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A SHORT-TYPE DECOMPOSITION OF FORMS
ZOLTAN SEBESTYEN, ZSIGMOND TARCSAY, AND TAMAS TITKOS

ABSTRACT. The main purpose of this paper is to present a decomposition theorem
for nonnegative sesquilinear forms. The key notion is the short of a form to a linear
subspace. This is a generalization of the well-known operator short defined by M. G.
Krein. A decomposition of a form into a shorted part and a singular part (with respect
to an other form) will be called short-type decomposition. As applications, we present
some analogous results for bounded positive operators acting on a Hilbert space; for
additive set functions on a ring of sets; and for representable positive functionals on a
x-algebra.

INTRODUCTION

To begin with we give a brief survey of the required definitions and results from [8],
which is our constant reference where the omitted details of this section can be found.

Let X be a complex linear space and let t be nonnegative sesquilinear form on it.
That is, t is a mapping from the Cartesian product X x X to C, which is linear in the
first argument, antilinear in the second argument, and the corresponding quadratic form
tf]:X—>R

VeeX: tz] =tz x)

is nonnegative. In this paper all sesquilinear forms are assumed to be nonnegative, hence
we write shortly form. The quadratic form of a form fulfills the parallelogram law

Ve,y € X oo tle +y] + tr — y] = 2(t[z] + tly]).

According to the Jordan-von Neumann theorem [26, Satz 1.3], a form is uniquely deter-
mined via its quadratic form, namely

3
1
Ve,ye X:  t(z,y) = 1 kz_oikt[x + %]
The set F(X) of forms is partially ordered with respect to the ordering

t<w < VreX: {z] <zl

If there exists a constant ¢ such that t < ¢ -t then we say that t is dominated by to
(t <4 1o, in symbols). Since the square root of the quadratic form defines a seminorm on
X, then the kernel of t

kert:= {z € X | tfz] =0}
is a linear subspace of X. The Hilbert space % denotes the completion of the inner
product space X /et equipped with the natural inner product
Ve,ye X0 (z+kert | y+kert), :=t(z,y).
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We say that the form t is strongly w-absolutely continuous (t < o), if
V(@n)new € XV 1 ((tan — ) = 0) A (w[z,] = 0)) = t[z,] — 0.

Remark that this notion is called closability in [8]; cf. also [18]. The singularity of t and
to (denoted by t L ) means that

Vs e Fo(X): ((s<t) A (s<w)) = s=0.

The parallel sum t : o of t and ), and the strongly absolutely continuous (or closable)
part Dyt of t with respect to to are defined by

Vo€ X: (t:w)fa] = inf {tlr —y] +wly]}

and

Dyt :=sup(t: nw).
neN
The following decomposition theorem of S. Hassi, Z. Sebestyén, and H. de Snoo generalizes
the operator decomposition of T. Ando [3, 23], the Lebesgue decomposition of finitely
additive set functions [4] (see also [16, 22, 25]), and the canonical decomposition of densely
defined forms [18].

Theorem 0.1. Let t and to be forms on the complex linear space X. Then the decompo-
sition
t =Dyt + (t— Dyt)

is a (K5, L)-type decomposition of the form t with respect to vo. That is, Dyt is strongly ro-
absolutely continuous, (t—Dyt) is w-singular. Furthermore, this decomposition is extremal
in the following sense:

Vs e Fo(X): ((s<t) A (s <sw)) = s <Dyt
The decomposition is unique precisely when Dyt is dominated by vo.

For the proof see [8, Theorem 2.11, Theorem 3.8, Theorem 4.6] or [16, Theorem 2.3].

It is a natural idea to consider the following notion of absolute continuity: we say that
t is w-absolutely continuous (t < 1) if kerto C ker t, that is to say,

VeeX: mwlz]=0 = tz]=0

in analogy with the well-known measure case.

The setup of this paper is the following. Our main purpose is to present an (<, L)-
type decomposition theorem for forms which we shall call a short-type decomposition.
More precisely, for every pair of forms t and to we shall show that t splits into absolutely
continuous and singular parts with respect to tv, where the absolutely continuous part is
extremal in a certain sense. This will be done in Section 1. The key notion is the short of
a form, which is motivated by [2, Theorem 6] of W. N. Anderson and G. E. Trapp.

In Section 2 we shall see that this is a generalization of the well-known operator short
defined by M. G. Krein [11]. Moreover, we present a factor decomposition for the shorted
operator. As an application, we gain also a short-type decomposition on the set of bounded
positive operators (analogous results for matrices can be found in [1, 13]). That is, for
every A, B € B, () there exist S,T € B, () such that

A=S+T,
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where
ranS Cran B and ranT? NranBY? = {0}.

Furthermore, we prove the following characterization: the range of the bounded positive
operator B is closed if and only if for every A € B, () the short-type decomposition
above is unique. In this case, the shorted part of A is closable with respect to B.

Another important application can be found in Section 3. Using our main result, we
will prove a decomposition theorem for additive set functions. In the o-additive case this
decomposition coincides with the well-known Lebesgue decomposition of measures, but in
the finitely additive case it differs from the Lebesgue-Darst decomposition [4]. This fact
will demonstrate that the Lebesgue-type decomposition, and the short-type decomposition
are different in general, and hence, absolute continuity does not implies strong absolute
continuity (see also [7, Example 2]).

Finally, in Section 4, we apply our result to present a short-type decomposition for
representable positive functionals of a *-algebra. We emphasize that we do not make any
assumptions for the algebra, neither the commutativity, nor the existence of unit element.

1. A SHORT-TYPE DECOMPOSITION THEOREM FOR FORMS

Let t and to be forms on the complex linear space X. The purpose of this section is
to show that t has a decomposition into a tv-absolutely continuous and a tv-singular
part. This type decomposition will be called short-type decomposition, or (<, L)-type
decomposition. In our further considerations an essential role will be played by the concept
of the short of a form, which is introduced in the following lemma.

Lemma 1.1. Let ) C X be a linear subspace, and let t € F(X). Then the following
formula defines a form on X

VeeX: tyfz]:= ig%t[x —yl.
v

Furthermore, t, is the mazimum of the set
{seF(X)|(s<t) A (Y Ckers)}.
Proof. Let )¢ be the following subspace of 7
2 = {y+kert ‘ Yy 62)}

and consider the orthogonal projection P from % onto ) (the closure of ;). Then for
allz € X

(1 = P)(z + ker’c)Ht2 = dist*(z + ker t,9)) = ;2% [(z—y)+ kert”f = ;2% tlx —y].

Consequently, t, is a form, indeed, and ) C kert, . To show the maximality, assume that
the quadratic form of s vanishes on ) and s < t. According to the triangle inequality we
have

sz] < slz —y] <tz -y
for all y € %), and hence,

s[z] < ;2% tlr —y] = t,[z].
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The form t, is called the short of the form t to the subspace ).
It follows from the definition that if t and w are forms and 2) and 3 are linear subspaces,
then

(t<mw) A PC3) = t3<10y.
Now, we are in position to state and prove the main result of this section.

Theorem 1.2. Let t 1o € F, (X) be forms. Then there exists a (<, L)-type decomposition
of t with respect to vo. Namely,

t:t +(t_tkerm)7

where the first summand is v-absolutely continuous and the second one is vw-singular.
Furthermore, t s the mazimum of the set

{seFi(X)|(s<t) A (s <)}

The decomposition is unique precisely when t_  is dominated by to.

ker

ker

Proof. It follows from the previous lemma that t_ < to, and that t_ _ is maximal. Let
s be a form such that s <w ands <t—t_  .Sincet_ <t_ +s5<tandthe quadratic
form of t__ -+ s vanishes on ker tv, the maximality of t_,  implies that s = 0.

It remains only to prove that the decomposition is unique if and only if t,_  is dominated
by to. Let ¢ be a constant such that t < ¢t (we may assume that ¢ > 1) and let t = t; +t,
be an (<, L)-type decomposition. Since t__ is maximal, we have

1 1 1
J— tl Z _(tkerm — tl) a,nd 10 Z _t Z _(tkerm - tl)
C C

ker o
&

ker o

t=t—t >t

ker 1o

which is a contradiction, unless t = t;. Finally, observe that Dt <t__ ., and therefore,
every (<, L)-type decomposition is a (<, L)-type decomposition as well. Indeed,

b (2] = Inf tlz—y]= Inf {t{r—y]+nwly]} > nf{tlr —y]+nwfyl} = (t: nwo)l]

ker 1o

holds for all n € N and x € X, therefore
Dyt =sup(t: nw) <t

ker w *
neN

Thus if the (<, L)-type decomposition is unique, then t_ = Dyt, and t_  <q to

according to Theorem 0.1. O

Observe that (ty)y = ty for each subspace 2), i.e., shortening to a subspace is an
idempotent operation. Furthermore, t < tv precisely when t_ = t.

Remark 1.3. Let o7 be a complex algebra, let . C o/ be a left ideal, and let t be a
representable form on /. That is, a nonnegative sesquilinear form, which satisfies

(Va e o) (N, >0) (Vbe ) : tlab] < At[b].
A simple observation shows that t, is representable
=i — < i — < i — = .
ts[ab] mlélg tlab — x| < mlélg tlab — az] < l}gfy Aat[b — x] = At s [b]

If v is a representable form on <7 as well, then ker v is obviously a left ideal, and hence
we have the following decomposition

t: tkerm + (t_ tkerm)

where t <, (t—t_ ) Lw, and t_  is representable. For a Lebesque-type decom-
position of representable forms we refer the reader to [20].

ker o ker ro
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Finally, we show that the shorted form ty possesses an extremal property. In fact, we
prove that ty is a disjoint part of t for every subspace 2), or equivalently, ty is a so-
called t-quasi unit. After recalling the corresponding definitions, in Lemma 1.4 we give a
characterization of the extremal points of the convex set

={we Fi(X) | m <t}

We say that u is a t-quasi-unit, if Dt = u. The form u is a disjoint part of t if u and
t — u are singular. The set of extremal points of a convex set C' is denoted by ex C'. For
the terminology see [6, 12, 17].

Lemma 1.4. Let t and u be forms on & such that u < t, and let A > 0 and p > 0 be
arbitrary real numbers. Then the following statements are equivalent.

(1) u is a t-quasi-unit, i.e., Dyt = u. (iv) u € ex|0, 4.
(i) There exists vo such that u = Dyt. (v) (Au) @ (ut) = /\)f“u
(13i) w is a disjoint part of t. (vi) (Au):t=u: (At).

Proof. Here we prove only (i) = (v) = (vi) = (i). The remainder can be found in [17,
Theorem 11]. Assume that u is a t-quasi unit, and observe that

(Au) = (ut) = (Au) - (Daulpt)) = (Au) = (uDyt) = (Au) © (pu) = Ai—”ﬁ-
according to the properties of the parallel sum and the following equalities
t:w=Dyp(t:w) =Dyt:w
(see [8, Lemma 2.3, Lemma 2.4, Proposition 2.7]). Assuming (v) it is clear that

A

Au)t=
(Au) T+ A

u=u:(At).

Finally, since u < t, property (vi) implies that

Dyt =sup (t: (nu)) =sup ((nt) : u) = D = u.

neN neN

t

Theorem 1.5. Let t be a form on X and let ) be a linear subspace of X. Then t, is an
extremal point of the convex set

{seF (X)|0<s<t}
and
Dt@t: tgj

Proof. According to the previous lemma, it is enough to show that ty) is a disjoint part of
t. That is, ty and t—ty are singular. Let s be a form such that s < ty and s < t—ty. Then
ty + 5 vanishes on ) and ty +s < t, thus the maximality of ty implies that s = 0. O
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2. BOUNDED POSITIVE OPERATORS

Let . be a complex Hilbert space with the inner product (- | -) and the norm || - |.
The set of bounded positive operators will be denoted by B, (7). The notation A < B
stands for the usual relation

Vee ' : (Axz|z) < (Bx|uz).
For every A € B () we set
Ve,ye 0t (v,y) = (Ax | y)

which defines a bounded nonnegative form on . Conversely, in view of the Riesz-
representation theorem, the correspondence A — t, defines a bijection between bounded
positive operators and bounded nonnegative forms. Consequently, we can define the dom-
ination, (strong) absolute continuity, and singularity analogously to the ones defined for
forms. We write A <4 B if there exists a constant ¢ such that A < ¢-B. If Bx = 0
implies that Ax = 0 for all € 5, we say that A is B-absolutely continuous (A < B).
The operators A and B are singular (A L B) if 0 is the only positive operator which is
dominated by both A and B. Finally, A is strongly B-absolutely continuous (A < B) if
for any sequence (2, )nen € HN

(A(zn, — z) | Tp — 2m) = 0 A (Bzy | 3,) = 0) = (Az, | z,) = 0.
Remark that
A< B <= kerBCkerA and AL B <= ranAY?NranBY? = {0},

see [3] or [23]. It was proved by Krein that if .Z is a closed linear subspace of J# and
A € B (), then the set

{SeBL(H)|(S<A) A (tanS C &)}

possesses a greatest element. This follows immediately from our previous results, and
this is why we say that the form t, is the short of t to the subspace ). Indeed, let
t(z,y) = (Az | y) and consider the form t ,.. Since t ,. is a bounded form, there exists
a unique S € B, (J) such that t ,. (z,y) = (Sx | y) and

reM =t r)]=0= (Sz|2)=0= A+ Cker S =1anS C ..

The maximality of S follows from the maximality of t ,.. Now, since the map A — t, is
an order preserving positive homogeneous map from B (.7) into F. (7€), the following
theorem is an immediate consequence of Theorem 1.2.

Theorem 2.1. Let A and B be bounded positive operators on 7. Then there is a de-
composition of A with respect to B into B-absolutely continuous and B-singular parts.
Namely,

A=A_,+ A,

<,B

The decomposition is unique, precisely when A_ , is dominated by B.

Proof. Let A_ , and A , be the operators corresponding to (t, )xert, and t, — (t, )er iz,
respectively. O

B

Corollary 2.2. Let B be a bounded positive operator with closed range. Then for every
AeB.(7)
A=A_,+A ;.

<,B

is the unique decomposition of A into B-absolutely continuous and B-singular parts.
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Proof. If ran B is closed, then the following two sets are identical according to the well-
known theorem of Douglas [5]

{SeB(H)|(S<A) A (tanSCranB)} ={SeB, ()| (S<A) A (S<qB)}.
Consequently, the uniqueness follows from Theorem 2.1. Since ran B is closed, the inclusion
ker B C ker A<<’B implies that ran A CranB. O

<,B

Observe that if ran B is closed, then A_ , coincides with DA in the sense of Ando
[3], and therefore it is strongly absolutely continuous (or closable) with respect to B.
Furthermore, according to [23, Theorem 7] we have the following characterization of closed
range positive operators.
Corollary 2.3. Let B be a bounded positive operator. Then the following are equivalent

(1) ran B is closed,

(it) VAe BL(2): A_, <aB,

(1ii) VA€ By () DpA <4 B.
If any of (i) — (ii4) fulfills, then DpA = A_ , for all A € B (7).
Corollary 2.4. Let A be a bounded positive operator. Then A
the operator segment

<. 18 an extremal point of

[0, A] : ={S € B(A) | § < A}
for all B € BL(57).

We remark that the short A, of A to the close linear subspace .# of the (complex)
Hilbert space 7 possesses a factorization of the form

AJ// _ A1/2P/ZZ'A1/2,

where P -is defined to be the orthogonal projection onto the subspace .# := AV,
see Krein [11]. This factorization can hold, of course, only if the underlying space is com-
plex. Below we offer an alternative factorization of the operator short that simultaneously
treats the real and complex cases. In fact, we show that there exists a (real or complex,
respectively) Hilbert space ¢}, associated with the positive operator A, such that A_,
admits a factorization of the form J4(/ — P).J} where J, is the canonical continuous em-
bedding of .7, into 7 and P is the orthogonal projection onto an appropriately defined
subspace of %4, associated with .#. The construction below is taken from [15].

Let us consider the range space ran A, equipped with the inner product (-|-)

Vo, y € (Az | Ay), = (Ax | y).
Note that the operator Schwarz inequality
(Az [ Az) < ||Al|(Az | x)

implies that (-|-), defines an inner product, indeed. Let .5, stand for the completion of
that inner product space. Consider the canonical embedding operator of ran A C 77, into
A, defined by

A

Vo € - Ja(Az) = Ax.
Then J4 is well defined and continuous due to the operator Schwarz inequality above
(namely, by norm bound +/||A||). This mapping has a unique norm preserving extension
from 7, to ¢ which is denoted by J4 as well. An easy calculation shows that its adjoint
J7 acts as an operator from 7 to .7, possessing the canonical property

Vo € A Jyx = Ax.
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This yields the following useful factorization for A:
A= JaJy.

Theorem 2.5. Let 7 be a Hilbert space and let A € B, (). For a given subspace
M C I denote by P the orthogonal projection of 7 onto the closure of {Ax |z € A'}.
Then the short of A to M equals J4(I — P)J}.

Proof. 1t is enough to show that the quadratic forms of J4(I — P)J} and t ,. are equal.
To verify this let x € 7. Then

(Ja(I — P)Jhx|x) = (I — P)Az | (I — P)Ax), = dist?>(Az;ran P)
(Az — Ay | Az — Ay), = inf (A(z —y) [z —y)

= inf inf
yeH yeM
= t///L [l’],
as it is claimed. O
The above construction yields another formula for the quadratic form of the shorted
operator:

Corollary 2.6. Let s be a Hilbert space, A € B () and M4 C H any closed linear
subspace. Then for any v € F
(Ja(I = P)Jha | x) = (Ax|z) — sup{|(Az |y)]* |y € A, (Ay|y) < 1}.
Proof. For x € ¢ we have
(JalI = P)Jyw | 2) = (Aw| Aw), — (P(Az) | P(Ax),
= (Az| ) — sup{|(Az | Ay),[* |y € A, (Ay| Ay), < 1}
— (Az|2) — sup{|(Az | )|y € 4, (Ay|y) < 1},
indeed. U

Corollary 2.7. If A and B are bounded positive operators on the Hilbert space € then
the quadratic forms of A« p and A| p can be calculated by the following formulae:

(Acsz|o) = inf (Alx—y)|a—y),
(A g | ) = sup{|(Az | y) |y € ker B, (Ay |y) < 1}.

Proof. Since A< g is nothing but the short of A to the closed subspace ker B+, Theorem
2.5 together with the above corollary implies the desired formulae. O

3. ADDITIVE SET FUNCTIONS

In this section we apply our main theorem for finitely additive nonnegative set functions.
Our main reference is [16]. We recall first some definitions.

Let T be a non-empty set, and let # be a ring of some subsets of T'. Let 1 and v be
(finitely) additive nonnegative set functions (or charges, for short) on %Z. We say that v
is strongly absolutely continuous with respect to p (in symbols v < u) if for any € > 0
there exists § > 0 such that pu(R) < ¢ implies v(R) < ¢ for all R € Z. It is important
to remark that this notion is referred to as absolutely continuity in [16]. We say that the
charge v is absolutely continuous with respect to p if pu(R) = 0 implies v(R) = 0 for all
R € #Z. Finally v and p are singular if the only charge which is dominated by both v and
1t is the zero charge.
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Let £ be the complex vector space of Z-step functions, and define the associated form
t, as follows:

Vo, €€ t,(p,0) = /cp@[) dv.
T
It was proved in [16, Theorem 3.2] that if x4 and v are bounded charges, then v is strongly
absolutely continuous with respect to p if and only if t, is strongly absolutely continuous
with respect to t,. Similarly, v and p are singular precisely when t, and t, are singular.
Using this result, the authors proved the classical Lebesgue-Darst decomposition theo-
rem. Namely, if 4 and v are bounded charges then the formula

Vo : % — Dyt xR

defines a charge on %, such that v, < pand (v—wv,) L p. We use this argument below to
provide a (<, L)-type decomposition. The following lemma (see [16, Lemma 3.3]) plays
an essential role in the proof and may be very useful in deciding the additivity of the
correspondence R — t[xg] for a given form t.

Lemma 3.1. Let T be a non-empty set, and let Z be a ring of subsets of T'. For a given
form t on & the following statements are equivalent:

(i) The set function ¥ : # — R defined by 9(R) := t[xr] is additive;
(i) €(¢] = {iC] Jor all ¢ € €.
The main result of this section is the following short-type decomposition of charges. Here

we emphasize that, in contrast to the Lebesgue-Darst decomposition, this decomposition
holds for not necessarily bounded charges as well.

Theorem 3.2. Let Z be a ring of subsets of a non-empty set T, and let p and v be
charges on Z. Then there is a decomposition

v=uv_, + Vs

where v, < p andv, L p. Furthermore, if 9 is a charge such that 9 < v and 9 < p,

<,p

then 9y <wv_
Proof. Let us define the set function v_ , by
VReZ: v_,(R):=(t)ert[XR]-

It is clear that p(R) = 0 implies v_ ,(R) = 0. Our only claim is therefore to prove the

additivity of v_ ,. For this purpose, let ¢ € £. In accordance with the previous lemma, it
is enough to show that

(t ker i [l0l] = (8 )ker s, []-
Assume that

k
Y = Z)\Z * XR;»
=1

where {\;}%_, are non-zero complex numbers and {R;}¥_, are pairwise disjoint elements
of Z. Define the function 1 as follows

k
— )\ XRk T\Ule R
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Since |¢(t)| = 1 for all ¢t € T, the multiplication with ¢ is a bijection on £. (Note that
Y ¢ & in general.) As t,[¢] = t,[|(]] for all ¢ € £, we have that

(tu)kertu [QO] - gelg fu[SO - 5] = érelg tl/HSO - gH
= inf (191 lp = ¢l] = int &l — v - €]
= inf t[lel =¥ - € = (e, [l

Consequently, v_ , is a charge, which is absolutely continuous with respect to p. Since v

and v, are charges, v,  :=v —v_, is a charge too, which is derived from t, — (t, )iert,-

Hence, v, = and p are singular. O
o

The following corollary is an immediate consequence of Theorem 1.5.

Corollary 3.3. Let v and ju be a charges on R. Then v_ , is an extremal point of the
conver set of those charges that are majorized by v.

Remark 3.4. If Z is a o-algebra, p and v are o-additive (i.e., 1 and v are measures),
then the notions of absolute continuity and strong absolute continuity coincide, and hence

Dtﬂty - (tu)ker e

In this case, the short-type decomposition coincides with the classical Lebesque decompo-
sition. Furthermore, we have the following formula for the absolutely continuous part

VReR: v_,(R)= 1212/ 11— ()|? dv(t).
)
R

If Z is an algebra of sets, and we consider finitely additive charges on it, then the involved
absolute continuity concepts are different. Consequently, there exist p and v such that

Dtﬂtu # (tu)ker e

4. REPRESENTABLE FUNCTIONALS

The Lebesgue-type decomposition of positive functionals were studied by several au-
thors, see e.g. [7, 9, 10, 20, 21, 24]. Szfics in [20] proved that the Lebesgue-type decompo-
sition of representable positive functionals can be derived from their induced sesquilinear
forms. In this section we present a short-type decomposition for representable positive
functionals, which corresponds to the short type decomposition of their induced forms.

Let &7 be a complex *-algebra and let f : .o/ — C be a positive linear functional on it
(that is, f(a*a) > 0 for all a € o). The form induced by f will be denoted by t;

ty: o x o = C; (a,b) — f(b"a).

For positive functionals f < g means that t; < t,. The positive functional f is called
representable, if there exists a Hilbert space J¢;, a *-representation 7, of & into J¢,, and
a cyclic vector {, € J, such that

Vae o s [(a) = (r, ()¢ | §,),

Such a triple (J7;,7,,§,) is provided by the classical GNS-construction (see [14] for the
details): namely, denote by N; the set of those elements a such that f(a*a) = 0, and let
¢ stand for the Hilbert space completion of the inner product space

(%/Nf,('|')f); Va,be%: (a+Nf\b+Nf)f ::tf(a,b):f(b*a).
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For a € @/ let m¢(a) be the left multiplication by a:
Ve e o mpla)(x+ Ny) = ax+ Ny.

The cyclic vector & is defined as the Riesz-representing vector of the continuous linear
functional

%Qﬂ/jvf—)c; a—i—Nf|—>f(a).
Note also that
Wf(&)ff = CL—|—Nf.

We define the absolute continuity and singularity as for forms. Singularity means that the
zero functional is the only representable functional which is dominated by both f and g.
According to [19, Theorem 2|, this is equivalent with the singularity of the forms t; and
t;. We say that f is g-absolutely continuous (f < g), if

Vae o : g(a*'a)=0 = f(a*a) =0.

A decomposition of f into representable g-absolutely continuous and g-singular parts is
called short-type decomposition.

Now, the short-type decomposition for representable functionals can be stated as fol-
lows.

Theorem 4.1. Let f and g be representable positive functionals on the *-algebra </ . Then
f admits a decomposition

f=Fcot 1o,

to a sum of representable functionals, where f_ s g-absolutely continuous, f, , and g
are singular. Furthermore, f_  is the greatest among all of the representable functionals
h such that h < f and h < g.

Proof. Let .# be the following closed subspace of J7}
A = {a+ Ny | g(a*a) =0}

and let P be the orthogonal projection from 7 onto .#. Then .# and .#* are m;-
invariant subspaces. Since 7y is a *-representation, it is enough to prove that .# is my
invariant. Let a,x € &/ and assume that g(a*a) = 0. Then

7Tf(.1’)<a+Nf) :SL’a+Nf E%

because
gla*z"wa) = [my(@)(a+ NI < [lry(@)]2 - g(a*a) = 0.

Consequently,

mp(@) (M) S 7p(x){({a+ Ny | gla*a) = 0}) € A,
as it is stated. Now, let us define the functionals

fegla) == (mp(a)(I = P)gs | (I = P)s)y-

fi (@) = (mp(a) P&y | P&y,
Clearly, f_  and f, are representable positive functionals. On the other hand, since .Z
is mg-invariant, we find that

feola®a) = |lmp(a)(I = P)ll7 = I = P)rp(a)éslls = I(I = P)(a+ Np)llF = tr_ [a]
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and similarly,
fi,la%a) = |[P(a+ Nl =ty, la]

Since tf<<’g is t,-absolutely continuous, and thg is t-singular, we infer that f_ < g and
f., L g. The maximality of f_  follows from the maximality of t;_ .- U

Corollary 4.2. Let f and g be representable positive functionals on the *-algebra < .
Then f_, is an extremal point of the conver sel of those representable functionals that
are magorized by f.
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