A SIMPLE PROOF OF THE LEBESGUE DECOMPOSITION THEOREM

TAMÁS TITKOS

The aim of this short note is to present an elementary, self-contained, and direct proof for the classical Lebesgue decomposition theorem. In fact, I will show that the absolutely continuous part just measures the squared semidistance of the characteristic functions from a suitable subspace.

This approach also gives a decomposition in the finitely additive case, but it differs from the Lebesgue-Darst decomposition [1], because the involved absolute continuity concepts are different.

Notations. Let \mathcal{A} be a σ-algebra over $X \neq \emptyset$, and consider the finite measures $\mu, \nu: \mathcal{A} \rightarrow \mathbb{R}_{+}$on it. The measure μ is ν-absolutely continuous ($\mu \ll \nu$, in symbols) if $\nu(A)=0$ implies $\mu(A)=0$ for all $A \in \mathcal{A}$. Singularity of μ and ν (denoted by $\mu \perp \nu$) means that the only measure dominated by both μ and ν is the zero measure. As it is known, this is equivalent with the existence of a measurable set $P \in \mathcal{A}$ such that $\mu(P)=\nu(X \backslash P)=0$.

Theorem. Let μ and ν be finite measures on \mathcal{A}. Then μ splits uniquely into $\mu_{\mathrm{ac}} \ll \nu$ and $\mu_{\mathrm{s}} \perp \nu$.
Proof. Consider the real vector space \mathscr{E} of real valued \mathcal{A}-measurable step-functions and let \mathscr{N} be the linear subspace generated by the characteristic functions of those measurable sets A such that $\nu(A)=0$. Define the set function μ_{ac} by

$$
\mu_{\mathrm{ac}}(A):=\inf _{\psi \in \mathcal{N}} \int_{X}\left|\mathbb{1}_{A}-\psi\right|^{2} \mathrm{~d} \mu \quad(A \in \mathcal{A}) .
$$

It is clear that $\mu_{\mathrm{ac}} \leq \mu\left(\psi:=\mathbb{1}_{\emptyset}\right)$, and that $\nu(A)=0$ implies $\mu_{\mathrm{ac}}(A)=0\left(\psi:=\mathbb{1}_{A}\right)$. Furthermore, trivial verification shows that if A and B are disjoint elements of \mathcal{A}, then

$$
\inf _{\psi \in \mathcal{N}} \int_{X}\left|\mathbb{1}_{A \cup B}-\psi\right|^{2} \mathrm{~d} \mu=\inf _{\psi \in \mathcal{N}} \int_{X}\left|\mathbb{1}_{A}-\psi\right|^{2} \mathrm{~d} \mu+\inf _{\psi \in \mathcal{N}} \int_{X}\left|\mathbb{1}_{B}-\psi\right|^{2} \mathrm{~d} \mu .
$$

Since μ_{ac} is nonnegative, additive, and dominated by the measure μ, we infer that μ_{ac} is a measure itself.

What is left is to show that $\mu_{\mathrm{s}}:=\mu-\mu_{\mathrm{ac}}$ and ν are singular, and that the decomposition is unique. Both follow immediately from the fact that μ_{ac} is maximal among those measures ϑ such that $\vartheta \leq \mu$ and $\vartheta \ll \nu$. Indeed, let ϑ be such a measure, $\psi \in \mathscr{N}$, and observe that

$$
\vartheta(A)=\int_{X}\left|\mathbb{1}_{A}\right|^{2} \mathrm{~d} \vartheta=\int_{X}\left|\mathbb{1}_{A}-\psi\right|^{2} \mathrm{~d} \vartheta \leq \int_{X}\left|\mathbb{1}_{A}-\psi\right|^{2} \mathrm{~d} \mu .
$$

Taking the infimum over \mathscr{N} we obtain that $\vartheta \leq \mu_{\mathrm{ac}}$.
Now, let η be a measure, such that $\eta \leq \nu$ and $\eta \leq \mu-\mu_{\mathrm{ac}}$. In this case, $\mu_{\mathrm{ac}}+\eta \leq \mu$ and $\mu_{\mathrm{ac}}+\eta \ll \nu$, thus $\eta=0$. If $\mu=\mu_{1}+\mu_{2}$, where $\mu_{1} \ll \nu$ and $\mu_{2} \perp \nu$, then $\mu_{\mathrm{ac}}-\mu_{1}$ is a measure, which is simultaneously ν-absolutely continuous and ν-singular. This yields that $\mu_{1}=\mu_{\mathrm{ac}}$.

References

[1] Tarcsay, Zs., A functional analytic proof of the Lebesgue-Darst decomposition theorem, Real Analysis Exchange, Vol. 39(1), 2013/2014, 241-248.

Tamás Titkos, Department of Applied Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117, Budapest, Hungary;

E-mail address: titkos@cs.elte.hu
2000 Mathematics Subject Classification. Primary 28A12.
Key words and phrases. Measures, Lebesgue decomposition.

