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POSITIVE DEFINITE OPERATOR FUNCTIONS AND SESQUILINEAR

FORMS

TAMÁS TITKOS

Dedicated to Zoltán Sebestyén on the occasion of his 70th birthday

Abstract. Due to the fundamental works of T. Ando, W. Szymański, F. H. Szafraniec,
and many others it is well known that sesquilinear forms play an important role in
dilation theory. The crucial fact is that every positive definite operator function induces
a sesquilinear form in a natural way. The purpose of this survey-like paper is to apply
some recent results of Z. Sebestyén, Zs. Tarcsay, and the author for such functions. While
most of the results are not new, the paper’s main contribution is the unified discussion
from the viewpoint of sesquilinear forms.

1. Sesquilinear forms

In this preliminary section we review first some of the standard notions and notations
and give a brief survey of some recent results needed throughout the paper. We focus on
the decomposition and Radon–Nikodym theory of nonnnegative sesquilinear forms that
we will apply on positive definite operator functions in Section 2. Our main references are
[7, Section 2] and [11].

1.1. Notions, notations. Let X be a complex linear space and let t be a nonnegative
sesquilinear form (or shortly just form) on it. That is, t is a mapping from X×X toC, which
is linear in the first argument, antilinear in the second argument, and the corresponding
quadratic form

∀x ∈ X : t[x] := t(x, x)

is nonnegative. A crucial fact is that a form is uniquely determined by its quadratic form
due to the polarization formula

∀x, y ∈ X : t(x, y) =
1

4

3
∑

k=0

ikt[x+ iky].

The set of forms will be denoted by F+(X). For t,w ∈ F+(X) we write t ≤ w if
t[x] ≤ w[x] for all x ∈ X. Domination means that there exists a constant c such that
t ≤ c ·w. Using the ordering we can define singularity and almost domination. The forms
t and w are singular (t ⊥ w) if for every form s the inequalities s ≤ t and s ≤ w imply
that s = 0 (i.e., s is the identically zero form). We say that t is almost dominated by w

(in symbols: t ≪ad w) if there exists a monotonically nondecreasing sequence of forms tn,
each dominated by w, such that t = sup

n∈N

tn (pointwise supremum).
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Now, we define two important notions, which are motivated by classical measure theory.
Let t andw be forms, t is called absolutely continuous with respect to w (or t isw-absolutely
continuous, in symbols: t ≪ac w), if w[x] = 0 implies t[x] = 0 for all x ∈ X. We say that
t is strongly w-absolutely continuous (t ≪s w, in symbols), if

∀(xn)n∈N ∈ X
N :

(

(t[xn − xm] → 0) ∧ (w[xn] → 0)
)

=⇒ t[xn] → 0.

Remark that this notion is called closability in [7]; cf. also [16] and [9]. The following
theorem says that strong absolute continuity is closely related to the ordering. For the
proof see [7, Theorem 3.8].

Theorem 1.1. Let t and w be forms on X. Then t is almost dominated by w if and only
if t is strongly w-absolutely continuous.

It is important to mention that if t ∈ F+(X) then the square root of its quadratic form
defines a seminorm on X. Hence the set

ker t :=
{

x ∈ X
∣

∣ t[x] = 0
}

is a linear subspace of X. The Hilbert spaceHt denotes the completion of the inner product
space X/ker t equipped with the natural inner product

∀x, y ∈ X : (x+ ker t | y + ker t)t := t(x, y).

Observe that t is w-absolutely continuous if and only if the canonical embedding (which
assigns the coset x + ker t to x + kerw) from Hw to Ht is well-defined. Strong absolute
continuity means that this embedding is a closable operator.
We close this subsection with a Radon–Nikodym-type result. This was proved indepen-

dently by Zs. Tarcsay, from a different point of view. For more background we refer the
reader to [19].

Lemma 1.2. Let t and w be forms on X and assume that t ≤ c ·w for some c > 0. Then
for every y ∈ X there exists a unique vector ξy in Hw such that

∀x ∈ X : t(x, y) = (x+ kerw | ξy)w.

Proof. Let y be an arbitrary but fixed element of X and define the linear functional Φy as
follows

Φy : X/kerw → C; x+ kerw 7→ (x+ ker t | y + ker t)t.

According to the Cauchy-Schwarz inequality and the assumption it is clear that Φy is a
bounded linear functional. Indeed,

|Φy(x+ kerw)|2 ≤ ‖x+ ker t‖2
t
· ‖y + ker t‖2

t
≤ c2 · ‖x+ kerw‖2

w
· ‖y + kerw‖2

w
.

Consequently, due to the Riesz representation theorem there exists a unique vector ξy in
Hw such that

∀x ∈ X : t(x, y) = (x+ ker t | y + ker t)t = Φy(x+ ker t) = (x+ kerw | ξy)w.

�

Theorem 1.3. Let t,w ∈ F+(X) be forms on X and let t be almost dominated by w. Then
for every y ∈ X there exists a sequence (yn)n∈N ∈ X

N such that

∀x ∈ X : t(x, y) = lim
n→+∞

w(x, yn).
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Proof. Fix an arbitrary y ∈ X. Since t is almost dominated by w, there exists a suitable
sequence (tn)n∈N of w-dominated forms and a sequence (ξy,n)n∈N of representant vectors
such that

lim
n→+∞

tn = t and (∀x ∈ X) (∀n ∈ N) : tn(x, y) = (x+ kerw | ξy,n)w.

As tn ≤ t, we can apply the Cauchy–Schwarz inequality on the form t− tn that gives
∣

∣

(

t− tn

)

(x, y)
∣

∣

2
≤

(

t− tn

)

[x]
(

t− tn

)

[y] → 0, n → +∞,

whence we infer that

t(x, y) = lim
n→+∞

tn(x, y) = lim
n→+∞

(x+ kerw | ξy,n)w.

Since X/kerw is dense in Hw we can choose a sequence (yn)n∈N ∈ X
N such that

∥

∥ξy,n − (yn + kerw)
∥

∥

w
→ 0.

According to the Cauchy–Schwarz inequality, this implies that
∣

∣(x+ kerw | ξy,n)w − (x+ kerw | yn + kerw)w
∣

∣ → 0

and thus

∀x ∈ X : t(x, y) = lim
n→+∞

w(x, yn).

�

1.2. Decomposition theorems. In this subsection we recall two basic results of decom-
position theory of forms. The first one is the so-called short-type decomposition, which is
a decomposition of t into absolutely continuous and singular parts. The key notion is the
short of a form to a linear subspace of X (for the details see [12]), which is a generalization
of the well known concept of operator short [1, 6, 10].
Let t and w be forms on X, then the short of t to the subspace kerw is defined by

∀x ∈ X : t
kerw

[x] := inf
y∈kerw

t[x− y].

The short-type decomposition theorem is stated as follows ([12, Theorem 1.2]).

Theorem 1.4. Let t,w ∈ F+(X) be forms on X. Then there exists a short-type decompo-
sition of t with respect to w. Namely,

t = t
kerw

+ (t− t
kerw

),

where the first summand is w-absolutely continuous and the second one is w-singular.
Furthermore, t

kerw
is the largest element of the set

{

s ∈ F+(X)
∣

∣ (s ≤ t) ∧ (s ≪ac w)
}

.

The decomposition is unique precisely when t
kerw

is dominated by w.

A decomposition of t into strongly w-absolutely continuous (or w-almost dominated)
and w-singular parts is called Lebesgue-type decomposition. This is a generalization of
the well-known decomposition result of T. Ando [2] (see also [20]). The existence of such
a decomposition for forms was proved first by Hassi, Sebestyén, and de Snoo in [7]. In
order to present their result we need to introduce the notion of parallel sum. The parallel
sum t : w of the forms t and w is determined by the formula

∀x ∈ X : (t : w)[x] := inf
y∈X

{

t[x− y] +w[y]
}

.
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We will see that the form

Dwt := sup
n∈N

(t : nw)

plays an important role in this paper. (For the properties of parallel addition and the
operator D see [7, Proposition 2.3, Lemma 2.4].)
Primarily, Dwt is the so-called almost dominated part of t with respect to w, as the

following fundamental theorem states [7, Theorem 2.11] (see also [11, Theorem 2.3] and
[14, Theorem 3]).

Theorem 1.5. Let t and w be forms on X. Then the decomposition

t = Dwt+ (t−Dwt)

is a Lebesgue-type decomposition of t with respect to w. That is, Dwt is almost dominated
by w, (t−Dwt) is w-singular. Furthermore, Dwt is the largest element of the set

{

s ∈ F+(X)
∣

∣ (s ≤ t) ∧ (s ≪ad w)
}

.

The decomposition is unique precisely when Dwt is dominated by w.

Moreover, for the almost dominated part we have the following two formulae (for the
proofs see [11, Lemma 2.2, Theorem 2.3] and [11, Theorem 2.7]):

(Dwt)[x] = inf
{

lim
n→+∞

t[x− xn]
∣

∣ (xn)n∈N ∈ X
N : (t[xn − xm] → 0) ∧ (w[xn] → 0)

}

and

(Dwt)[x] = inf
{

lim inf
n→+∞

t[x− xn]
∣

∣ (xn)n∈N ∈ X
N : w[xn] → 0

}

.

The first interesting observation is [23, Theorem 1.5], which implies for example for every
finite measures µ and ν that the ν-absolutely continuous part of µ is absolutely continuous
with respect to the µ-absolutely continuous part of ν [23, Theorem 3.5 (b)]. An analogous
result regarding representable functionals can be found in [21]. We present here a proof
which is simpler than the original one in [23].

Theorem 1.6. Let t and w be forms on X, and consider their Lebesgue-type decompo-
sitions with respect to each other. Then the almost dominated parts are mutually almost
dominated, i.e.,

Dwt ≪ad Dtw and Dtw ≪ad Dwt.

Proof. Observe first that if u1, u2, and v are forms such that u1 ≤ u2 and u1 ≪ad v, then

u1 ≪ad Du2
v.

Indeed, if u1 is almost dominated by v, then there exists a monotonically nondecreasing
sequence of forms (u1,n)n∈N such that sup

n∈N

u1,n = u and u1,n is dominated by v for all n ∈ N

(i.e., u1,n ≤ cnv for some cn ≥ 0). Consequently,

u1,n = Du2
u1,n ≤ Du2

cnv = cnDu2
v

which means that u1 ≪ad Du2
v. Now, apply the previous observation with u1 := Dwt,

u2 = t, and v = w. �
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1.3. Order structure and some extremal problems. This subsection is devoted to in-
vestigating the connection between some order properties of

(

F+(X),≤
)

and the Lebesgue
type decomposition.
The first natural question is whether the infimum (i.e., the greatest lower bound) t∧w

of t and w exists in F+(X). The infimum problem has a long history in the theory of
Hilbert space operators. Kadison proved that the set of bounded self-adjoint operators
is a so-called anti-lattice [8]. For bounded positive operators the infimum problem was
proved by Moreland and Gudder provided the space is finite dimensional [5].
The general case was solved by T. Ando in [3]. He showed that the infimum of two

positive operators A and B exists in the positive cone if and only if the generalized shorts
(for this notion see [2]) [B]A and [A]B are comparable. An analogous result concerning
forms was given in [22].
Recall that the infimum of t and w exists if there is a form denoted by t∧w, for which

t ∧w ≤ t, t ∧w ≤ w, and the inequalities u ≤ t and u ≤ w imply that u ≤ t ∧w.

Theorem 1.7. Let t,w ∈ F+(X) be forms on X. Then the following statements are
equivalent.

(i) Dtw ≤ Dwt or Dwt ≤ Dtw.
(ii) Dtw ≤ t or Dwt ≤ w.
(iii) The infimum t ∧w exists.

A nonzero form t is called minimal, if w ≤ t implies that λt = w for some λ ≥ 0. Or
equivalently (see [15, Theorem 5.10]), for every form w there exists a λ ≥ 0 such that
Dtw = λt.

Corollary 1.8. Let t be a minimal form on X. Then for every w ∈ F+(X) the infimum
t ∧w exists.

The Lebesgue decomposition theory of forms is encountered again by examining the
extremal points of the convex set [0, t]. Here the segment [t1, t2] for t1, t2F+(X), t1 ≤ t2 is
defined to be the convex set

[t1, t2] =
{

s ∈ F+(X)
∣

∣ t1 ≤ s ≤ t2

}

.

The following theorems characterize the extremal points of form segments; for the proofs
and other references see [13, Theorem 11] and [15, Section 5].

Theorem 1.9. Let u and t be forms on X, such that u ≤ t. The following statements are
equivalent

(i) u and t− u are singular,
(ii) Dut = u,
(iii) u is an extreme point of the convex set [0, t].

Theorem 1.10. Let t and w be forms on X. Then the following statements are equivalent

(i) t is an extreme point of [0, t+w],
(ii) ex[t, t+w] ⊆ ex[0, t+w].

Replacing w with w− t (if t ≤ w) we have

t ∈ ex[0,w] ⇔ ex[t,w] ⊆ ex[0,w].
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2. Positive definite operator functions

In this section we carry over the previous theorems for positive definite operator func-
tions. Szymański in [17] presented a general dilation theory governed by forms. We will
see (after making some generalities) that the absolutely continuous part in Theorem 1.4
(and the almost dominated part in Theorem 1.5) is the largest dilatable part in some
sense. Finally, we describe some order properties of kernels. Throughout this section we
will use the notations of [7, Section 7], which is our main reference. Recall again that
almost domination and strong absolute continuity (or closability) are equivalent concepts
for forms.
Let S be a non-empty set, and let E be a complex Banach space (with topological dual

E
∗). The dual pairing of x ∈ E and x∗ ∈ E

∗ is denoted by 〈x, x∗〉. Here the mapping

〈·, ·〉 : E× E
∗ → C

is linear in its first, conjugate linear in its second variable. The Banach space of bounded
linear operators from E to E

∗ will be denoted by B(E,E∗).
Let X be the complex linear space of functions on S with values in B(E,E∗) with finite

support. We say that the function

K : S × S → B(E,E∗)

is a positive definite operator function, or shortly a kernel on S if

∀f ∈ X :
∑

s,t∈S

〈f(t),K(s, t)f(s)〉 ≥ 0.

We associate a form with K by setting

∀f, g ∈ X : wK(f, g) :=
∑

s,t∈S

〈f(t),K(s, t)g(s)〉.

The set of kernels will be denoted by K+(X). If K and L are kernels, we write K ≺ L if
wK ≤ wL.
The following lemma states that the order structures of forms and of kernels are the

same. Here we give just an outline, for the complete proof see [7, Lemma 7.1]. An analogous
result in context of bounded positive operators can be found in [4, (2.2) Theorem].

Lemma 2.1. Let K ∈ K+(X) be a kernel on S with associated form wK and let w be a
form on X. Then the following statements are equivalent

(i) w ≤ wK,
(ii) w = wL for a unique kernel L ≺ K.

Proof. Implication (ii) ⇒ (i) follows from the definitions. To prove the converse implica-
tion define for each s ∈ S and x ∈ E the function

hs,x ∈ X; ∀u ∈ S : hs,x(u) := δs(u)x

where δs is the Dirac function concentrated to s. Now, define L pointwise as follows. For
each s, t ∈ S

∀x, y ∈ E : 〈x, L(s, t)y〉 := w(ht,x, hs,y)

It follows from the nonnegativity of w[ · ] that
∑

s,t∈S

〈f(t), L(s, t)f(s)〉



POSITIVE DEFINITE OPERATOR FUNCTIONS AND SESQUILINEAR FORMS 7

is nonnegative for all f ∈ X. The only thing we need is to show that L(s, t) ∈ B(E,E∗).
According to the Cauchy-Schwarz inequality, we have for all x, y ∈ E that

|〈x, L(s, t)y〉|2 = |w(ht,x, hs,y)|
2 ≤ w[ht,x] ·w[hs,y] ≤ wK[ht,x] ·wK[hs,y]

= 〈x,K(t, t)x〉 · 〈y,K(s, s)y〉 ≤ ‖K(t, t)‖B(E,E∗) · ‖K(s, s)‖B(E,E∗) · ‖x‖
2
E
· ‖y‖2

E
.

�

We emphasize here that the preceding is the key observation of this section. Most of
the results gathered below are immediate consequences of this lemma, and the theorems
listed in Section 1.
Now, we can define domination, almost domination, singularity, closability, and (strong)

absolute continuity of kernels via their associated forms. We say that K is L-almost dom-
inated; L-closable; (strongly)-L-absolutely continuous if wK is wL-almost dominated; wL-
closable; (strongly)-wL-absolutely continuous, respectively. K and L are singular if wK

and wL are singular.
Before stating the short-type and Lebesgue-type decomposition of kernels, we mention

a result of W. Szymański (reduced to our less general setting). For the details we refer
the reader to [17, (3.5) Theorem].

Theorem 2.2. Let K, L ∈ K+(X) be kernels on S with associated forms wK and wL. Then

(a) K is absolutely continuous with respect to L (i.e., kerwL ⊆ kerwK) if and only if
there exists a Hilbert space H and a linear mapping T : X/kerwL

→ H such that

〈y,K(s, t)x〉 =
(

T (ht,y + kerwL)
∣

∣ T (hs,x + kerwL)
)

H
,

(b) K is strongly absolutely continuous with respect to L (i.e., wK is strongly wL-
absolutely continuous) if and only if there exists a Hilbert space H and a closed
linear mapping T : X/kerwL

→ H such that

〈y,K(s, t)x〉 =
(

T (ht,y + kerwL)
∣

∣ T (hs,x + kerwL)
)

H
.

The operator T is called the dilation of K and the auxiliary spaceH is called the dilation
space.
In view of the previous theorem, the following two decomposition theorems can be

stated as follows. For every pair of kernels K and L there is a maximal part of K which has
a (closed) dilation with respect to L. These are straightforward consequences of Theorem
1.4 and of Theorem 1.5.

Theorem 2.3. Let K, L ∈ K+(X) be kernels on S. Then there exists a short-type decom-
position of K with respect to L, i.e., the first summand is L-absolutely continuous and the
second one is L-singular. Namely

K = Kac,L + Ks,L,

where
∑

s,t∈S

〈f(t),Kac,L(s, t)f(s)〉 = inf
g∈kerwL

∑

s,t∈S

〈f(t)− g(t),K(s, t)(f(s)− g(s))〉.

The decomposition is unique precisely when Kac,L is dominated by L.

Theorem 2.4. Let K, L ∈ K+(X) be kernels on S. Then the decomposition

K = DLK + (K−DLK),
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is a Lebesgue-type decomposition of K with respect to L. That is, DLK is strongly L-
absolutely continuous, (K−DLK) is L-singular. The almost dominated part DLK is defined
by

wDLK
:= DwL

wK,

and hence

wDLK
[f ] = inf

{

lim
n→+∞

wK[f − gn]
∣

∣ (gn)n∈N ∈ X
N : (wK[gn − gm] → 0) ∧ (wL[gn] → 0)

}

and

wDLK
[f ] = inf

{

lim inf
n→+∞

wK[f − gn]
∣

∣ (gn)n∈N ∈ X
N : wL[xn] → 0

}

.

The decomposition is unique precisely when DLK is dominated by L.

Due to Theorem 1.3 we have the following Radon–Nikodym-type result for kernels.

Corollary 2.5. Let K, L ∈ K+(X) be kernels on S and assume that K is almost dominated
by L. Then for every g ∈ X there exists a sequence (gn)n∈N ∈ X

N such that

∀f ∈ X :
∑

s,t∈S

〈f(t),K(s, t)g(s)〉 = lim
n→+∞

∑

s,t∈S

〈f(t), L(s, t)gn(s)〉.

The following statements are immediate consequences of Theorem 1.6 and Theorem
1.7.

Corollary 2.6. Let K, L ∈ K+(X) be kernels on S, then DLK is DKL-almost dominated.
And by symmetry, DKL is DLK-almost dominated.

Corollary 2.7. Let K and L be kernels on S. Then the infimum K ∧ L of K and L exists
precisely when DKL and DLK are comparable.

Finally, we have the following characterizations according to Theorem 1.9 and Theorem
1.10.

Corollary 2.8. Let J,K ∈ K+(X) be kernels on S, such that J ≺ K. The following
statements are equivalent.

(i) J and K− J are singular.
(ii) DJK = J.
(iii) J is an extreme point of the convex set [0,K] =

{

U ∈ K+(X)
∣

∣ 0 ≺ U ≺ K
}

.

In view of Theorem 2.2 the previous corollary says that the extremal points of the
convex set [0,K] are precisely those kernels that have closed dilation.

Corollary 2.9. Let K, L ∈ K+(X) be kernels on S. Then the following statements are
equivalent

(i) K is an extreme point of [0,K+ L].
(ii) ex[K,K+ L] ⊆ ex[0,K+ L].

Replacing L with L− K (if K ≺ L) we have

K ∈ ex[0, L] ⇔ ex[K, L] ⊆ ex[0, L].
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