.1]) Let X; ~ Gammal(ay, 5;), i = 1,2,...,n, be inde-
pendent ’r.v’s, where o, f; > 0 Yi. Define Y, = > NX; for \; > 0, ¥i and
pj = Y.1_, ;. Then for the PDF of Y,, fy,, we have

(i) fro >0, ¥z >0,
(i1) fy, is analytic on RY = {z|z > 0},

(11i) fi(/i)(()) =0, if0<k<p,—1, where f)(/i) denotes the k' derivative of fy, .

Lemma 6 ([25, Lemma B.2]) Let X; ~ Gamma(a;,«), i = 1,2,...,n, be inde-
pendent r.v’s, where a; > 0 Vi and o > 0. Also let » ~ Gamma(l, o) be another r.v
independent of all X;’s. If Y"1 | a; > 1, then the mode, T(X\), of the r.v W(X) = Y+
is strictly increasing in A > 0, where Y = > " N X; with A\; > 0, Vi.

Proof By Lemma 5, (A\) > 0 for A > 0. By the unimodality of W (\), for any
A > )y > 0, it is enough to show that
d2

T 7)) = | T3 PrW () < o) __(M>0. (7)
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Note that J(Xo,Z(Ag)) = 0 and since > | a; > 1, by Lemma 5(iii), fy(0) = 0. So

we have

J(N,Z(N)) = {dx/ fy(z—2) e 5 dz} o

a
= —fy(z —2)—e Azdz}
l/o dx Y( ) A a=%(\o)

Z(Ao) v
= / f;,(z)§e_7(m(’\°)_z) dz.
0

Therefore,

z(do) az Ao 22(0)
| A@esias = 25" (o, a) =0
0
Thus for A > A\g > 0, we have

)\ azm
Oé

z(Ao)
J(\,z(N)) = /0 fy(z)exdz

where z(0) > 0 is the mode of r.v Y and

®(z,2(0)) == a(z — x(())) ()\io - ;)

Now if z < z(0) then ®(z,2(0)) < 0 and fy(z) > 0 so we get J(\ Z(\)) > 0.
Similarly if z > #(0) then ®(z,2(0)) > 0 and fy(2) < 0 and again we have
J()\,[i’()\o)) >0

Lemma 7 ([25, Lemma B.3]) For some as > oy > 0, let & ~ Gamma(l+aq, aq)
and & ~ Gamma(l + g, o) be independent gamma r.v’s. Also let T = T(\) denote
the mode of the v §(A) = XNy + (1 = N)é& for 0 < X < 1. Then 1 < z(\) <

(2y/araz + 1) / (2y/aias), Y0 < A < 1, with (0) = (1) = 1 and, in case of

a;, = =a, T(1/2) = (2a+ 1) / (2a), otherwise the inequalities are strict.

A.1 Proof of Theorem 1

We prove the theorem for the case where a = [ and s = 1. The general case follows
from the scaling properties of gamma distribution.
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We first consider the case where n > 3. If X\ > p, then there exists a finite number,
r, of vectors m;,e = 1,2,...r,such that A\=my > n2 > ... = n,_1 > 1, = p, and n;
and m;4, differ in two coordinates only, i = 1,2,...,7 — 1, see [22, 12.5.a]. Thus we
may, without loss of generality assume that A, and p differ only in two coordinates,
and in fact, assume that for some 1 < j < k < n, we have

(Ajs Ak) = (g, ) and A = p; for i € {1,...,n}\{Jj, k}. (8)

For t € [0, 1], define

Vl(t) = )‘iv i % Js ka

Y(t) = > n(t)X. (9)

i=1

It suffices to show that the CDF of Y(¢), in ¢t € [0, 1], is non-increasing for = >
(2a + 1)/(2a) and non-decreasing for x < (o — 1)/a . Now we take the Laplace
transform of Fy ) as

J(t,2) == L[Fypl(z) = /000 e Fyw(x)dx

—1 [
= — | Bpl)d(e™)
<z Jo
]' > —ZT
= - / (& dFy(t) ([l?)
0

z
1
= L)),
where L[Y (t)](z) is the Laplace transform of Y(¢) as

(%

Ly )z =1 (1 + ”i(t)z)_a, for » € C, Re(z) > — min

P a 1<i<n v;(t)

Differentiating with respect to ¢ yields

ot
(i — Ni)z
= () Y W AE
S 1+ ule

We take the inverse transform to get
0 0
_- — ) — . <
= (@) i;(ul Ai) o= Pr(Y (1) + vi(t)ys < )
= > (i = M) s (@)
i=j,k
= (Mj - Aj)[fy(t)'f‘lfj(t)wj (35) - J‘?Y(zt)erc(lt)w;c (37)]7
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where 1)}, ¥, ~ Gamma(l, ) are i.i.d gamma r.v’s which are also independent of all
Xi’s. By (8), we must have that \; > y;, so it suffices to show that fy)1v, )y, (2) >
fY(t)-i-Vk(t)dik (:L’) for x > (2a + 1)/(2@) and fY(t)—i—Vj(t)wj (:l?) < fY(t)-l-Vk(t)wk (:L’) for z <
(o — 1)/a. On the other hand, using the Laplace transform and inverting it again,
one can show the following identity (for any integer £ > 1 and reals a,b > 0)

dk—l dk—l 1 k
fomwl (z) — WfXHﬂZJz (z) = a(b - a)wfxmwl%wz (), (10)

where X is an arbitrary continuous positive r.v and ¢; ~ Gamma(l,«a) , i = 1,2, are
i.i.d gamma r.v’s which are also independent of X. As such we have

1 0

fY(t)-i-Vj(t)wj(x) — [y @)+ (t)vn (z) = E(Vk(t) - Vj(t))%fY(t)-i-Vj(t)?ﬁj-i‘Vk(t)wk(x)‘

For given 1 < j < k < n, consider the r.v Y (t) + v;(t)¢; + ve(t)r. By (9), we get
that v;(t) > v4(t) for t € [0, 1], hence, it is only left to show that, for any ¢t € [0, 1],
the mode of this r.v, under the conditions

v(t) > ... > ,(t) >0,

> ut) =1,

1=1

falls between (v — 1)/a and (2ae 4+ 1)/(2cv). By Lemma 6, the mode of r.v Y'(¢) +
vy ()11 412(t)1)g is greater than that of Y (¢)+v;(t)y; + vk (t)yy, for 1 < j < k, and also
the mode of Y (t) 44,1 (¢)1n—1+14,(£)1)y, is smaller than that of Y (¢)4v;(¢)y; 4+ (t) 1y
for j < k < n. Hence, we only need to show that for the mode of the r.v

Yi(t) ==Y (1) + va(t)r + va(t)e (11a)
denoted by 71(t), we have Z;(t) < (2ac+ 1)/(2cx) and for the mode of the r.v
V() =Y (1) + vae1(O)tbn-1 + va(t)n (11b)

denoted by Z,(t), we have Z,(t) > (o — 1)/a. In what follows, we fix any t € [0, 1]
and, for notational simplicity, denote Y (t), z1(t), Y, (¢) and z,(¢t) by Y1, 71, Y, and Z,,
respectively.

We first prove the case for Y;. At any mode of Y;, we have!

0
)| -
X (@1 (v)w)

{ A fn (=, V)} <0,

-
O (#1(0) )

ISince mode is unique, thus f must be strictly concave at the mode
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hence implicit function theorem yields

_ Pfy, (=
M) = LY (12)
2 (1 (v).)

Let v* be where the global maximum of Z;(v), denoted by z}, occurs. Thus by the
necessary condition of maximality, we must have

Suppose where the maximum occurs, i.e., v*, there is a nonzero coefficient, v3, such
that 0 < v3 < vy < vy. The case of v3 = 0 will be dealt with at the end of the proof.
Fixing all other coefficients, we vary 1, and v3 under the condition v, + 3 = const.
That is, we take the directional derivative in the direction év = (0,1, —1,0...,0) for
the “n” dimensional vector v = (v, 1o, 13, ...,1,). In other words, we consider the
change in the direction of v + vdr. Using Laplace transform, we get

d d
@g[yl](z) = £[Y1](z)@ In [L[Y1](2)]

- cm]@%( 1+ (1425 — 0y (1 + 42— (1 4 40))

« (% (%

iz
_ _(ta)z 1 -
= E[Yl](z)< o (1+%)+(1+%))

:Zﬁm](z)< I S )

(1T+%5) (1+2) a(l+2)

(va—v3)z
=z£m1<z>< T )

(I+25(1+%2)  a(l+2)
Now inverting the above and differentiating (w.r.t =), we get

82 (Vg — 1/3) 83 1 82
mfﬁ(%”) = T@f?%(%’/) - a@fnwm(% v), (13)
where Ya3 = Y1 + 156 + 133 with &, &5 ~ Gamma(1, a) being i.i.d r.v’s, independent
of all others appearing before. So at the maximum, Zj, we must have

{a—zxfyl ww| -0 (14)

(@1.v")
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Now consider a slight perturbation of v = (0,1, —1,0...,0) as ov(ey) = (0,1, —(1+

€0),0...,0) for some g5 > 0. Computations similar as above yields
82 (1/2 — 1/3) 03 1 82
Mfﬂ(xv V) = T%ff@g(x7y) - E@fyﬁ"?&(x’ V)
82

+ 80@]“)/14_,,353(55, V)'

So at the maximum, Z7, using (14), we must have

0? 0?
|:me1 (x’ V>:| (T3,v%) -0 [@fﬂ—l—ugﬁs (x7 V):| (z7,v%)
_ 9= |0
o V3 |i8x le—HngS (I7 V):| (i"f,y*) < O

This followed from (10) (with & = 2, @ = 0 and b = v5) and Lemma 6, as well as
noting that [2 fy, (z,v)] (z:my — 0- Using (12), the previous relation implies that the
mode must increase if a sulfﬁciently small step is taken along the perturbed direction
dv(go) = (0,—1,(1 4 &9),0...,0). In other words, for £; > 0 small enough, for the
mode of r.v

Yl(so’el) = V1X1+(V2—€1)X2+(V3+€1(1+50))X3+Z viXitrir+(va—e1)ie, (15)
i=4

—(e0,e1)

denoted by :zg , we must have that

A (16)

It is clear that £; depends on g9 and consequently, as €y gets smaller, £; might get
smaller as well. However, 169 € 0(gg) and €16g € o(e1), where “0” denotes the “little
0”. In other words, consider decreasing sequences of ()22, and (7). Since
lim, o0 (e7€7) /60 = lim,o0(elel) /et = 0, it follows that, as ¢ gets smaller, €&
term in (15) vanishes at a faster rate than either of gy or ;. Hence using (15)
and (16), as well as the continuity of Z;, we can consider a r.v

Yf = I/le + (1/2 — E)XQ + (1/3 + €)X3 + Z I/Z'XZ' + I/1'¢J1 + (1/2 — E)’QDQ,
i=4
which has the same form as Y; but whose mode, denoted by zf, satisfies
] < g,

which contradicts the maximality of 7. This means that, if v3 # 0, then the maximum
must occurs at v* with v3 = 15 < vy, Similar arguments show that at the maximum,

we must have v, = ... =3 = 1p < 1y. But by (13) and the fact that
0? a |0
=5 [yitme (T V)} =—— {—fy it (T V)] <0
2 1 2GQ2 ? 1 2G2 ) Y
Or @wy P2 107 (@)
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we must have that v3 # 5. As such, the only possibility is v, = ... = v3 = 0,
i.e., the maximum mod of Y] coincides with that of r.v { = v(; + (1 — v)(y where
(1, ~ Gamma(l + o, ). So now lemma 7 gives

20+ 1

*
< .
=" 9q

Kl

Now consider the case for Y,,. Suppose where the minimum occurs, i.e., v*, we
have, v, 1 > 0 and v,_o > v,_1. Now by the same reasoning as in the case of Y7, we
can consider a r.v

n—3
YnE = Z ViXil/le + (Vn—2 _E)Xn—2 + (Vn—l +€)Xn—1 +Van+ (Vn—l +€)wn—1 _I'Vn,lvbna
i=1

which has the same form as Y,, but whose mode, denoted by z;, satisfies

£
n

*
n’

<

Kl

which contradicts the minimality of z¥. This means that, if v,1 # 0, then the
minimum must occurs at v* with v,_» = 1,,_1. But again, as in the end of the proof
for the case of Yi, we must have that v, o # 1, 1. As such the only possibility
is v,_1 = 0 (which would also mean that v, = 0, although this case can also be
independently established with the same reasoning as above). Hence, the minimum
mode of Y,, must coincide with that of the r.v Z?:_f v; X;. Again, appealing to the
same line of reasoning, at the minimum mode of Z?:_f v; X;, we must either have
vi=0orvj_; =v; forany 1 < j <n — 2. Hence, for n > 3, we get

. L a—1

T, = min T, =—,

1<j<n-2 o
where Z;, denotes the mode of the r.v Gamma(ja,ja).
The case of n = 2, amounts to studying the mode of r.v ¢ = v(; + (1 — v)(s,

denoted by z((), where (i, (s ~ Gamma(l + a, «). Direct application of Lemma 7
yields 1 < Z(¢) < (2a+1)/(2«). Theorem 1 is proved. B

A.2 Proof of Corollary 2

The proof goes along the same line as that of Theorem 1. For ¢ € [0,1], we again
define

Vl(t> = A Z#],]{Z,

n

Y(t) = > n(t)X.

i=1
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where

n(t)>...>wv(t) >0, telo,1],

n

Zyi(t) =5, +t(sx — su)-

i=1

Computations identical to the proof of Theorem 1 give

o 200+ 1
T < (st tsn = 50) 5
. a—1
) = (st s = sa)

where 73 (t) and z}(t) are, respectively, the maximum and minimum mode of r.v’s
Y1(t) and Y, (t) which are defined similarly as in (11). Now for ¢ € [0, 1], we get

B ~ (200 + 1) s

T tfélﬁ% Ti(t) < o )
—1

= min Z)(t) > w,
te(0,1] o

which give the desired results. W

A.3 Proof of Corollary 3
Define

P,(A\y;a, 8,2) = Pr (Z ANiX; < x) ,
i=1

where
>‘n = ()\1, )\2, ey >\n>

By the continuity from above, it is clear that
PN, 5,2) = lim P, (A, B, 7).
n—oo

Now since p,, <, Ay, Corollary 2 yields
o+ 1) 370 A
23 '

—1 " .
Po(p;o, 5,2) < Py(Aa, B, x), V:):<(a )ﬂz’zlm, a>1.

Pu(p;a, B,) > Py(Aja,B,x), Vo>

Taking the limit as n — oo gives the desired result. W
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