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A SHORT-TYPE DECOMPOSITION OF FORMS

ZOLTÁN SEBESTYÉN, ZSIGMOND TARCSAY, AND TAMÁS TITKOS

Abstract. The main purpose of this paper is to present a decomposition theorem
for nonnegative sesquilinear forms. The key notion is the short of a form to a linear
subspace. This is a generalization of the well-known operator short defined by M. G.
Krein. A decomposition of a form into a shorted part and a singular part (with respect
to an other form) will be called short-type decomposition. As applications, we present
some analogous results for bounded positive operators acting on a Hilbert space; for
additive set functions on a ring of sets; and for representable positive functionals on a
∗-algebra.

Introduction

To begin with we give a brief survey of the required definitions and results from [8],
which is our constant reference where the omitted details of this section can be found.
Let X be a complex linear space and let t be nonnegative sesquilinear form on it.

That is, t is a mapping from the Cartesian product X × X to C, which is linear in the
first argument, antilinear in the second argument, and the corresponding quadratic form
t[·] : X → R

∀x ∈ X : t[x] := t(x, x)

is nonnegative. In this paper all sesquilinear forms are assumed to be nonnegative, hence
we write shortly form. The quadratic form of a form fulfills the parallelogram law

∀x, y ∈ X : t[x+ y] + t[x− y] = 2(t[x] + t[y]).

According to the Jordan-von Neumann theorem [26, Satz 1.3], a form is uniquely deter-
mined via its quadratic form, namely

∀x, y ∈ X : t(x, y) =
1

4

3∑

k=0

ikt[x+ iky].

The set F+(X) of forms is partially ordered with respect to the ordering

t ≤ w ⇐⇒ ∀x ∈ X : t[x] ≤ w[x].

If there exists a constant c such that t ≤ c · w then we say that t is dominated by w
(t ≤d w, in symbols). Since the square root of the quadratic form defines a seminorm on
X, then the kernel of t

ker t :=
{
x ∈ X

∣∣ t[x] = 0
}

is a linear subspace of X. The Hilbert space Ht denotes the completion of the inner
product space X/ker t equipped with the natural inner product

∀x, y ∈ X : (x+ ker t | y + ker t)t := t(x, y).
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We say that the form t is strongly w-absolutely continuous (t ≪s w), if

∀(xn)n∈N ∈ XN :
(
(t[xn − xm] → 0) ∧ (w[xn] → 0)

)
=⇒ t[xn] → 0.

Remark that this notion is called closability in [8]; cf. also [18]. The singularity of t and
w (denoted by t ⊥ w) means that

∀s ∈ F+(X) :
(
(s ≤ t) ∧ (s ≤ w)

)
=⇒ s = 0.

The parallel sum t : w of t and w, and the strongly absolutely continuous (or closable)
part Dwt of t with respect to w are defined by

∀x ∈ X : (t : w)[x] := inf
y∈X

{
t[x− y] +w[y]

}

and

Dwt := sup
n∈N

(t : nw).

The following decomposition theorem of S. Hassi, Z. Sebestyén, and H. de Snoo generalizes
the operator decomposition of T. Ando [3, 23], the Lebesgue decomposition of finitely
additive set functions [4] (see also [16, 22, 25]), and the canonical decomposition of densely
defined forms [18].

Theorem 0.1. Let t and w be forms on the complex linear space X. Then the decompo-
sition

t = Dwt+ (t−Dwt)

is a (≪s,⊥)-type decomposition of the form t with respect to w. That is, Dwt is strongly w-
absolutely continuous, (t−Dwt) is w-singular. Furthermore, this decomposition is extremal
in the following sense:

∀s ∈ F+(X) :
(
(s ≤ t) ∧ (s ≪s w)

)
=⇒ s ≤ Dwt.

The decomposition is unique precisely when Dwt is dominated by w.

For the proof see [8, Theorem 2.11, Theorem 3.8, Theorem 4.6] or [16, Theorem 2.3].

It is a natural idea to consider the following notion of absolute continuity: we say that
t is w-absolutely continuous (t ≪ w) if kerw ⊆ ker t, that is to say,

∀x ∈ X : w[x] = 0 =⇒ t[x] = 0

in analogy with the well-known measure case.
The setup of this paper is the following. Our main purpose is to present an (≪,⊥)-

type decomposition theorem for forms which we shall call a short-type decomposition.
More precisely, for every pair of forms t and w we shall show that t splits into absolutely
continuous and singular parts with respect to w, where the absolutely continuous part is
extremal in a certain sense. This will be done in Section 1. The key notion is the short of
a form, which is motivated by [2, Theorem 6] of W. N. Anderson and G. E. Trapp.
In Section 2 we shall see that this is a generalization of the well-known operator short

defined by M. G. Krein [11]. Moreover, we present a factor decomposition for the shorted
operator. As an application, we gain also a short-type decomposition on the set of bounded
positive operators (analogous results for matrices can be found in [1, 13]). That is, for
every A,B ∈ B+(H ) there exist S, T ∈ B+(H ) such that

A = S + T,
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where

ranS ⊆ ranB and ranT 1/2 ∩ ranB1/2 = {0}.

Furthermore, we prove the following characterization: the range of the bounded positive
operator B is closed if and only if for every A ∈ B+(H ) the short-type decomposition
above is unique. In this case, the shorted part of A is closable with respect to B.
Another important application can be found in Section 3. Using our main result, we

will prove a decomposition theorem for additive set functions. In the σ-additive case this
decomposition coincides with the well-known Lebesgue decomposition of measures, but in
the finitely additive case it differs from the Lebesgue-Darst decomposition [4]. This fact
will demonstrate that the Lebesgue-type decomposition, and the short-type decomposition
are different in general, and hence, absolute continuity does not implies strong absolute
continuity (see also [7, Example 2]).
Finally, in Section 4, we apply our result to present a short-type decomposition for

representable positive functionals of a ∗-algebra. We emphasize that we do not make any
assumptions for the algebra, neither the commutativity, nor the existence of unit element.

1. A short-type decomposition theorem for forms

Let t and w be forms on the complex linear space X. The purpose of this section is
to show that t has a decomposition into a w-absolutely continuous and a w-singular
part. This type decomposition will be called short-type decomposition, or (≪,⊥)-type
decomposition. In our further considerations an essential role will be played by the concept
of the short of a form, which is introduced in the following lemma.

Lemma 1.1. Let Y ⊆ X be a linear subspace, and let t ∈ F+(X). Then the following
formula defines a form on X

∀x ∈ X : t
Y
[x] := inf

y∈Y
t[x− y].

Furthermore, t
Y
is the maximum of the set

{
s ∈ F+(X)

∣∣ (s ≤ t) ∧ (Y ⊆ ker s)
}
.

Proof. Let Yt be the following subspace of Ht

Yt :=
{
y + ker t

∣∣ y ∈ Y
}

and consider the orthogonal projection P from Ht onto Yt (the closure of Yt). Then for
all x ∈ X

∥∥(I − P )(x+ ker t)
∥∥2

t
= dist2(x+ ker t,Yt) = inf

y∈Y

∥∥(x− y) + ker t
∥∥2

t
= inf

y∈Y
t[x− y].

Consequently, t
Y
is a form, indeed, and Y ⊆ ker t

Y
. To show the maximality, assume that

the quadratic form of s vanishes on Y and s ≤ t. According to the triangle inequality we
have

s[x] ≤ s[x− y] ≤ t[x− y]

for all y ∈ Y, and hence,

s[x] ≤ inf
y∈Y

t[x− y] = t
Y
[x].

�
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The form t
Y
is called the short of the form t to the subspace Y.

It follows from the definition that if t and w are forms and Y and Z are linear subspaces,
then

(
(t ≤ w) ∧ Y ⊆ Z

)
=⇒ tZ ≤ wY.

Now, we are in position to state and prove the main result of this section.

Theorem 1.2. Let t,w ∈ F+(X) be forms. Then there exists a (≪,⊥)-type decomposition
of t with respect to w. Namely,

t = t
kerw

+ (t− t
kerw

),

where the first summand is w-absolutely continuous and the second one is w-singular.
Furthermore, t

kerw
is the maximum of the set

{
s ∈ F+(X)

∣∣ (s ≤ t) ∧ (s ≪ w)
}
.

The decomposition is unique precisely when t
kerw

is dominated by w.

Proof. It follows from the previous lemma that t
kerw

≪ w, and that t
kerw

is maximal. Let
s be a form such that s ≤ w and s ≤ t− t

kerw
. Since t

kerw
≤ t

kerw
+ s ≤ t and the quadratic

form of t
kerw

+ s vanishes on kerw, the maximality of t
kerw

implies that s = 0.
It remains only to prove that the decomposition is unique if and only if t

kerw
is dominated

by w. Let c be a constant such that t ≤ c ·w (we may assume that c > 1) and let t = t1+t2
be an (≪,⊥)-type decomposition. Since t

kerw
is maximal, we have

t2 = t− t1 ≥ t
kerw

− t1 ≥
1

c
(t

kerw
− t1) and w ≥

1

c
t
kerw

≥
1

c
(t

kerw
− t1)

which is a contradiction, unless t
kerw

= t1. Finally, observe that Dwt ≤ t
kerw

, and therefore,
every (≪s,⊥)-type decomposition is a (≪,⊥)-type decomposition as well. Indeed,

t
kerw

[x] = inf
y∈kerw

t[x− y] = inf
y∈kerw

{t[x− y] + nw[y]} ≥ inf
y∈X

{t[x− y] + nw[y]} = (t : nw)[x]

holds for all n ∈ N and x ∈ X, therefore

Dwt = sup
n∈N

(t : nw) ≤ t
kerw

.

Thus if the (≪,⊥)-type decomposition is unique, then t
kerw

= Dwt, and t
kerw

≤d w
according to Theorem 0.1. �

Observe that (tY)Y = tY for each subspace Y, i.e., shortening to a subspace is an
idempotent operation. Furthermore, t ≪ w precisely when t

kerw
= t.

Remark 1.3. Let A be a complex algebra, let I ⊆ A be a left ideal, and let t be a
representable form on A . That is, a nonnegative sesquilinear form, which satisfies

(∀a ∈ A ) (∃λa > 0) (∀b ∈ A ) : t[ab] ≤ λat[b].

A simple observation shows that tI is representable

tI [ab] = inf
x∈I

t[ab− x] ≤ inf
x∈I

t[ab− ax] ≤ inf
x∈I

λat[b− x] = λatI [b].

If w is a representable form on A as well, then kerw is obviously a left ideal, and hence
we have the following decomposition

t = t
kerw

+ (t− t
kerw

)

where t
kerw

≪ w, (t − t
kerw

) ⊥ w, and t
kerw

is representable. For a Lebesgue-type decom-
position of representable forms we refer the reader to [20].
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Finally, we show that the shorted form tY possesses an extremal property. In fact, we
prove that tY is a disjoint part of t for every subspace Y, or equivalently, tY is a so-
called t-quasi unit. After recalling the corresponding definitions, in Lemma 1.4 we give a
characterization of the extremal points of the convex set

[0, t] =
{
w ∈ F+(X)

∣∣ w ≤ t
}
.

We say that u is a t-quasi-unit, if Dut = u. The form u is a disjoint part of t if u and
t − u are singular. The set of extremal points of a convex set C is denoted by exC. For
the terminology see [6, 12, 17].

Lemma 1.4. Let t and u be forms on D such that u ≤ t, and let λ > 0 and µ > 0 be
arbitrary real numbers. Then the following statements are equivalent.

(i) u is a t-quasi-unit, i.e., Dut = u.
(ii) There exists w such that u = Dwt.
(iii) u is a disjoint part of t.

(iv) u ∈ ex[0, t].
(v) (λu) : (µt) = λµ

λ+µ
u.

(vi) (λu) : t = u : (λt).

Proof. Here we prove only (i) ⇒ (v) ⇒ (vi) ⇒ (i). The remainder can be found in [17,
Theorem 11]. Assume that u is a t-quasi unit, and observe that

(λu) : (µt) = (λu) :
(
Dλu(µt)

)
= (λu) : (µDut) = (λu) : (µu) =

λµ

λ+ µ
u.

according to the properties of the parallel sum and the following equalities

t : w = Dw(t : w) = Dwt : w

(see [8, Lemma 2.3, Lemma 2.4, Proposition 2.7]). Assuming (v) it is clear that

(λu) : t =
λ

1 + λ
u = u : (λt).

Finally, since u ≤ t, property (vi) implies that

Dut = sup
n∈N

(
t : (nu)

)
= sup

n∈N

(
(nt) : u

)
= Dtu = u.

�

Theorem 1.5. Let t be a form on X and let Y be a linear subspace of X. Then t
Y
is an

extremal point of the convex set

{s ∈ F+(X) | 0 ≤ s ≤ t}

and

Dt
Y
t = t

Y
.

Proof. According to the previous lemma, it is enough to show that tY is a disjoint part of
t. That is, tY and t−tY are singular. Let s be a form such that s ≤ tY and s ≤ t−tY. Then
tY + s vanishes on Y and tY + s ≤ t, thus the maximality of tY implies that s = 0. �
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2. Bounded positive operators

Let H be a complex Hilbert space with the inner product (· | ·) and the norm ‖ · ‖.
The set of bounded positive operators will be denoted by B+(H ). The notation A ≤ B
stands for the usual relation

∀x ∈ H : (Ax | x) ≤ (Bx | x).

For every A ∈ B+(H ) we set

∀x, y ∈ H : t
A
(x, y) := (Ax | y)

which defines a bounded nonnegative form on H . Conversely, in view of the Riesz-
representation theorem, the correspondence A 7→ t

A
defines a bijection between bounded

positive operators and bounded nonnegative forms. Consequently, we can define the dom-
ination, (strong) absolute continuity, and singularity analogously to the ones defined for
forms. We write A ≤d B if there exists a constant c such that A ≤ c · B. If Bx = 0
implies that Ax = 0 for all x ∈ H , we say that A is B-absolutely continuous (A ≪ B).
The operators A and B are singular (A ⊥ B) if 0 is the only positive operator which is
dominated by both A and B. Finally, A is strongly B-absolutely continuous (A ≪s B) if
for any sequence (xn)n∈N ∈ H N

(
(A(xn − xm) | xn − xm) → 0 ∧ (Bxn | xn) → 0

)
⇒ (Axn | xn) → 0.

Remark that

A≪ B ⇐⇒ kerB ⊆ kerA and A ⊥ B ⇐⇒ ranA1/2 ∩ ranB1/2 = {0},

see [3] or [23]. It was proved by Krein that if M is a closed linear subspace of H and
A ∈ B+(H ), then the set

{
S ∈ B+(H )

∣∣ (S ≤ A) ∧ (ranS ⊆ M )
}

possesses a greatest element. This follows immediately from our previous results, and
this is why we say that the form t

Y
is the short of t to the subspace Y. Indeed, let

t(x, y) = (Ax | y) and consider the form tM⊥. Since tM⊥ is a bounded form, there exists
a unique S ∈ B+(H ) such that tM⊥(x, y) = (Sx | y) and

x ∈ M
⊥ =⇒ tM⊥[x] = 0 =⇒ (Sx | x) = 0 =⇒ M

⊥ ⊆ ker S =⇒ ranS ⊆ M .

The maximality of S follows from the maximality of tM⊥. Now, since the map A 7→ t
A
is

an order preserving positive homogeneous map from B+(H ) into F+(H ), the following
theorem is an immediate consequence of Theorem 1.2.

Theorem 2.1. Let A and B be bounded positive operators on H . Then there is a de-
composition of A with respect to B into B-absolutely continuous and B-singular parts.
Namely,

A = A
≪,B

+ A
⊥,B
.

The decomposition is unique, precisely when A
≪,B

is dominated by B.

Proof. Let A
≪,B

and A
⊥,B

be the operators corresponding to (t
A
)ker tB and t

A
− (t

A
)ker tB ,

respectively. �

Corollary 2.2. Let B be a bounded positive operator with closed range. Then for every
A ∈ B+(H )

A = A
≪,B

+ A
⊥,B
.

is the unique decomposition of A into B-absolutely continuous and B-singular parts.
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Proof. If ranB is closed, then the following two sets are identical according to the well-
known theorem of Douglas [5]
{
S ∈ B+(H )

∣∣ (S ≤ A) ∧ (ranS ⊆ ranB)
}
=

{
S ∈ B+(H )

∣∣ (S ≤ A) ∧ (S ≤d B)
}
.

Consequently, the uniqueness follows from Theorem 2.1. Since ranB is closed, the inclusion
kerB ⊆ kerA

≪,B
implies that ranA

≪,B
⊆ ranB. �

Observe that if ranB is closed, then A
≪,B

coincides with DBA in the sense of Ando
[3], and therefore it is strongly absolutely continuous (or closable) with respect to B.
Furthermore, according to [23, Theorem 7] we have the following characterization of closed
range positive operators.

Corollary 2.3. Let B be a bounded positive operator. Then the following are equivalent

(i) ranB is closed,
(ii) ∀A ∈ B+(H ) : A

≪,B
≤d B,

(iii) ∀A ∈ B+(H ) : DBA ≤d B.

If any of (i)− (iii) fulfills, then DBA = A
≪,B

for all A ∈ B+(H ).

Corollary 2.4. Let A be a bounded positive operator. Then A
≪,B

is an extremal point of
the operator segment

[0, A] := {S ∈ B+(H ) | S ≤ A}

for all B ∈ B+(H ).

We remark that the short AM of A to the close linear subspace M of the (complex)
Hilbert space H possesses a factorization of the form

AM = A1/2P
M̃
A1/2,

where P
M̃

is defined to be the orthogonal projection onto the subspace M̃ := A−1/2〈M 〉,
see Krein [11]. This factorization can hold, of course, only if the underlying space is com-
plex. Below we offer an alternative factorization of the operator short that simultaneously
treats the real and complex cases. In fact, we show that there exists a (real or complex,
respectively) Hilbert space HA, associated with the positive operator A, such that AM

admits a factorization of the form JA(I −P )J∗
A where JA is the canonical continuous em-

bedding of HA into H and P is the orthogonal projection onto an appropriately defined
subspace of HA, associated with M . The construction below is taken from [15].
Let us consider the range space ranA, equipped with the inner product (· | ·)

A

∀x, y ∈ H : (Ax |Ay)
A
= (Ax | y).

Note that the operator Schwarz inequality

(Ax |Ax) ≤ ‖A‖(Ax | x)

implies that (· | ·)
A
defines an inner product, indeed. Let HA stand for the completion of

that inner product space. Consider the canonical embedding operator of ranA ⊆ HA into
H , defined by

∀x ∈ H : JA(Ax) := Ax.

Then JA is well defined and continuous due to the operator Schwarz inequality above
(namely, by norm bound

√
‖A‖). This mapping has a unique norm preserving extension

from HA to H which is denoted by JA as well. An easy calculation shows that its adjoint
J∗
A acts as an operator from H to HA possessing the canonical property

∀x ∈ H : J∗
Ax = Ax.
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This yields the following useful factorization for A:

A = JAJ
∗
A.

Theorem 2.5. Let H be a Hilbert space and let A ∈ B+(H ). For a given subspace
M ⊆ H denote by P the orthogonal projection of HA onto the closure of {Ax | x ∈ M }.
Then the short of A to M equals JA(I − P )J∗

A.

Proof. It is enough to show that the quadratic forms of JA(I − P )J∗
A and tM⊥ are equal.

To verify this let x ∈ H . Then

(JA(I − P )J∗
Ax | x) = ((I − P )Ax | (I − P )Ax)

A
= dist2(Ax; ranP )

= inf
y∈M

(Ax−Ay |Ax− Ay)
A
= inf

y∈M

(A(x− y) | x− y)

= tM⊥[x],

as it is claimed. �

The above construction yields another formula for the quadratic form of the shorted
operator:

Corollary 2.6. Let H be a Hilbert space, A ∈ B+(H ) and M ⊆ H any closed linear
subspace. Then for any x ∈ H

(JA(I − P )J∗
Ax | x) = (Ax | x)− sup{|(Ax | y)|2 | y ∈ M , (Ay | y) ≤ 1}.

Proof. For x ∈ H we have

(JA(I − P )J∗
Ax | x) = (Ax |Ax)

A
− (P (Ax) |P (Ax))

A

= (Ax | x)− sup{|(Ax |Ay)
A
|2 | y ∈ M , (Ay |Ay)

A
≤ 1}

= (Ax | x)− sup{|(Ax | y)|2 | y ∈ M , (Ay | y) ≤ 1},

indeed. �

Corollary 2.7. If A and B are bounded positive operators on the Hilbert space H then
the quadratic forms of A≪,B and A⊥,B can be calculated by the following formulae:

(A≪,Bx | x) = inf
y∈kerB

(A(x− y) | x− y),

(A⊥,Bx | x) = sup{|(Ax | y)|2 | y ∈ kerB, (Ay | y) ≤ 1}.

Proof. Since A≪,B is nothing but the short of A to the closed subspace kerB⊥, Theorem
2.5 together with the above corollary implies the desired formulae. �

3. Additive set functions

In this section we apply our main theorem for finitely additive nonnegative set functions.
Our main reference is [16]. We recall first some definitions.
Let T be a non-empty set, and let R be a ring of some subsets of T . Let µ and ν be

(finitely) additive nonnegative set functions (or charges, for short) on R. We say that ν
is strongly absolutely continuous with respect to µ (in symbols ν ≪s µ) if for any ε > 0
there exists δ > 0 such that µ(R) < δ implies ν(R) < ε for all R ∈ R. It is important
to remark that this notion is referred to as absolutely continuity in [16]. We say that the
charge ν is absolutely continuous with respect to µ if µ(R) = 0 implies ν(R) = 0 for all
R ∈ R. Finally ν and µ are singular if the only charge which is dominated by both ν and
µ is the zero charge.
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Let E be the complex vector space of R-step functions, and define the associated form
tν as follows:

∀ϕ, ψ ∈ E : tν(ϕ, ψ) :=

∫

T

ϕ · ψ dν.

It was proved in [16, Theorem 3.2] that if µ and ν are bounded charges, then ν is strongly
absolutely continuous with respect to µ if and only if tν is strongly absolutely continuous
with respect to tµ. Similarly, ν and µ are singular precisely when tν and tµ are singular.
Using this result, the authors proved the classical Lebesgue-Darst decomposition theo-

rem. Namely, if µ and ν are bounded charges then the formula

νa : R 7→ Dtµtν [χR]

defines a charge on R, such that νa ≪s µ and (ν−νa) ⊥ µ. We use this argument below to
provide a (≪,⊥)-type decomposition. The following lemma (see [16, Lemma 3.3]) plays
an essential role in the proof and may be very useful in deciding the additivity of the
correspondence R 7→ t[χR] for a given form t.

Lemma 3.1. Let T be a non-empty set, and let R be a ring of subsets of T . For a given
form t on E the following statements are equivalent:

(i) The set function ϑ : R → R defined by ϑ(R) := t[χR] is additive;
(ii) t[ζ ] = t[|ζ |] for all ζ ∈ E .

The main result of this section is the following short-type decomposition of charges. Here
we emphasize that, in contrast to the Lebesgue-Darst decomposition, this decomposition
holds for not necessarily bounded charges as well.

Theorem 3.2. Let R be a ring of subsets of a non-empty set T , and let µ and ν be
charges on R. Then there is a decomposition

ν = ν≪,µ + ν
⊥,µ
,

where ν≪,µ ≪ µ and ν
⊥,µ

⊥ µ. Furthermore, if ϑ is a charge such that ϑ ≤ ν and ϑ ≪ µ,
then ϑ ≤ ν≪,µ

.

Proof. Let us define the set function ν≪,µ
by

∀R ∈ R : ν≪,µ(R) := (tν)ker tµ [χR].

It is clear that µ(R) = 0 implies ν≪,µ(R) = 0. Our only claim is therefore to prove the
additivity of ν≪,µ . For this purpose, let ϕ ∈ E . In accordance with the previous lemma, it
is enough to show that

(tν)ker tµ[|ϕ|] = (tν)ker tµ [ϕ].

Assume that

ϕ =
k∑

i=1

λi · χRi
,

where {λi}
k
i=1 are non-zero complex numbers and {Ri}

k
i=1 are pairwise disjoint elements

of R. Define the function ψ as follows

ψ :=

k∑

i=1

|λi|

λi
· χ

Rk
+ χ

T\
⋃k
i=1

Ri

.
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Since |ψ(t)| = 1 for all t ∈ T , the multiplication with ψ is a bijection on E . (Note that
ψ /∈ E in general.) As tν [ζ ] = tν [|ζ |] for all ζ ∈ E , we have that

(tν)ker tµ[ϕ] = inf
ξ∈E

tν [ϕ− ξ] = inf
ξ∈E

tν [|ϕ− ξ|]

= inf
ξ∈E

tν [|ψ| · |ϕ− ξ|] = inf
ξ∈E

tν [||ϕ| − ψ · ξ|]

= inf
ξ∈E

tν [|ϕ| − ψ · ξ] = (tν)ker tµ [|ϕ|].

Consequently, ν≪,µ is a charge, which is absolutely continuous with respect to µ. Since ν
and ν≪,µ are charges, ν

⊥,µ
:= ν − ν≪,µ is a charge too, which is derived from tν − (tν)ker tµ .

Hence, ν
⊥,µ

and µ are singular. �

The following corollary is an immediate consequence of Theorem 1.5.

Corollary 3.3. Let ν and µ be a charges on R. Then ν≪,µ
is an extremal point of the

convex set of those charges that are majorized by ν.

Remark 3.4. If R is a σ-algebra, µ and ν are σ-additive (i.e., µ and ν are measures),
then the notions of absolute continuity and strong absolute continuity coincide, and hence

Dtµtν = (tν)ker tµ.

In this case, the short-type decomposition coincides with the classical Lebesgue decompo-
sition. Furthermore, we have the following formula for the absolutely continuous part

∀R ∈ R : ν≪,µ(R) = inf
ϕ∈E

∫

R

|1− ϕ(t)|2 dν(t).

If R is an algebra of sets, and we consider finitely additive charges on it, then the involved
absolute continuity concepts are different. Consequently, there exist µ and ν such that

Dtµtν 6= (tν)ker tµ.

4. Representable functionals

The Lebesgue-type decomposition of positive functionals were studied by several au-
thors, see e.g. [7, 9, 10, 20, 21, 24]. Szűcs in [20] proved that the Lebesgue-type decompo-
sition of representable positive functionals can be derived from their induced sesquilinear
forms. In this section we present a short-type decomposition for representable positive
functionals, which corresponds to the short type decomposition of their induced forms.
Let A be a complex ∗-algebra and let f : A → C be a positive linear functional on it

(that is, f(a∗a) ≥ 0 for all a ∈ A ). The form induced by f will be denoted by tf

tf : A × A → C; (a, b) 7→ f(b∗a).

For positive functionals f ≤ g means that tf ≤ tg. The positive functional f is called
representable, if there exists a Hilbert space H

f
, a ∗-representation π

f
of A into H

f
, and

a cyclic vector ξ
f
∈ H

f
such that

∀a ∈ A : f(a) = (π
f
(a)ξ

f
| ξ

f
)
f
.

Such a triple (H
f
, π

f
, ξ

f
) is provided by the classical GNS-construction (see [14] for the

details): namely, denote by Nf the set of those elements a such that f(a∗a) = 0, and let
Hf stand for the Hilbert space completion of the inner product space

(
A /Nf

, (· | ·)f
)
; ∀a, b ∈ A : (a+Nf | b+Nf)f := tf (a, b) = f(b∗a).
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For a ∈ A let πf (a) be the left multiplication by a:

∀x ∈ A : πf(a)(x+Nf ) := ax+Nf .

The cyclic vector ξf is defined as the Riesz-representing vector of the continuous linear
functional

Hf ⊇ A /Nf
→ C; a+Nf 7→ f(a).

Note also that

πf (a)ξf = a+Nf .

We define the absolute continuity and singularity as for forms. Singularity means that the
zero functional is the only representable functional which is dominated by both f and g.
According to [19, Theorem 2], this is equivalent with the singularity of the forms tf and
tg. We say that f is g-absolutely continuous (f ≪ g), if

∀a ∈ A : g(a∗a) = 0 =⇒ f(a∗a) = 0.

A decomposition of f into representable g-absolutely continuous and g-singular parts is
called short-type decomposition.
Now, the short-type decomposition for representable functionals can be stated as fol-

lows.

Theorem 4.1. Let f and g be representable positive functionals on the ∗-algebra A . Then
f admits a decomposition

f = f≪,g
+ f

⊥,g

to a sum of representable functionals, where f≪,g is g-absolutely continuous, f
⊥,g

and g
are singular. Furthermore, f≪,g is the greatest among all of the representable functionals
h such that h ≤ f and h≪ g.

Proof. Let M be the following closed subspace of Hf

M := {a+Nf | g(a∗a) = 0}

and let P be the orthogonal projection from Hf onto M . Then M and M⊥ are πf -
invariant subspaces. Since πf is a ∗-representation, it is enough to prove that M is πf
invariant. Let a, x ∈ A and assume that g(a∗a) = 0. Then

πf(x)(a +Nf) = xa +Nf ∈ M

because

g(a∗x∗xa) = ‖πg(x)(a+Nf )‖
2
g ≤ ‖πg(x)‖

2
g · g(a

∗a) = 0.

Consequently,

πf (x)〈M 〉 ⊆ πf (x)〈{a+Nf | g(a∗a) = 0}〉 ⊆ M ,

as it is stated. Now, let us define the functionals

f≪,g(a) := (πf (a)(I − P )ξf | (I − P )ξf)f .

f
⊥,g

(a) := (πf(a)Pξf | Pξf)f .

Clearly, f≪,g and f
⊥,g

are representable positive functionals. On the other hand, since M

is πf -invariant, we find that

f≪,g(a
∗a) = ‖πf(a)(I − P )ξf‖

2
f = ‖(I − P )πf(a)ξf‖

2
f = ‖(I − P )(a+Nf)‖

2
f = tf≪,g

[a]
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and similarly,

f
⊥,g

(a∗a) = ‖P (a+Nf)‖
2
f = tf

⊥,g
[a].

Since tf≪,g
is tg-absolutely continuous, and tf

⊥,g
is tg-singular, we infer that f≪,g ≪ g and

f
⊥,g

⊥ g. The maximality of f≪,g
follows from the maximality of tf≪,g

. �

Corollary 4.2. Let f and g be representable positive functionals on the ∗-algebra A .
Then f≪,g is an extremal point of the convex set of those representable functionals that
are majorized by f .
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