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Abstract

This article considers stochastic algorithms for efficiently solving a class of
large scale non-linear least squares (NLS) problems which frequently arise in ap-
plications. We propose eight variants of a practical randomized algorithm where
the uncertainties in the major stochastic steps are quantified. Such stochas-
tic steps involve approximating the NLS objective function using Monte-Carlo
methods, and this is equivalent to the estimation of the trace of corresponding
symmetric positive semi-definite (SPSD) matrices. For the latter, we prove
tight necessary and sufficient conditions on the sample size (which translates
to cost) to satisfy the prescribed probabilistic accuracy. We show that these
conditions are practically computable and yield small sample sizes. They are
then incorporated in our stochastic algorithm to quantify the uncertainty in
each randomized step. The bounds we use are applications of more general
results regarding extremal tail probabilities of linear combinations of gamma
distributed random variables. We derive and prove new results concerning the
maximal and minimal tail probabilities of such linear combinations, which can
be considered independently of the rest of this paper.

1 Introduction

Large scale data fitting problems arise often in many applications in science and
engineering. As the ability to gather larger amounts of data increases, the need to
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devise algorithms to efficiently solve such problems becomes more important. The
main objective here is typically to recover some model parameters, and it is a widely
accepted working assumption that having more data can only help (at worst not hurt)
the model recovery.

Consider the system1

di = fi(m) + ηi, i = 1, 2, . . . , s, (1)

where di ∈ Rl is the measurement data obtained in the ith experiment, fi = fi(m) is
the known forward operator (or data predictor) for the ith experiment, m ∈ Rlm is the
sought-after parameter vector2, and ηi is the noise incurred in the ith experiment. The
total number of experiments, or data sets, is assumed large: s� 1. The goal is to find
(or infer) the unknown model, m, from the measurements di, i = 1, 2, . . . , s. Gener-
ally, this problem can be ill-posed. Various approaches, including different regulariza-
tion techniques, have been proposed to alleviate this ill-posedness; see, e.g., [33, 13].

In this paper we assume that the forward operators have the form

fi(m) = f(m,qi), i = 1, . . . , s, (2)

where qi are inputs such that the ith data set, di, is measured after injecting the ith

input (or source) qi into the system. Thus, for an input qi, f(m,qi) predicts the ith

measurement, given the underlying model m. We only consider a special case where
qi ∈ Rlq ,∀i, and f is linear in q, i.e., f(m, w1q1 + w2q2) = w1f(m,q1) + w2f(m,q2).
Alternatively, we write f(m,q) = G(m)q, where G ∈ Rl×lq is a matrix that depends
non-linearly on the sought m. We also assume that the task of evaluating f for each
input, qi, is computationally expensive. Examples of such a situation arise frequently
in PDE constrained inverse problems with many data sets; see, e.g., [18, 10, 30] and
references therein.

Under the further assumption that the independent noise satisfies3 ηi ∼
N (0, σI), ∀i, where N denotes normal distribution, I ∈ Rl×l denotes the identity
matrix and σ > 0, the standard maximum likelihood (ML) approach leads to mini-
mizing the `2 misfit function

φ(m) :=
s∑
i=1

‖f(m,qi)− di‖2
2. (3)

However, since the above inverse problem is typically ill-posed, a regularization func-
tional, R(m), is often added to the above objective, thus minimizing instead

φR,α(m) := φ(m) + αR(m), (4)

1In this paper, we use bold lower case to denote vectors and regular capital letters to denote
matrices.

2 The parameter vector m often arises from a parameter function in several space variables
projected onto a discrete grid and reshaped into a vector.

3 For notational simplicity, we do not distinguish between a random vector (e.g., noise) and its
realization, as they are clear within the context in which they are used.
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where α is a regularization parameter [13]. In general, this regularization term can
be chosen using a priori knowledge of the desired model. The objective functional (4)
coincides with the maximum a posteriori (MAP) formulation. Implicit regularization
also exists in which there is no explicit term R(m) in the objective [20, 10]. Various
optimization techniques can be used to decrease the value of the above objective
functionals, (3) or (4), to a desired level (determined, e.g., by a given tolerance which
depends on the noise level), thus recovering the sought-after model.

Algorithms that rely on efficiently approximating the misfit function φ(m) have
been proposed and studied in [18, 10, 30, 29, 28]. In effect, they draw upon estimating
the trace of an implicit4 symmetric positive semi-definite (SPSD) matrix. To see this,
rewrite (3) as

φ(m) = ‖F (m)−D‖2
F , (5)

where F (m) and D are l×s matrices whose ith columns are, respectively, f(m,qi) and
di, and ‖ · ‖F stands for the Frobenius norm. Now, letting B = B(m) := F (m)−D,
it can be shown that

φ(m) = ‖B‖2
F = tr(BTB) = E(‖Bw‖2

2), (6)

where w is a random vector drawn from any distribution satisfying E(wwT ) = I,
tr(A) denotes the trace of the matrix A, and E denotes the expectation. Hence, ap-
proximating the misfit function φ(m) in (3) or in (4) is equivalent to approximating
the corresponding matrix trace (or equivalently, approximating the above expecta-
tion). The standard approach for doing this is based on a Monte-Carlo method,
where one generates n random vector realizations, wj, from a suitable probability
distribution and computes the empirical mean

φ̂(m, n) :=
1

n

n∑
j=1

‖B(m)wj‖2
2 ≈ φ(m). (7)

Note that φ̂(m, n) is an unbiased estimator of φ(m), as we have φ(m) = E(φ̂(m, n)).
For the special case of the forward operators (2) considered in this paper, if n � s
then this procedure yields a very efficient algorithm for approximating the misfit (3),
because

s∑
i=1

f(m,qi)wi = f(m,
s∑
i=1

qiwi),

which can be computed with a single evaluation of f per realization of the random
vector w = (w1, . . . , ws)

T .
Our assumption regarding the noise distribution leading to the ordinary least

squares misfit function (3), although standard, is quite simplistic. Fortunately, how-
ever, it can be readily generalized in one of the following two ways.

4By “implicit matrix” we mean that the matrix of interest is not available explicitly: only infor-
mation in the form of matrix-vector products for any appropriate vector is available.
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1. The noise is independent and identically distributed (i.i.d) as ηi ∼ N (0,Σ),∀i,
where Σ ∈ Rl×l is the symmetric positive definite covariance matrix. In this
case, the ML approach leads to minimizing the `2 misfit function

φ(1)(m) :=
s∑
i=1

‖C−1
(
f(m,qi)− di

)
‖2

2, (8)

where C ∈ Rl×l is any invertible matrix such that Σ = CCT (e.g., C can be the
Cholesky factor of Σ). Thus,

φ(1)(m) = ‖C−1
(
F (m)−D

)
‖2
F = ‖B(m)‖2

F ,

with B(m) := C−1
(
F (m)−D

)
. The Monte-Carlo approximation φ̂(1)(m, n) is

then precisely as in (7) but with the newly defined B(m).

2. The noise is independent but not identically distributed, satisfying instead ηi ∼
N (0, σ2

i I), i = 1, 2, . . . , s, where σi > 0 are the standard deviations. Under this
assumption, the ML approach yields the weighted least squares misfit function

φ(2)(m) :=
s∑
i=1

1

σ2
i

‖f(m,qi)− di‖2
2. (9)

We can further write this equation as

φ(2)(m) = ‖
(
F (m)−D

)
C−1‖2

F ,

where C ∈ Rs×s denotes the diagonal matrix whose ith diagonal element is σi.
Thus, with B(m) = (F (m)−D)C−1 we can again apply (7) to obtain a similar

Monte-Carlo approximation φ̂(2)(m, n).

Now, if n � s then the unbiased estimators φ̂(1)(m, n) and φ̂(2)(m, n) are obtained

with a similar efficiency as φ̂(m, n). In the sequel, for notational simplicity, we just

concentrate on φ(m) and φ̂(m, n), but all the results hold almost verbatim also for (8)
and (9).

Hence, the objective is to be able to generate as few realizations of w as possible
for achieving acceptable approximations to the misfit function. Estimates on how
large n must be to achieve a prescribed accuracy in a probabilistic sense have been
derived in [1, 3, 34, 28]. However, the obtained bounds are typically not sufficiently
tight to be practically useful. In the present paper, we prove tight bounds for tail
probabilities for such Monte-Carlo approximations employing the standard normal
distribution. These tail bounds are then used to obtain necessary and sufficient
bounds on n, and we demonstrate that these bounds can be practically small and
computable. Furthermore, using these results, we are able to better quantify the
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uncertainties in the highly efficient randomized algorithms proposed in [10, 30, 29].
Variants of such algorithms with better uncertainty quantification are derived.

This paper is organized as follows. In Section 2, we develop and state theorems
regarding the tight tail bounds promised above. The theory in this section relies upon
some novel results regarding the extremal probabilities (i.e., maxima and minima of
the tail probabilities) of non-negative linear combinations of gamma random variables,
which are proved in Appendix B.

In Section 3 we present our stochastic algorithm variants for approximately min-
imizing (3) or (4) and discuss its novel elements. Subsequently in Section 4, the
efficiency of the proposed algorithm variants is demonstrated using an important
class of problems that arise often in practice. This is followed by conclusions and
further thoughts in Section 5.

2 Matrix trace estimation

Let the matrix A = BTB ∈ Rs×s be implicit SPSD, and denote its trace by tr(A).
As described in Section 1, we approximate tr(A) by

trn(A) :=
1

n

n∑
j=1

wT
j Awj, (10)

where wj ∈ Rs ∼ N (0, I).
Now, given a pair of small positive real numbers (ε, δ), consider finding an appro-

priate sample size n such that

Pr
(
trn(A) ≥ (1− ε)tr(A)

)
≥ 1− δ, (11a)

Pr
(
trn(A) ≤ (1 + ε)tr(A)

)
≥ 1− δ. (11b)

In [28] we showed that the inequalities (11) hold if

n > 8c, where c = c(ε, δ) = ε−2 ln(1/δ). (12)

However, this bound on n can be rather pessimistic. Theorems 3 and 4 and Corollary
5 below provide tighter and hopefully more useful bounds on n. In order to prove
these we require the two additional Theorems 1 and 2, whose nontrivial and more
technical proofs are deferred to Appendix B. Let X ∼ Gamma(α, β) denote a gamma
distributed random variable (r.v) parametrized by shape α and rate β5.

5Recall that the probability density function of such r.v is

f(x) =

{
βα

Γ(α)x
α−1e−βx x ≥ 0,

0 x < 0.
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Theorem 1 (Monotonicity of cumulative distribution function of gamma r.v)
Given parameters 0 < α1 < α2, let Xi ∼ Gamma(αi, αi), i = 1, 2, be independent
r.v’s, and define

∆(x) := Pr(X2 < x)− Pr(X1 < x).

Then we have that

(i) there is a unique point x(α1, α2) such that ∆(x) < 0 for 0 < x < x(α1, α2) and
∆(x) > 0 for x > x(α1, α2),

(ii) 1 ≤ x(α1, α2) ≤ 2
√
α1(α2−α1)+1

2
√
α1(α2−α1)

.

Theorem 2 (Extremal probabilities of linear combination of gamma r.v’s)
Given shape and rate parameters α, β > 0, let Xi ∼ Gamma(α, β), i = 1, 2, . . . , n,
be i.i.d gamma r.v’s, and define

Θ := {λ =
(
λ1, λ2, . . . , λn

)T | λi ≥ 0 ∀i,
n∑
i=1

λi = 1}.

Then we have

mn(x) := min
λ∈Θ

Pr

(
n∑
i=1

λiXi < x

)
=

Pr
(

1
n

∑n
i=1Xi < x

)
, x < α

β

Pr
(
X1 < x

)
, x > 2α+1

2β
,

Mn(x) := max
λ∈Θ

Pr

(
n∑
i=1

λiXi < x

)
=

Pr
(
X1 < x

)
, x < α

β

Pr
(

1
n

∑n
i=1Xi < x

)
, x > 2α+1

2β

.

Next we state and prove the results that are directly relevant to this section. Let
us define

Q(n) :=
1

n
Qn,

where Qn ∼ χ2
n denotes a chi-squared r.v of degree n. Note that Q(n) ∼

Gamma(n/2, n/2). In case of several i.i.d gamma r.v’s of this sort, we refer to the
jth r.v by Qj(n).

Theorem 3 (Necessary and sufficient condition for (11a)) Given an SPSD
matrix A of rank r and tolerances (ε, δ) as above, the following hold:



7

(i) Sufficient condition: there exists some integer n0 ≥ 1 such that

Pr
(
Q(n0) < (1− ε)

)
≤ δ. (13)

Furthermore, (11a) holds for all n ≥ n0.

(ii) Necessary condition: if (11a) holds for some n0 ≥ 1, then for all n ≥ n0

P−ε,r(n) := Pr
(
Q(nr) < (1− ε)

)
≤ δ. (14)

(iii) Tightness: if the r positive eigenvalues of A are all equal (NB this always hap-
pens if r = 1), then there is a positive integer n0 satisfying (14), such that (11a)
holds iff n ≥ n0.

Proof Since A is SPSD, it can be diagonalized by a unitary similarity transformation
as A = UTΛU , where Λ is the diagonal matrix of eigenvalues sorted in non-increasing
order. Consider n random vectors wi, i = 1, . . . , n, whose components are i.i.d and
drawn from the standard normal distribution, and define zi = Uwi for each i. Note
that since U is unitary, the entries of zi are i.i.d standard normal variables, like the
entries of wi. We have

trn(A)

tr(A)
=

1

n tr(A)

n∑
i=1

wT
i Awi =

1

n tr(A)

n∑
i=1

zTi Λzi =
1

n tr(A)

n∑
i=1

r∑
j=1

λjz
2
ij

=
r∑
j=1

λj
n tr(A)

n∑
i=1

z2
ij =

r∑
j=1

λj
tr(A)

Qj(n),

where the λj’s appearing in the sums are positive eigenvalues of A. Now, noting that∑r
j=1

λj
tr(A)

= 1, Theorem 2 yields

Pr

(
r∑
j=1

λj
tr(A)

Qj(n) ≤ (1− ε)

)
≤ Pr

(
Q(n) ≤ (1− ε)

)
= P−ε,1(n), (15a)

Pr

(
r∑
j=1

λj
tr(A)

Qj(n) ≤ (1− ε)

)
≥ Pr

(
Q(nr) ≤ (1− ε)

)
= P−ε,r(n). (15b)

In addition, for any given r > 0 and ε > 0, the function P−ε,r(n) is monotonically
decreasing on integers n ≥ 1. This can be seen by Theorem 1 using the sequence
αi = (n0 + (i − 1))r/2, i ≥ 1. The claims now easily follow by combining (15) and
this decreasing property. �

Theorem 4 (Necessary and sufficient condition for (11b)) Given an SPSD
matrix A of rank r and tolerances (ε, δ) as above, the following hold:
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(i) Sufficient condition: if the inequality

Pr
(
Q(n0) ≤ (1 + ε)

)
≥ 1− δ (16)

is satisfied for some n0 > ε−1, then (11b) holds with n = n0. Furthermore,
there is always an n0 > ε−2 such that (16) is satisfied and, for such n0, it
follows that (11b) holds for all n ≥ n0.

(ii) Necessary condition: if (11b) holds for some n0 > ε−1, then

P+
ε,r(n) := Pr

(
Q(nr) ≤ (1 + ε)

)
≥ 1− δ, (17)

with n = n0. Furthermore, if n0 > ε−2r−2, then (17) holds for all n ≥ n0.

(iii) Tightness: if the r positive eigenvalues of A are all equal, then there is a
smallest n0 > ε−2r−2 satisfying (17) such that for any n ≥ n0, (11b) holds,
and for any ε2r−2 < n < n0, (11b) does not hold. If δ is small enough so
that (17) does not hold for any n ≤ ε2r−2, then n0 is both necessary and sufficient
for (11b).

Proof The same unitary diagonalization argument as in the proof of Theorem 3
shows that

Pr
(
trn(A) < (1 + ε)tr(A)

)
= Pr

(
r∑
j=1

λj
tr(A)

Qj(n) < (1 + ε)

)
.

Now we see that if n > ε−1, Theorem 2 with α = n/2 yields

Pr

(
r∑
j=1

λj
tr(A)

Qj(n) ≤ (1 + ε)

)
≥ Pr

(
Q(n) ≤ (1 + ε)

)
= P+

ε,1(n), (18a)

Pr

(
r∑
j=1

λj
tr(A)

Qj(n) ≤ (1 + ε)

)
≤ Pr

(
Q(nr) ≤ (1 + ε)

)
= P+

ε,r(n). (18b)

In addition, for any given r > 0 and ε > 0, the function P+
ε,r(n) is monotonically

increasing on integers n > ε−2r−2. This can be seen by Theorem 1 using the sequence
αi = (n0 + (i − 1))r/2, i ≥ 1. The claims now easily follow by combining (18) and
this increasing property. �

Remarks:

(i) Part (iii) of Theorem 4 states that if δ is not small enough, then n0 might not be
a necessary and sufficient sample size for the special matrices mentioned there,
i.e., matrices with λ1 = λ2 = · · · = λr. This can be seen from Figure 1(b):
for r = 1, ε = 0.1, if δ = 0.33, say, there is an integer 10 < n ≤ 100 such
that (11b) holds, so n = 101 is no longer a necessary sample size (although it is
still sufficient).
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(a) (b)

Figure 1: The curves of P−ε,r(n) and P+
ε,r(n), defined in (14) and (17), for ε = 0.1

and r = 1: (a) P−ε,r(n) decreases monotonically for all n ≥ 1; (b) P+
ε,r(n) increases

monotonically only for n ≥ n0, where n0 > 1: according to Theorem 4, n0 = 100 is
safe, and this value does not disagree with the plot.

(ii) Simulations show that the sufficient sample size obtained using Theorems 3
and 4, amounts to bounds of the form O (c(ε, δ)g(δ)), where g(δ) < 1 is a
decreasing function of δ and c(ε, δ) is as defined in (12). As such, for larger
values of δ, i.e., when larger uncertainty is allowed, one can obtain significantly
smaller sample sizes than the one predicted by (12); see Figures 2 and 3. In
other words, the difference between the above tighter conditions and (12) is
increasingly more prominent as δ gets larger.

(iii) Note that the results in Theorems 3 and 4 are independent of the size of the
matrix. In fact, the first items (i) in both theorems do not require any a priori
knowledge about the matrix, other than it being SPSD. In order to compute
the necessary sample sizes, though, one is required to also know the rank of the
matrix.

(iv) The conditions in our theorems, despite their potentially ominous look, are
actually simple to compute. Appendix C contains a short Matlab code which
calculates these necessary or sufficient sample sizes to satisfy the probabilistic
accuracy guarantees (11), given a pair (ε, δ) (and the matrix rank r in case of
necessary sample sizes). This code was used for generating Figures 2 and 3.

Combining Theorems 3 and 4, we can easily state conditions on the sample size
n for which the condition

Pr
(
|trn(A)− tr(A)| ≤ ε tr(A)

)
≥ 1− δ (19)

holds. We have the following immediate corollary:
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(a) (b)

Figure 2: Comparing, as a function of δ, the sample size obtained from (13) and
denoted by “tight”, with that of (12) and denoted by “loose”, for ε = 0.1 and 0.01 ≤
δ ≤ 0.3: (a) sufficient sample size, n, for (11a), (b) ratio of sufficient sample size
obtained from (12) over that of (13). When δ is relaxed, our new bound is tighter
than the older one by an order of magnitude.

Corollary 5 (Necessary and sufficient condition for (19)) Given an SPSD
matrix A of rank r and tolerances (ε, δ) as above, the following hold:

(i) Sufficient condition: if the inequality

Pr
(
(1− ε) ≤ Q(n0) ≤ (1 + ε)

)
≥ 1− δ (20)

is satisfied for some n0 > ε−1, then (19) holds with n = n0. Furthermore, there
is always an n0 > ε−2 such that (20) is satisfied and, for such n0, it follows
that (19) holds for all n ≥ n0.

(ii) Necessary condition: if (19) holds for some n0 > ε−1, then

Pr
(
(1− ε) ≤ Q(nr) ≤ (1 + ε)

)
≥ 1− δ, (21)

with n = n0. Furthermore, if n0 > ε−2r−2, then (21) holds for all n ≥ n0.

(iii) Tightness: if the r positive eigenvalues of A are all equal then there is a
smallest n0 > ε−2r−2 satisfying (21) such that for any n ≥ n0, (19) holds, and
for any ε−2r−2 < n < n0, (19) does not hold. If δ is small enough so that (21)
does not hold for any n ≤ ε−2r−2, then n0 is both necessary and sufficient
for (19).

Remark: The necessary condition in Corollary 5(ii) is only valid for n > ε−1 (this
is a consequence of the condition (21) being tight, as shown in part (iii)). In [28], an
“almost tight” necessary condition is given that works for all n ≥ 1.



11

(a) (b)

Figure 3: Comparing, as a function of δ, the sample size obtained from (16) and
denoted by “tight”, with that of (12) and denoted by “loose”, for ε = 0.1 and 0.01 ≤
δ ≤ 0.3: (a) sufficient sample size, n, for (11b), (b) ratio of sufficient sample size
obtained from (12) over that of (16). When δ is relaxed, our new bound is tighter
than the older one by an order of magnitude.

3 Randomized algorithms for solving large scale

NLS problems

Consider the problem of decreasing the value of the original objective (3) to a desired
level (e.g., satisfying a given tolerance) to recover the sought model, m. With the
sensitivity matrices

Ji(m) =
∂f(m,qi)

∂m
, i = 1, . . . , s

we have the gradient

∇φ(m) = 2
s∑
i=1

JTi (m)(f(m,qi)− di).

An iterative method such as modified Gauss-Newton (GN), L-BFGS, or nonlinear
conjugate gradient is typically designed to decrease the value of the objective function
using repeated calculations of the gradient. In the present article we follow [30] and
employ variants of stabilized GN throughout, thus achieving a context in which to
focus our attention on the new aspects of this work. In the kth iteration of such a
method, having the current iterate mk, an update direction, δmk, is calculated. Then
the iterate is updated as mk+1 ←mk + αkδmk, for some appropriate step length αk.

What is special in our context here is that the update direction, δmk, is calculated
using the approximate misfit, φ̂(mk, nk), defined as described in (7) (nk is the sample
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size used for this approximation in the kth iteration). Thus, we need to check or assess
whether the value of the original objective is also decreased using this new iterate.
The challenge is to do this as well as check for termination of the iteration process
with a minimal number of evaluations of the prohibitively expensive original misfit
function φ.

In this section, we extend the algorithms introduced in [30, 29] in the context
of the more general NLS formulation (8) or (9), assuming that their corresponding
noise distributions hold, although, as promised in Section 1, we stick to the simpler
notation (3), (7). Variants of modified stochastic steps in the original algorithms are
presented, and using Theorems 3 and 4, the uncertainties in these steps are quantified.
More specifically, in the main algorithm introduced in [30], following a stabilized GN
iteration on the approximated objective function using the approximated misfit, the
iterate is updated, and some (or all) of the following steps are performed:

(i) cross validation – approximate assessment of this iterate in terms of sufficient
decrease in the objective function using a control set of random combinations
of measurements. More specifically, at the kth iteration with the new iterate
mk+1, we test whether the condition

φ̂(mk+1, nk) ≤ κφ̂(mk, nk) (22)

(cf. (7)) holds for some κ ≤ 1, employing an independent set of weight vectors
used in both approximations of φ;

(ii) uncertainty check – upon success of cross validation, an inexpensive plausible
termination test is performed where, given a tolerance ρ, we check for the con-
dition

φ̂(mk+1, nk) ≤ ρ (23)

using a fresh set of random weight vectors; and

(iii) stopping criterion – upon success of the uncertainty check, an additional inde-
pendent and potentially more rigorous termination test against the given toler-
ance ρ is performed (possibly using the original misfit function).

The role of the cross validation step within an iteration is to assess whether the
true objective function at the current iterate has (sufficiently) decreased compared
to the previous one. If this test fails, we deem that the current sample size is not
sufficiently large to yield an update that decreases the original objective, and the
fitting step needs to be repeated using a larger sample size, see [10]. In [30], this
step was used heuristically, so the amount of uncertainty in such validation of the
current iterate was not quantified. Consequently, there was no handle on the amount
of false positives/negatives in such approximate evaluations (e.g., a sample size could
be deemed too small while the stabilized GN iteration has in fact produced an ac-
ceptable iterate). In addition, in [30] the sample size for the uncertainty check was
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heuristically chosen. So this step was also performed with no control over the amount
of uncertainty.

For the stopping criterion step in [30, 10], the objective function was accurately
evaluated using all s experiments, which is clearly a very expensive choice for an
algorithm termination check. This was a judicious decision made in order to be able
to have a fairer comparison of the new and different methods proposed there. Re-
placement of this termination criterion by another independent heuristic “uncertainty
check” is experimented with in [29].

In this section, we address the issues of quantifying the uncertainty in the valida-
tion, uncertainty check and stopping criterion steps within a nonlinear iteration. In
what follows, we assume for simplicity that the iterations are performed on the ob-
jective (3) using dynamic regularization (or iterative regularization [20, 9, 10]) where
the regularization is performed implicitly. Extension to the case (4) is straight for-
ward. Throughout, we assume to be given a pair of positive and small probabilistic
tolerance numbers, (ε, δ).

3.1 Cross validation step with quantified uncertainty

The condition (22) is an independent, unbiased indicator of

φ(mk+1) ≤ κφ(mk),

which indicates sufficient decrease in the objective. If (22) is satisfied then the cur-
rent sample size, nk, is considered sufficiently large to capture the original misfit well
enough to produce a valid iterate, and the algorithm continues using the same sample
size. Otherwise, the sample size is deemed insufficient and is increased. Using Theo-
rems 3 and 4, we can now remove the heuristic characteristic as to when this sample
size increase has been performed hitherto, and present two variants of (22) where the
uncertainties in the validation step are quantified.

Assume we have a sample size nc such that

Pr
(
φ̂(mk, nc) ≤ (1 + ε)φ(mk)

)
≥ 1− δ, (24a)

Pr
(
φ̂(mk+1, nc) ≥ (1− ε)φ(mk+1)

)
≥ 1− δ. (24b)

If in the procedure outlined above, after obtaining the updated iterate mk+1, we
verify that

φ̂(mk+1, nc) ≤ κ

(
1− ε
1 + ε

)
φ̂(mk, nc), (25)

then it follows from (24) that φ(mk+1) ≤ κφ(mk) with a probability of, at least,
(1− δ)2. In other words, success of (25) indicates that the updated iterate decreases
the value of the original misfit (3) with a probability of, at least, (1− δ)2.
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Alternatively, suppose that we have

Pr
(
φ̂(mk, nc) ≥ (1− ε)φ(mk)

)
≥ 1− δ, (26a)

Pr
(
φ̂(mk+1, nc) ≤ (1 + ε)φ(mk+1)

)
≥ 1− δ. (26b)

Now, if instead of (25) we check whether or not

φ̂(mk+1, nc) ≤ κ

(
1 + ε

1− ε

)
φ̂(mk, nc), (27)

then it follows from (26) that if the condition (27) is not satisfied, then φ(mk+1) >
κφ(mk) with a probability of, at least, (1−δ)2. In other words, failure of (27) indicates
that the updated iterate results in an insufficient decrease in the original misfit (3)
with a probability of, at least, (1− δ)2.

We can replace (22) with either of the conditions (25) or (27) and use the con-
ditions (13) or (16) to calculate the cross validation sample size, nc. If the relevant
check (25) or (27) fails, we deem the sample size used in the fitting step, nk, to be too
small to produce an iterate which decreases the original misfit (3), and consequently
consider increasing the sample size, nk. Note that since 1−ε

1+ε
< 1 < 1+ε

1−ε , the con-
dition (25) results in a more aggressive strategy for increasing the sample size used
in the fitting step than the condition (27). Figure 8 in Section 4 demonstrates this
within the context of an application.
Remarks:

(i) Larger values of ε result in more aggressive (or relaxed) descent requirement by
the condition (25) (or (27)).

(ii) As the iterations progress and we get closer to the solution, the decrease in the
original objective could be less than what is imposed by (25). As a result, if
ε is too large, we might never successfully pass the cross validation test. One
useful strategy to alleviate this is to start with a larger ε, decreasing it as we
get closer to the solution. A similar strategy can be adopted for the case when
the condition (27) is used as a cross validation: as the iterations get closer to
the solution, one can make the condition (27) less relaxed by decreasing ε.

3.2 Uncertainty check with quantified uncertainty and effi-
cient stopping criterion

The usual test for terminating the iterative process is to check whether

φ(mk+1) ≤ ρ, (28)

for a given tolerance ρ. However, this can be very expensive in our current context; see
Section 4.1 and Tables 1 and 2 for examples of a scenario where one misfit evaluation
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using the entire data set can be as expensive as the entire cost of an efficient, complete
algorithm. In addition, if the exact value of the tolerance ρ is not known (which is
usually the case in practice), one should be able to reflect such uncertainty in the
stopping criterion and perform a softer version of (28). Hence, it could be useful
to have an algorithm which allows one to adjust the cost and accuracy of such an
evaluation in a quantifiable way, and find the balance that is suitable to particular
objectives and computational resources.

Regardless of the issues of cost and accuracy, this evaluation should be carried
out as rarely as possible and only when deemed timely. In [30], we addressed this
by employing an “uncertainty check” (23) as described earlier in this section, heuris-
tically. Using Theorems 3 and 4, we now devise variants of (23) with quantifiable
uncertainty. Subsequently, again using Theorems 3 and 4, we present a much cheaper
stopping criterion than (28) which, at the same time, reflects our uncertainty in the
given tolerance.

Assume that we have a sample size nu such that

Pr
(
φ̂(mk+1, nu) ≥ (1− ε)φ(mk+1)

)
≥ 1− δ. (29)

If the updated iterate, mk+1, successfully passes the cross validation test, then we
check for

φ̂(mk+1, nu) ≤ (1− ε)ρ. (30)

If this holds too then it follows from (29) that φ(mk+1) ≤ ρ with a probability of, at
least, (1− δ). In other words, success of (30) indicates that the misfit is likely to be
below the tolerance with a probability of, at least, (1− δ).

Alternatively, suppose that

Pr
(
φ̂(mk+1, nu) ≤ (1 + ε)φ(mk+1)

)
≥ 1− δ, (31)

and instead of (30) we check for

φ̂(mk+1, nu) ≤ (1 + ε)ρ. (32)

then it follows from (31) that if the condition (32) is not satisfied, then φ(mk+1) > ρ
with a probability of, at least, (1− δ). In other words, failure of (32) indicates that
using the updated iterate, the misfit is likely to be still above the desired tolerance
with a probability of, at least, (1− δ).

We can replace (23) with the condition (30) (or (32)) and use the condition (13)
(or (16)) to calculate the uncertainty check sample size, nu. If the test (30) (or (32))
fails then we skip the stopping criterion check and continue iterating. Note that since
(1 − ε) < 1 < (1 + ε), the condition (30) results in fewer false positives than the
condition (32). On the other hand, the condition (32) is expected to results in fewer
false negatives than the condition (30). The choice of either alternative is dependent
on one’s requirements, resources and the application on hand.
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The stopping criterion step can be performed in the same way as the uncertainty
check but potentially with higher certainty in the outcome. In other words, for the
stopping criterion we can choose a smaller δ, resulting in a larger sample size nt
satisfying nt > nu, and check for satisfaction of either

φ̂(mk+1, nt) ≤ (1− ε)ρ, (33a)

or
φ̂(mk+1, nt) ≤ (1 + ε)ρ. (33b)

Clearly the condition (33b) is a softer than (33a): a successful (33b) is only necessary
and not sufficient for concluding that (28) holds with the prescribed probability.

In practice, when the value of the stopping criterion threshold, ρ, is not exactly
known (it is often crudely estimated using the measurements), one can reflect such
uncertainty in ρ by choosing an appropriately large δ. Smaller values of δ reflect a
higher certainty in ρ and a more rigid stopping criterion.
Remarks:

(i) If ε is large then using (33a), one might run the risk of over-fitting. Similarly,
using (33b) with large ε, there is a risk of under-fitting. Thus, appropriate
values of ε need to be considered in accordance with the application and one’s
computational resources and experience.

(ii) The same issues regarding large ε arise when employing the uncertainty check
condition (30) (or (32)): large ε might increase the frequency of false negatives
(or positives).

3.3 Algorithm

We now present an efficient, stochastic, iterative algorithm for approximately solving
NLS formulations of (3) or (4). By performing cross validation, uncertainty check
and stopping criterion as descried in Section 3.1 and Section 3.2, we can devise 8
variants of Algorithm 1 below. Depending on the application, the variant of choice can
be selected appropriately. More specifically, cross validation, uncertainty check and
stopping criterion can, respectively, be chosen to be one of the following combinations
(referring to their equation numbers):

(i) (25 - 30 - 33a) (ii) (25 - 30 - 33b) (iii) (25 - 32 - 33a) (iv) (25 - 32 - 33b)
(v) (27 - 30 - 33a) (vi) (27 - 30 - 33b) (vii) (27 - 32 - 33a) (viii) (27 - 32 - 33b)

Remark:
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(i) The sample size, nk, used in the fitting step of Algorithm 1 could in principle
be determined by Corollary 5, using a pair of tolerances (εf , δf ). If cross val-
idation (25) (or (27)) fails, the tolerance pair (εf , δf ) is reduced to obtain, in
the next iteration, a larger fitting sample size, nk+1. This would give a sample
size which yields a quantifiable approximation with a desired relative accuracy.
However, in the presence of all the added safety steps described in this section,
we have found in practice that Algorithm 1 is capable of producing a satisfying
recovery, even with a significantly smaller nk than the one predicted by Corol-
lary 5. Thus, the “how” of the fitting sample size increase is left to heuristic (as
opposed to its “when”, which is quantified as described in Section 3.1).

(ii) In the algorithm below, we only consider fixed values (i.e., independent of k)
for ε and δ. One can easily modify Algorithm 1 to incorporate non-stationary
values which adapt to the iteration process, as mentioned in the closing remark
of Section 3.1.

In Algorithm 1, when we draw vectors wi for some purpose, we always draw them
independently from the standard normal distribution.

4 A practical application

In this section, we demonstrate the efficacy of Algorithm 1 by applying it to an
important class of problems that arise often in practice: large scale partial differential
equation (PDE) inverse problems with many measurements. We show below the
capability of our method by applying it to such examples in the context of the DC
resistivity/EIT problem, as in [10, 30, 29].

4.1 PDE inverse problems with many measurements

The context considered here is one where each evaluation of fi(m) in (2) is compu-
tationally expensive. The evaluation of the misfit function φ(m) is especially costly
when many experiments, involving different combinations of sources and receivers,
are employed in order to obtain reconstructions of acceptable quality. The sought
model m is a discretization of the function m(x) as described in Section 1, and

fi(m) = Piui = PiL(m)−1qi. (34a)

Here we write the PDE system in discretized form as

L(m)ui = qi, i = 1, . . . , s, (34b)

where ui ∈ IRlq is the ith field, qi ∈ IRlq is the ith source, and L is a square ma-
trix discretizing the PDEs plus appropriate side conditions. Furthermore, the given
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Algorithm 1 Solve NLS formulation of (3) (or (4)) using uncertainty check, cross
validation and cheap stopping criterion

Given: sources qi , i = 1, . . . , s, measurements di , i = 1, . . . , s, stopping criterion
level ρ, objective function sufficient decrease factor κ ≤ 1, pairs of small numbers
(εc, δc), (εu, δu), (εt, δt), and initial guess m0.
Initialize:
- m = m0 , n0 = 1
- Calculate the cross validation sample size, nc, as described in Section 3.1 with
(εc, δc).
- Calculate the sample sizes for uncertainty check, nu, and stopping criterion, nt,
as described in Section 3.2 with (εu, δu) and (εt, δt), respectively.
for k = 0, 1, 2, · · · until termination do

Fitting:
- Draw wi , i = 1, . . . , nk.
- Approximate the misfit term and potentially its gradient in (3) or (4) using (7)
with the above weights and n = nk.
- Find an update for the objective function using the approximated misfit (7).
Cross Validation:
- Draw wi , i = 1, . . . , nc.
if (25) (or (27)) holds then

Uncertainty Check:
- Draw wi , i = 1, . . . , nu.
if (30) (or (32)) holds then

Stopping Criterion:
- Draw wi , i = 1, . . . , nt.
if (33a) (or (33b)) holds then

- Terminate
end if

end if
- Set nk+1 = nk.

else
- Sample Size Increase: for example, set nk+1 = min(2nk, s).

end if
end for
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projection matrices Pi are such that fi(m) predicts the ith data set. Note that the
notation (34b) reflects an assumption of linearity in u but not in m [30].

If the locations where data are measured do not change from one experiment to
another, i.e., P = Pi,∀i, then we get

f(m,qi) = PL(m)−1qi, (35)

and the linearity assumption of f(m,q) in q is satisfied. Thus, we can use Algorithm 1
to efficiently recover m and be quantifiably confident in the recovered model. If the
Pi’s are different across experiments, there are methods to extend the existing data
set to one where all sources share the same receivers, see [29, 17]. Using these methods
(when they apply!), one can effectively transform the problem (34a) to (35), for which
Algorithm 1 can be employed.

There are several problems of practical interest in the form (3), (34), where the use
of many experiments, resulting in a large number s, is crucial for obtaining credible
reconstructions in practical situations. These include electromagnetic data inversion
in mining exploration (e.g., [24, 12, 16, 25]), seismic data inversion in oil exploration
(e.g., [14, 21, 27]), diffuse optical tomography (DOT) (e.g., [2, 4]), quantitative photo-
acoustic tomography (QPAT) (e.g., [15, 35]), direct current (DC) resistivity (e.g., [31,
26, 19, 18, 10]), and electrical impedance tomography (EIT) (e.g., [5, 8, 11]).

Our examples are performed in the context of solving the DC resistivity problem.
The PDE has the form

∇ · (µ(x)∇u) = q(x), x ∈ Ω, (36a)

where Ω ⊂ IRd, d = 2 or 3, and µ(x) is a conductivity function which may be rough6

(e.g., discontinuous). However, the PDE is coercive: there is a constant µ0 > 0 such
that µ(x) ≥ µ0, ∀x ∈ Ω. It is possible to inject some a priori information on µ, when
such is available, via a parametrization of µ(x) in terms of m(x) using an appropriate
transfer function ψ as µ(x) = ψ(m(x)). For example, ψ can be chosen so as to
ensure that the conductivity stays positive and bounded away from 0, as well as to
incorporate bounds, which are often known in practice, on the sought conductivity
function. Some possible choices of function ψ are described in [30, Appendix A].
Here we take Ω to be the unit square in 2D, and assume the homogeneous Neumann
boundary conditions

∂u

∂n
= 0, x ∈ ∂Ω. (36b)

The inverse problem is then to recover m in Ω from sets of measurements of u
on the domain’s boundary for different sources q. Details of the numerical methods
employed here, both for defining the predicted data f and for solving the inverse
problem in appropriately transformed variables, can be found in [30, Appendix A].

6In theory, the conductivity function is defined so that µ ∈ L∞(Ω), and hence it can be very
rough.
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4.2 Numerical experiments

Below we consider two examples, each having a piecewise constant “exact solution”,
or “true model”, used to synthesize data:

(E.1) in our simpler model a target object with conductivity µt = 1 has been placed
in a background medium with conductivity µb = 0.1 (see Figure 4(a)); and

(E.2) in a slightly more complex setting a conductive object with conductivity µc =
0.01, as well as a resistive one with conductivity µr = 1, have been placed in a
background medium with conductivity µb = 0.1 (see Figure 6(a)). Note that the
recovery of the model in Example (E.2) is more challenging than Example (E.1)
since here the dynamic range of the conductivity is much larger.

Details of the numerical setup for the following examples are given in Appendix A.

4.2.1 Example (E.1)

We carry out the 8 variants of Algorithm 1 for the parameter values (εc, δc) =
(0.05, 0.3), (εu, δu) = (0.1, 0.3), (εt, δt) = (0.1, 0.1), and κ = 1. The resulting total
count of PDE solves, which is the main computational cost of the iterative solution
of such inverse problems, is reported in Tables 1 and 2. As a point of reference, we
also include the total PDE count using the “plain vanilla” stabilized Gauss-Newton
method which employs the entire set of s experiments at every iteration and mis-
fit estimation task. The recovered conductivities are displayed in Figures 5 and 7,
demonstrating that employing Algorithm 1 can drastically reduce the total work while
obtaining equally acceptable reconstructions.

Vanilla (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
436,590 4,058 4,028 3,764 3,282 4,597 3,850 3,734 3,321

Table 1: Example (E.1). Work in terms of number of PDE solves for all variants of
Algorithm 1, described in Section 3.3 and indicated here by (i)–(viii). The “vanilla”
count is also given, as a reference.

For the calculations displayed here we have employed dynamical regularization [9,
10]. In this method there is no explicit regularization term R(m) in (4) and the
regularization is done implicitly and iteratively.

The quality of reconstructions obtained by the various variants in Figure 5 is
comparable to that of the “vanilla” with s = 3, 969 in Figure 4(b). In contrast,
employing only s = 49 data sets corresponding to similar experiments distributed over
a coarser grid yields an inferior reconstruction in Figure 4(c). The cost of this latter
run is 5, 684 PDE solves, which is more expensive than our randomized algorithms
for the much larger s. Furthermore, comparing Figures 4(b) and 5 to Figures 3 and 4
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(a) (b) (c)

Figure 4: Example (E.1). Plots of log-conductivity: (a) True model; (b) Vanilla
recovery with s = 3, 969; (c) Vanilla recovery with s = 49. The vanilla recovery
using only 49 measurement sets is clearly inferior, showing that a large number of
measurement sets can be crucial for better reconstructions.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 5: Example (E.1). Plots of log-conductivity of the recovered model using the
8 variants of Algorithm 1, described in Section 3.3 and indicated here by (i)–(viii).
The quality of reconstructions is generally comparable to that of plain vanilla with
s = 3, 969 and across variants.

of [29], which shows similar results for s = 961 data sets, we again see a relative
improvement in reconstruction quality. All of this goes to show that a large number
of measurements s can be crucial for better reconstructions. Thus, it is not the case
that one can dispense with a large portion of the measurements and still expect the
same quality reconstructions. Hence, it is indeed useful to have algorithms such as
Algorithm 1 that, while taking advantage of the entire available data, can efficiently
carry out the computations and yet obtain credible reconstructions.

We have resisted the temptation to make comparisons between values of φ(mk+1)
and φ̂(mk+1) for various iterates. There are two major reasons for that. The first is
that φ̂ values in bounds such as (25), (27), (30), (32) and (33) are different and are
always compared against tolerances in context that are based on noise estimates. In
addition, the sample sizes that we used for uncertainty check and stopping criteria,
since they are given by Theorems 3 and 4, already determine how far the estimated
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misfit is from the true misfit. The second (and more important) reason is that in such
a highly diffusive forward problem as DC resistivity, misfit values are typically far
closer to one another than the resulting reconstructed models m are. A good misfit
is merely a necessary condition, which can fall significantly short of being sufficient,
for a good reconstruction [16, 29].

4.2.2 Example (E.2)

Here we have imposed prior knowledge on the “discontinuous” model in the form
of total variation (TV) regularization [11, 7, 6]. Specifically, R(m) in (4) is the
discretization of the TV functional

∫
Ω
|∇m(x)|. For each recovery, the regularization

parameter, α, has been chosen by trial and error within the range [10−6, 10−3] to
visually yield the best quality recovery.

Vanilla (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
476,280 5,631 5,057 5,011 3,990 6,364 4,618 4,344 4,195

Table 2: Example (E.2). Work in terms of number of PDE solves for all variants of
Algorithm 1, described in Section 3.3 and indicated here by (i)–(viii). The “vanilla”
count is also given, as a reference.

Table 2 and Figures 6 and 7 tell a similar story as in Example (E.1). The quality
of reconstructions with s = 3, 969 by the various variants, displayed in Figure 7, is
comparable to that of the “vanilla” version in Figure 6(b), yet is obtained at only
at a fraction (about 1%) of the cost. The “vanilla” solution for s = 49 displayed
in Figure 6(c), costs 5, 978 PDE solves, which again is a higher cost for an inferior
reconstruction compared to our Algorithm 1.

It is clear from Tables 1 and 2 that for most of these examples, variants (i)–(iv)
which use the more aggressive cross validation (25) are at least as efficient as their
respective counterparts, namely, variants (v)–(viii) which use (27). This suggests
that, sometimes, a more aggressive sample size increase strategy may be a better
option; see also the numerical examples in [30]. Notice that for all variants, the entire
cost of the algorithm is comparable to one single evaluation of the misfit function
φ(m) using the full data set!
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(a) (b) (c)

Figure 6: Example (E.2). Plots of log-conductivity: (a) True model; (b) Vanilla
recovery with s = 3, 969; (c) Vanilla recovery with s = 49. The vanilla recovery
using only 49 measurement sets is clearly inferior, showing that a large number of
measurement sets can be crucial for better reconstructions.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 7: Example (E.2). Plots of log-conductivity of the recovered model using the
8 variants of Algorithm 1, described in Section 3.3 and indicated here by (i)–(viii).
The quality of reconstructions is generally comparable to each other and that of plain
vanilla with s = 3, 969.
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Figure 8: Example (E.2). Growth of the fitting sample size, nk, as a function of the
iteration k, upon using cross validation strategies (25) and (27). The graph shows
the fitting sample size growth for variants (ii) and (vi) of Algorithm 1, as well as their
counterparts, namely, variants (vi) and (viii). Observe that for variants (ii) and (iv)
where (25) is used, the fitting sample size grows at a more aggressive rate than for
variants (vi) and (viii) where (27) is used.
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5 Conclusions

In the present article we have proved tight necessary and sufficient conditions for
the sample size, n, required to reach, with a probability of at least 1 − δ, (one-
sided) approximations for tr(A) to within a relative tolerance ε. All of the sufficient
conditions are computable in practice and do not assume any a priori knowledge
about the matrix. If the rank of the matrix is known then the necessary bounds can
also be computed in practice.

Subsequently, using these conditions, we have presented eight variants of a general
purpose algorithm for solving an important class of large scale non-linear least squares
problems. These algorithms can be viewed as an extended version of those in [30, 29],
where the uncertainty in most of the stochastic steps is quantified. Such uncertainty
quantification allows one to have better control over the behavior of the algorithm and
have more confidence in the recovered solution. The resulting algorithm is presented
in Section 3.3.

Furthermore, we have demonstrated the performance of our algorithm using an
important class of problems which arise often in practice, namely, PDE inverse prob-
lems with many measurements. By examining our algorithm in the context of the
DC resistivity problem as an instance of such class of problems, we have shown that
Algorithm 1 can recover solutions with remarkable efficiency. This efficiency is com-
parable to similar heuristic algorithms proposed in [30, 29]. The added advantage
here is that with the uncertainty being quantified, the user can have more confidence
in the approximate solution obtained by our algorithm.

Tables 1 and 2 show the amount of work (in PDE solves) of the 8 variants of
our algorithm. Compared to a similar algorithm which uses the entire data set,
an efficiency improvement by two orders of magnitude is observed. For most of
the examples considered, the same tables also show that the more aggressive cross
validation strategy (25) is, at least, as efficient as the more relaxed strategy (27). A
thorough comparison of the behavior of these cross validation strategies (and all of
the variants, in general) on different examples and model problems is left for future
work.
Acknowledgment We thank our anonymous referees for several valuable comments
which have helped to improve the text. The first author thanks Prof. Yaming Yu for
referring him to [32], which resulted in the collaboration among the authors of the
present paper.

A Numerical experiments setup

The experimental setting we use in Section 4.1 is as follows: for each experiment i,
there is a positive unit point source at xi1 and a negative sink at xi2, where xi1 and xi2
denote two locations on the boundary ∂Ω. Hence in (36a) we must consider sources
of the form qi(x) = δ(x− xi1)− δ(x− xi2), i.e., a difference of two δ-functions, and qi
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is the discretization of qi over the grid.
For our experiments, when we place a source on the left boundary, we place the

corresponding sink on the right boundary in every possible combination. Hence, hav-
ing p locations on the left boundary for the source would result in s = p2 experiments.
The receivers are located at the top and bottom boundaries. No source or receiver is
placed at the corners.

We then generate data di by using a chosen true model (or ground truth) and a
source-receiver configuration as described above. This is followed by peppering these
values with 2% additive Gaussian noise to create the data di used in our experiments.
Specifically, for an additive noise of 2%, denoting the “clean data” l × s matrix by
D∗, we reshape this matrix into a vector d∗ of length sl, calculate the standard
deviation σ = .02‖d∗‖/

√
sl, and define D = D∗ + σ ∗ randn(l, s) using Matlab’s

random generator function randn. Following the celebrated Morozov discrepancy
principle [33, 13, 23, 22], the stopping tolerance is set to be ρ = τσ2sl. As in [30], we
choose τ = 1.2.

For all numerical experiments, in order to avoid committing “inverse crime”, the
“true field” is calculated on a grid that is twice as fine as the one used to reconstruct
the model. For the 2D examples, the reconstruction is done on a uniform grid of size
642 with s = 3, 969 experiments in the setup described above.

As for an iterative method to decrease the value of the objective function, we
employ variants of stabilized GN; see [30, Appendix A] for more details. At each
iteration of such method, an update direction needs to be calculated. Usually another
iterative scheme is used to calculate the update. We employ preconditioned conjugate
gradient (PCG) as our inner iterative solver. The PCG iteration limit is set to 20,
and the PCG tolerance was chosen to be 10−3. We again refer to [30, Appendix A]
for more details. The initial guess for GN iterations is m0 = 0.

For the transfer function ψ described in Section 4.1, we use the formulation [30,
Eqn. (6.3)] with µmax = 1.2 maxµ(x), and µmin = .83 minµ(x).

B Extremal probabilities of linear combinations of

gamma random variables

In this appendix we prove Theorems 1 and 2. Such results were obtained in [32] for
the special case where the Xi’s are chi-squared r.v’s of degree 1 (corresponding to
α = β = 1/2). Here we extend those results to arbitrary gamma random variables,
including chi-squared of arbitrary degree, exponential, Erlang, etc.

In what follows, for a gamma r.v X ∼ Gamma(α, β), we use the notation fX for
its probability density function (PDF) and FX for its cumulative distribution function
(CDF).

The objective in the proof of Theorem 2 is to find the extrema (with respect
to λ ∈ Θ) of the CDF of r.v

∑n
i=1 λiXi. This is mainly achieved by perturbation
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arguments, employing a key identity which is derived using Laplace transforms. Using
our perturbation arguments with this identity and employing Lemma 7, we obtain
that at any extremum, we must have either λ1, λ2 > 0 and λ3 = · · · = λn = 0 or for
some i ≤ n we must get λ1 = · · · = λi > 0 and λi+1 = · · · = λn = 0. (Note that
this latter case covers the “corners” as well.). In the former case, Lemma 8 is used to
distinguish between the minima and maxima for different values of x. These results
along with Theorem 1 are then used to prove Theorem 2.

Three lemmas are used in the proofs of our two theorems. Lemma 6 describes
some properties of the PDF of non-negative linear combinations of arbitrary gamma
r.v’s, such as analyticity and vanishing derivatives at zero. Lemma 7 describes the
monotonicity property of the mode of the PDF of non-negative linear combinations of
a particular set of gamma r.v’s, which is useful for the proof of Theorem 2. Lemma 8
gives some properties regarding the mode of the PDF of convex combinations of two
particular gamma r.v’s, which is used in proving Theorem 1 and Theorem 2.

B.1 Lemmas

We next state and prove the lemmas summarized above.

Lemma 6 (Generalization of [32, Lemma A]) Let Xi ∼ Gamma(αi, βi), i =
1, 2, . . . , n, be independent r.v’s, where αi, βi > 0 ∀i. Define Yn :=

∑n
i=1 λiXi for

λi > 0, ∀i and ρj :=
∑j

i=1 αi. Then for the PDF of Yn, fYn, we have

(i) fYn > 0, ∀x > 0,

(ii) fYn is analytic on R+ = {x|x > 0},

(iii) f
(k)
Yn

(0) = 0, if 0 ≤ k < ρn − 1, where f
(k)
Yn

denotes the kth derivative of fYn.

Proof The proof is done by induction on n. For n = 2 we have

fY2(x) =

∫ ∞
0

fλ1X1(y)fλ2X2(x− y)dy

=
(β1/λ1)α1(β2/λ2)α2

Γ(α1)Γ(α2)

∫ x

0

yα1−1(x− y)α2−1e
−β1y
λ1
−β2(x−y)

λ2 dy.

Now the change of variable y → x cos2 θ1 would yield

fY2(x) = 2
(β1/λ1)α1(β2/λ2)α2

Γ(α1)Γ(α2)
x(α1+α2−1)

∫ π
2

0

(cos θ1)2α1−1(sin θ1)2α2−1e
−x(

β1 cos2 θ1
λ1

+
β2 sin2 θ1

λ2
)
dθ1.

By induction on n, one can show that for arbitrary n ≥ 2

fYn(x) = 2n−1

(
n∏
i=1

(βi/λi)
αi

Γ(αi)

)
xρn−1

∫
Dn−1

Pn(Θn−1)Qn(Θn−1)e−xRn(Θn−1)dΘn−1,

(37a)
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where

Pn(Θn−1) =
n−1∏
j=1

(cos θj)
2ρj−1, Qn(Θn−1) =

n−1∏
j=1

(sin θj)
2αj+1−1, (37b)

the function Rn(Θn−1) satisfies the following recurrence relation

Rn(Θn−1) = cos2 θn−1Rn−1(Θn−2) + βnλ
−1
n sin2 θn−1, ∀n ≥ 2 (37c)

R1(Θ0) = β1/λ1, (37d)

and dΘn−1 denotes the n − 1 dimensional Lebesgue measure with the domain of
integration

Dn−1 = (0, π/2)× (0, π/2)× . . .× (0, π/2) = (0, π/2)n−1 ⊂ Rn−1. (37e)

Now the claims in Lemma 6 follow from (37). �

Lemma 7 (Generalization of [32, Lemma 1]) Let Xi ∼ Gamma(αi, α), i =
1, 2, . . . , n, be independent r.v’s, where αi > 0 ∀i and α > 0. Also let ψ ∼
Gamma(1, α) be another r.v independent of all Xi’s. If

∑n
i=1 αi > 1, then the mode,

x̄(λ), of the r.v W (λ) = Y +λψ is strictly increasing in λ > 0, where Y =
∑n

i=1 λiXi

with λi > 0, ∀i.

Proof The proof is almost identical to that of Lemma 1 in [32]; hence, we omit the
details. �

Lemma 8 (Generalization of [32, Lemma 2]) For some α2 ≥ α1 > 0, let ξ1 ∼
Gamma(1 + α1, α1) and ξ2 ∼ Gamma(1 + α2, α2) be independent gamma r.v’s. Also
let x̄ = x̄(λ) denote the mode of the r.v ξ(λ) = λξ1 + (1− λ)ξ2 for 0 ≤ λ ≤ 1. Then

(i) for a given λ, x̄(λ) is unique,

(ii) 1 ≤ x̄(λ) ≤ 2
√
α1α2+1

2
√
α1α2

, ∀0 ≤ λ ≤ 1, with x̄(0) = x̄(1) = 1 and, in case of

αi = αj = α, x̄(1
2
) = 2α+1

2α
, otherwise the inequalities are strict, and

(iii) there is a λ∗ ∈
( √

α1√
α2+
√
α1
, 1
)

such that the mode x̄(λ) is a strictly increasing

function of λ on (0, λ∗) and it is a strictly decreasing function on (λ∗, 1) and,
for α1 = α2, we have λ∗ = 1

2
.
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Proof Uniqueness claim (i) has already been proven in [32, Theorem 4]. We
prove (iii) since (ii) is implied from within the proof. For 0 < λ < 1, the PDF
of ξ(λ) can be written as

fξ(λ)(x) =

∫ x

0

fλξ1(y)f(1−λ)ξ2(x− y)dy.

Since fλξ1(0) = f(1−λ)ξ2(0) = 0 we have

∂

∂x
fξ(λ)(x) =

∫ x

0

fλξ1(y)
∂

∂x
f(1−λ)ξ2(x− y)dy

= −
∫ x

0

fλξ1(y)
∂

∂y
f(1−λ)ξ2(x− y)dy

=

∫ x

0

∂

∂y
(fλξ1(y)) f(1−λ)ξ2(x− y)dy

where for the second equality we use the fact that ∂
∂x
f(x − y) = − ∂

∂y
f(x − y), and

for the third equality we used integration by parts. Let α = α1 and α2 = cα for some
c ≥ 1. So now we have

∂

∂x
fξ(λ)(x) =

(α
λ
)1+α( cα

1−λ)1+αc

Γ(1 + α)Γ(1 + αc)

∫ x

0

∂
(
yαe−

αy
λ

)
∂y

(x− y)αce−
cα(x−y)

1−λ dy

=
α2+α(cα)1+cα

Γ(1 + α)Γ(1 + cα)
λ−2−α (1− λ)−1−αc e−

cαx
(1−λ)

∫ x

0

(λ− y)yα−1(x− y)αce−αy(
1
λ
− c

1−λ)dy

= C(x, λ)A(x, λ),

where

C(x, λ) :=
α2+α(cα)1+cα

Γ(1 + α)Γ(1 + cα)
λ−2−α (1− λ)−1−αc e−

cαx
(1−λ) ,

A(x, λ) :=

∫ x

0

(λ− y) yα−1 (x− y)αc e−φ(λ)ydy,

φ(λ) := α

(
1

λ
− c

1− λ

)
.

Now if x̄ is the mode of ξ(λ), then we have

∂

∂x
fξ(λ)(x̄) = C(x̄, λ)A(x̄, λ) = 0,

which implies that A(x̄, λ) = 0 since C(x̄, λ) > 0. Let us define the linear functional
L : G → R, where G = {g : (0, x̄)→ R |

∫ x̄
0
g(y)yα−1 <∞}, as

L(g) :=

∫ x̄

0

g(y)yα−1 (x̄− y)αc e−φ(λ)ydy.
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We have

∂

∂λ
A(x, λ) =

∫ x

0

[
1− φ′(λ)y(λ− y)

]
yα−1(x− y)αce−φ(λ)ydy

=

∫ x

0

[
1− λφ′(λ)y + φ

′
(λ)y2

]
yα−1(x− y)αce−φ(λ)ydy,

so [
∂

∂λ
A(x, λ)

]
x=x̄

= L
(

1− λφ′(λ)f + φ
′
(λ)f 2

)
, (38)

where f ∈ G is such that f(y) = y. On the other hand since A(x̄, λ) = 0, we get

L(λ) = L(f) =

∫ x̄

0

yα(x̄− y)αce−φ(λ)ydy

=

∫ x̄

0

yαe−φ(λ)yd

(
−(x̄− y)αc+1

αc+ 1

)
= (αc+ 1)−1

∫ x̄

0

(x̄− y)αc+1 d
(
yαe−φ(λ)y

)
= (αc+ 1)−1

∫ x̄

0

(x̄− y) (α− φ(λ)y) yα−1 (x̄− y)αc e−φ(λ)ydy

= (αc+ 1)−1L
(

(x̄− f) (α− φ(λ)f)
)

= (αc+ 1)−1L
(
αx̄− αf − φ(λ)x̄f + φ(λ)f 2

)
,

where the second integral is Lebesgue-Stieltjes, and the third integral follows from
Lebesgue-Stieltjes integration by parts. So, for λ ∈ (0, 1

c+1
) ∪ ( 1

c+1
, 1), we get

L(f 2) =
1

φ(λ)

[
(αc+ 1)L(f)− L

(
αx̄− αf − φ(λ)x̄f

)]
=

1

φ(λ)

[(
(1 + c)α + 1− cαx̄

1− λ

)
L(f)

]
,

where we used the fact that L(αx̄) = αx̄
λ
L(λ) = αx̄

λ
L(f). Now substituting L(f 2)

in (38) yields[
∂

∂λ
A(x, λ)

]
x=x̄

= L
(1

λ
f − λφ′(λ)f + φ

′
(λ)f 2

)
=

(
1

λ
− λφ′(λ) +

φ
′
(λ)

φ(λ)

[
(1 + c)α + 1− cαx̄

1− λ

])
L(f),

which after some tedious but routine computations gives[
∂

∂λ
A(x, λ)

]
x=x̄

= R(λ)
x̄− Φ(λ)

1− (c+ 1)λ
, λ ∈

(
0,

1

1 + c

)
∪
( 1

1 + c
, 1
)
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where R(λ) > 0, for all 0 < λ < 1, and

Φ(λ) :=
α + (1− 2α)λ+ (α− 1 + αc)λ2

α
(

(c+ 1)λ2 − 2λ+ 1
) .

Since dΦ(λ)/dλ =
(

(1 − c)λ2 − 2λ + 1
)/(

α
(
(c + 1)λ2 − 2λ + 1

))2

, we have that

dΦ(λ)/dλ = 0 at λ = 1/(1 +
√
c). Note that the other root, 1/(1−

√
c), falls outside

of (0, 1) for any c ≥ 1. It readily can be seen that Φ(λ) is increasing on 0 < λ < 1
1+
√
c

and decreasing on 1
1+
√
c
< λ < 1, and so

1 ≤ Φ(λ) ≤ 2α
√
c+ 1

2α
√
c

, ∀0 ≤ λ ≤ 1.

The differentiability of x̄(λ) with respect to λ follows from implicit function theorem:

dx̄(λ)

dλ
= −

∂
∂λ
A(x̄, λ)

∂
∂x̄
A(x̄, λ)

,

and for that we need to show that ∂A(x̄,λ)
∂x̄

6= 0 for all 0 < λ < 1. If we assume the
contrary for some λ, we get

αcA(x̄, λ) = αc

∫ x̄

0

(λ− y)yα−1(x̄− y)αce−φ(λ)ydy = 0,

(x̄− λ)
∂

∂x̄
A(x̄, λ) = αc

∫ x̄

0

(λ− y)(x̄− λ)yα−1(x̄− y)αc−1e−φ(λ)ydy = 0,

which is impossible since the integrand in the first equality is strictly larger than the
one in the second equality: we can see this by looking at the two cases 0 < y < λ
and λ < y < x̄. From this we can also note that ∂

∂x̄
A(x̄, λ) < 0 for all 0 < λ < 1.

To see this, first consider the case x̄ > λ, and it follows directly as above that
∂
∂x̄
A(x̄, λ) < [αc/(x̄−λ)]A(x̄, λ) = 0. Now assume that x̄ ≤ λ, but since the integrand

in the first equality is strictly positive for all 0 < y < x̄, then A(x̄, λ) > 0 which is
impossible. So we get

dx̄(λ)

dλ
= S(λ)

x̄− Φ(λ)

1− (c+ 1)λ
, λ ∈ [0, 1] (39)

where S(λ) > 0 for all 0 < λ < 1. We also defined dx̄(λ)
dλ

for λ = 0, 1, 1
2

using l’Hôpital’s
rule (with one-sided differentiability for λ = 0, 1). It is easy to see that

x̄(0) = x̄(1) = Φ(0) = Φ(1) = 1 and x̄
( 1

c+ 1

)
= Φ

( 1

c+ 1

)
=

(c+ 1)α + 1

(c+ 1)α
.
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Next we show that x̄ is strictly increasing on (0, 1
c+1

). We first show that on this

interval, we must have x̄(λ) ≥ Φ(λ), otherwise there must exist a λ̂ ∈ (0, 1
c+1

) such

that x̄(λ̂) < Φ(λ̂). But this contradicts x̄( 1
c+1

) = Φ( 1
c+1

) by (39), increasing property

of Φ and continuity of x̄. So x̄ is non-decreasing on (0, 1
c+1

). We must also have

that x̄(λ) > Φ(λ) for λ ∈ (0, 1
c+1

), otherwise if there is a λ̂ ∈ (0, 1
c+1

) such that

x̄(λ̂) = Φ(λ̂), then, by (39), it must be a saddle point of x̄. But since Φ is strictly
increasing and x̄ is non-decreasing on this interval, this would imply that for an ε
arbitrarily small, we must have x̄(λ̂ + ε) < Φ(λ̂ + ε) but this would contradict the
non-decreasing property of x̄ on this interval by (39). The same reasoning shows that
we must have x̄(λ) < Φ(λ) on ( 1

c+1
, λ∗) (i.e. x̄ is strictly increasing on ( 1

c+1
, λ∗)) and

x̄(λ) > Φ(λ) on (λ∗, 1) (i.e. x̄ is strictly decreasing on (λ∗, 1)). Now we show that
λ∗ ≥ 1

1+
√
c
. For c = 1 we have 1

c+1
= 1√

c+1
, hence λ∗ = 1

2
. For c > 1, Since x̄(λ)

is increasing for 0 < λ < λ∗, decreasing for λ∗ < λ < 1, and x̄(λ∗) = Φ(λ∗), then
by (39), this implies that λ∗ is where the maximum of x̄(λ) occurs. Now if we assume
that λ∗ < 1

1+
√
c
, since Φ is increasing on (0, 1

1+
√
c
), this would contradict x̄(λ) > Φ(λ)

on (λ∗, 1). Lemma 8 is proved. �

B.2 Proofs of Theorems 1 and 2

We now give the detailed proofs for our main theorems stated and used in Section 2.

Proof of Theorem 1
For proving (i), we first show that ∆(x) = 0 at exactly one point on R+ = {x|x >

0} denoted by x(α1, α2). Since α2 > α1, let α2 = α1 + c, for some c > 0. We have

d∆(x)

dx
= C(α2)xα2−1e−α2x − C(α1)xα1−1e−α1x

= C(α2)xα1−1e−α1x

(
xce−cx − C(α1)

C(α2)

)
where C(α) = (α)α/Γ(α). The constant C(α1)/C(α2) cannot be larger than xce−cx,
for all x ∈ R+, otherwise d∆(x)/dx would be negative for all x ∈ R+, and this is
impossible since ∆(0) = ∆(∞) = 0. The function xce−cx is increasing on (0, 1) and
decreasing on (1,∞), and since C(α1)/C(α2) is constant, there must exist an interval
(a, b) containing x = 1 such that d∆(x)/dx > 0 for x ∈ (a, b) and d∆(x)/dx < 0 for
x ∈ (0, a) ∪ (b,∞). Now since ∆(x) is continuous and ∆(0) = ∆(∞) = 0, then there
must exist a unique x(α1, α2) ∈ (0,∞) such that ∆(x) crosses zero (i.e., ∆(x) = 0 at
the unique point x(α1, α2)) and that ∆(x) < 0 for 0 < x < x(α1, α2) and ∆(x) > 0
for x > x(α1, α2).
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We now prove (ii). The desired inequality is equivalent to ∆(x) < 0,∀x < 1 and
∆(x) > 0,∀x >

(
2
√
α1(α2 − α1) + 1

)
/
(
2
√
α1(α2 − α1)

)
. Without loss of generality

consider α = α1, and α2 = (1 + c)α, for c = (α2−α)/α. Define X̃ ∼ Gamma(cα, cα)
and let Y (t) = tX1 + (1 − t)X̃. Note that Y (1) = X1 and Y (1/(1 + c)) = X2, so
it suffices to show that the CDF of Y (t) is increasing in t ∈ [ 1

1+c
, 1] for x < 1 and

decreasing for x > (2α
√
c+ 1)/(2α

√
c). Now, we take the Laplace transform of Y (t)

as

L[Y (t)](z) =
(
1 +

tz

α

)−α(
1 +

(1− t)z
cα

)−cα
for Re(z) > max {−α/t,−cα/(1− t)}. The Laplace transform of FY is

L[FY ](z) =

∫ ∞
0

e−zxFY (x)dx =
1

z

∫ ∞
0

e−zxdFY (x) =
1

z
L[Y ](z).

Note that in the second equality we applied integration by parts and the fact that
FY (0) = 0. Defining J(z) := L[FY ](z) and differentiating with respect to t gives

dJ

dt
= J

d

dt
(ln(J)) = J

d

dt

(
− ln(z)− α ln(1 +

tz

α
)− cα ln

(
1 +

(1− t)z
cα

))

=
z2

cα
J
(

(1 + c)t− 1
)(

1 +
tz

α

)−1(
1 +

(1− t)z
cα

)−1

.

Taking the inverse transform yields

d

dt
Pr (Y (t) ≤ x) =

(1 + c)t− 1

cα

d2

dx2
Pr

(
Y (t) + tψ1 +

1− t
c

ψ2 < x

)
,

where ψi ∼ Gamma(1, α) , i = 1, 2, are i.i.d gamma r.v’s which are also independent
of all X1 and X2. Now applying Lemma 8 yields the desired results. �

Proof of Theorem 2 It is enough to prove the theorem for the special case where
α = β and the general statement follows from the scaling properties of gamma r.v.

Introduce the random variable Y :=
∑n

i=1 λiXi with CDF FY (x) = Pr(Y < x).
As in the proof of Theorem 1, define J(z) := L[FY ](z) = 1

z
L[Y ](z), where L[FY ]

and L[Y ] denote the Laplace transform of FY and Y , respectively and L[Y ](z) =∏n
i=1 (1 + λiz/α)−α for Re(z) > −α/λi, i = 1, 2, . . . , n.
Now consider a vector λ ∈ Θ for which λiλj 6= 0 for some i 6= j. We keep all

λk, k 6= i, j fixed and vary λi and λj under the condition that λi + λj = const.
We may assume without loss of generality that i = 1 and j = 2. Vectors for which
λi = 1 for some i, i.e. the “corners” of Θ, are considered at the end of this proof.
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Differentiating J , we get

dJ

dλ1

= J
d

dλ1

(ln J) = J
d

dλ1

(
− ln(z)− α

n∑
i=1

ln(1 +
λiz

α
)
)

= Jα
z2

α2

λ1 − λ2

(1 + λ1z
α

)(1 + λ2z
α

)

=
1

α
(λ1 − λ2)zL[λ1ψ1](z)L[λ2ψ2](z)L[Y ](z) (40)

where ψi ∼ Gamma(1, α) , i = 1, 2 are i.i.d gamma r.v’s which are also independent
of all Xi’s.

Letting W (λ) = Y + λ1ψ1 + λψ2 with the CDF FW (λ)(x), it can be shown that
since λ1λ2 6= 0, then by Lemma 6(iii), F

′

W (λ)(0) = 0, ∀λ ≥ 0. Defining

L(Y, λ, x) := F
′′

W (λ) =
d2

dx2
Pr (W (λ) < x) =

d2

dx2
Pr
(
Y + λ1ψ1 + λψ2 < x

)
(41)

and noting that L[W (λ)](z) = L[λ1ψ1](z)L[λψ2](z)L[Y ](z), we get

L
[
L(Y, λ, .)

]
(z) =

∫ ∞
0

e−zxL(Y, λ, x)dx

=

∫ ∞
0

e−zxF
′′

W (λ)(x)dx

= z

∫ ∞
0

e−zxdFW (λ)(x)

= zL
[
W (λ)

]
(z)

= zL
[
λ1ψ1

]
(z)L

[
λψ2

]
(z)L

[
Y
]
(z).

Inverting (40) yields
dFY (x)

dλ1

=
1

α
(λ1 − λ2)L(Y, λ2, x). (42)

So a necessary condition for the extremum of FY (x) is either λ1λ2(λ1−λ2) = 0 or
L(λ2, x) = 0. Since λ1λ2 6= 0 then by Lemma 6, the PDF, fW (λ)(x), of the linear form
W (λ) = Y + λ1ψ1 + λψ2, for λ > 0, is differentiable everywhere and fW (λ)(0) = 0.
In addition, on the positive half-line, f ′W (λ)(x) = 0 holds at a unique point because

fW (λ)(x) is a unimodal analytic function (its graph contains no line segment). The
unimodality of fW (λ)(x) was already proven for all gamma random variables in [32,
Theorem 4].

Now we can prove that, for any x > 0, if FY (x) has an extremum then the
nonzero λi’s can take at most two different values. Suppose that λ1λ2(λ1 − λ2) 6= 0,
then by (42) we have L(Y, λ2, x) = 0. Now we show that, for every λj 6= 0, (42)
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implies that λi = λ1 or λi = λ2. For this, we assume the contrary that λi 6= λ1,
λi 6= λ2, and by using the same reasoning that led to (42), we can show that

L(Y, λ2, x) = L(Y, λj, x) = 0

for every λj 6= 0, i.e. the point x > 0 is simultaneously the mode of the PDF of W λ2
Y

and W
λj
Y which contradicts Lemma 7. So we get that λi = λ1 or λ2 = λj. Thus the

extrema of FY (x) are taken for some λ1 = λ2 = . . . = λk, λk+1 = λk+2 = . . . = λk+m,
and λk+m+1 = λk+m+2 = . . . = λn = 0 where k +m ≤ n, i.e.,

extremum Pr
( n∑
i=1

λiXi ≤ x
)

= extremum Pr
(λ
k

k∑
i=1

Xi +
1− λ
m

k+m∑
i=k+1

Xi ≤ x
)
.

Here without loss of generality we can assume k ≥ m ≥ 1. Now the same reasoning
as in the end of the proof of [32, Theorem 1] shows an extremum is taken either at
k = m = 1, or at λ1 = λ2 = . . . = ... = λk+m. In the former case, by Lemma 8, for any
x ∈ (0, 1) ∪ (2α+1

2α
,∞), the extremum can only be taken at λ ∈ {0, 1

2
, 1}. However,

for any x ∈ [1, 2α+1
2α

], in addition to λ ∈ {0, 1
2
, 1}, the extremum can be achieved

for some λ∗ such that x = x̄(λ∗) where x̄(λ) denotes the mode of the distribution
of λX1 + (1 − λ)X2 + λψ1 + (1 − λ)ψ2. But for such λ∗ and x, using (42) and
Lemma 8(iii) with α1 = α2 = α, one can show that Pr(λX1 +(1−λ)X2 ≤ x) achieves
a local maximum. Now including the case where λ1 = 1 mentioned earlier in the
proof, we get

mn(x) = min
1≤d≤n

Pr

(
1

d

d∑
i=1

Xi < x

)
∀x > 0,

Mn(x) = max
1≤d≤n

Pr

(
1

d

d∑
i=1

Xi < x

)
∀x ∈

(
0, 1
)
∪
(2α + 1

2α
,∞
)
,

where mn(x) and Mn(x) are defined in the statement of Theorem 2 in Section 2. Now
applying Theorem 1 by considering the collection αi = iα, i = 1, 2, . . . , n, would yield
the desired results. �

C Matlab Code

Here we provide a short Matlab code, promised in Section 2, to calculate the neces-
sary or sufficient sample sizes to satisfy the probabilistic accuracy guarantees (11) for
a SPSD matrix using the Gaussian trace estimator. This code can be easily modified
to be used for (19) as well.

1 function [N1,N2] = getSampleSizes(epsilon,delta,maxN,r)
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2 % INPUT:
3 % @ epsilon: Accuracy of the estimation .
4 % @ delta: Uncertainty of the estimation.
5 % @ r: Rank of the matrix (Use r = 1 for obtaining the sufficient ...

sample sizes).
6 % @ maxN: Maximum allowable sample size
7 % OUTPUT:
8 % @ N1: The sufficient (or necessary) sample size for (2.2a).
9 % @ N2: The sufficient (or necessary) sample size for (2.2b).

10 Ns = 1:1:maxN;
11 P1 = gammainc(Ns*r*(1−epsilon)/2,Ns*r/2);
12 I1 = find(P1 <= delta,1,'first');
13 N1 = Ns(I1); % Necessary/Sufficient sample size obtained for (2.2a).
14 Ns = (floor(1/epsilon)+1):1:maxN;
15 P2 = gammainc(Ns*r*(1+epsilon)/2,Ns*r/2);
16 I2 = find(P2 >= 1−delta,1,'first');
17 N2 = Ns(I2); % Necessary/Sufficient sample size obtained for (2.2b).
18 end
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