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The theory of evolution links random variation and selection to incremental

adaptation. In a different intellectual domain, learning theory links incremental

adaptation (e.g., from positive and/or negative reinforcement) to intelligent

behaviour. Specifically, learning theory explains how incremental adaptation

can acquire knowledge from past experience and use it to direct future behav-

iours toward favourable outcomes. Until recently such cognitive learning

seemed irrelevant to the ‘uninformed’ process of evolution. In our opinion,

however, new results formally linking evolutionary processes to the principles

of learning might provide solutions to several evolutionary puzzles – the evo-

lution of evolvability, the evolution of ecological organisation, and evolutionary

transitions in individuality. If so, the ability for evolution to learn might explain

how it produces such apparently intelligent designs.

Learning and Evolution

New insights and new ways of understanding are often provided by analogies. Analogous

reasoning is regarded as a core faculty of human cognition [1], and necessary for complex

abstract causal reasoning [2]. In biology, analogy is sometimes considered to be the poor cousin

of homologyQ2 – similar, but not really the same. But in science more generally, analogies can be

founded on perfect equivalences, for example, mathematical isomorphisms or algorithmic

equivalence, thus enabling the transfer of ready-made results from one system or discipline

to another, for example, between quasispecies theory and population genetics [3,4], electro-

magnetic fields and hydrodynamics [5], and magnetism and neural networks [6]. The previously

casual analogy between learning systems and evolution by natural selection has recently been

deepened to a level where such transfer can begin.

How Intelligent is Evolution?

Evolution is sometimes likened to an active problem solver, seeking out ingenious solutions to

difficult environmental challenges. The solutions discovered by evolution can certainly appear

ingenious. Mechanistically, however, there appear to be good reasons to doubt that cognitive

problem solving and evolution are equivalent in any real sense. For example, cognitive problem

solving can utilise past knowledge about a problem domain to ‘anticipate’ future outcomes and

direct exploration of solutions, whereas evolutionary exploration is myopic and dependent on

undirected variation. Intelligent problem solvers can also form high-level or modular represen-

tations of a problem, making it easier to reuse partial solutions in new contexts, whereas

evolution merely plods on, filtering random replication errors.

Yet, this is not the whole story. Whilst genetic variation might be undirected, the pattern of

phenotypic variation is shaped and biased by the processes of development. Moreover, the

organisation of developmental processes (from gene regulatory interactions to morphological

body plans) is itself, in large part, a product of past evolution. This affords the possibility that

random genetic changes might produce phenotypic changes that are ‘informed’ by past

selection [7–9]. This can direct phenotypic variation into different or higher-level morphological

dimensions and/or modularise phenotypic features and redeploy them in new contexts

[8,10,11]. The question thus arises: is evolution by natural selection (e.g., by adapting the
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organisation of developmental processes) able to facilitate subsequent adaptation in the same

way that a learning system can exploit knowledge from past experience? If so, evolution might

be a ‘smarter’ problem solver than generally appreciated [12] and learning theory could explain

how.

Of course, at the time when Darwin sought a mechanistic explanation for evolutionary adapta-

tion, the theory of algorithms (see GlossaryQ3 ) did not exist as we know it now and an analogy with

learning would not have been illuminating. A century later, when Turing provided the first formal

framework of computation, it was immediately used to propose an algorithmic account of

learning and intelligence [13]. The well-developed understanding of learning algorithms that we

have now vastly expands the space of mechanistic possibilities that might be used to answer

Darwin's question.

This opinion paper discusses how (i) recent work shows that the link between learning and

evolution is a mathematical equivalence; (ii) accordingly, knowledge from the theory of learning

can be converted and redeployed in evolutionary theory; and (iii) this offers exciting opportunities

to address fundamental evolutionary puzzles in new ways.

Unifying Learning and Evolution

A system exhibits learning if its performance at some task improves with experience

[14]. Reusing behaviours that have been successful in the past (reinforcement learning) is

intuitively similar to the way selection increases the proportion of fit phenotypes in a population

[15–18].

In fact, evolutionary processes and simple learning processes are formally equivalent. In

particular, learning can be implemented by incrementally adjusting a probability distribution

over behaviours [e.g., Bayesian learning (Bayesian updatingQ4 )] or, if a behaviour is repre-

sented by a vector of features or components, by adjusting the probability of using each

individual component in proportion to its average reward in past behaviours (e.g., Multiplicative

Weights Update Algorithm, MWUA [19]). Harper [20] and Shalizi [21] showed that the former is

mathematically equivalent to soft selection on genotypes in asexual populations, and Chastain

et al. [19] have very recently shown that the latter is equivalent to selection acting on individual

alleles at linkage equilibrium in sexual populations [22,23]. Evolution thus acquires information

from past selection in the same principled way that simple learning systems acquire information

from past experience (see also [24,25]). These results can be seen within the integrative

framework provided by Valiant, who shows how formal limits on what can be learned can

be transferred to characterise formal limits on what can be evolved [26,27].

Can Evolutionary Systems ‘Anticipate’ Future Outcomes?

A key feature of learning systems that seems disanalogous to evolutionary systems is their ability

to anticipate actions that will confer future benefits. But learning systems, just like evolutionary

systems, are not really able to ‘see the future’ – they cannot learn from benefits that have not yet

occurred. Learning systems are, however, able to extrapolate or generalise from past experi-

ence. To move beyond repeating behaviours by rote, generalisation requires an appropriate

model – an indirect, usually compact, way of representing behaviours. Learning proceeds simply

by incrementally improving the fit of a model to past experience, and new behaviours can then be

generated from this model.

The clever part of learning methods concerns how behaviours are parameterised in this model

space. In a good model space, desirable future behaviours should be similar (nearby) to

behaviours that were useful in the past. For example, perhaps ‘eating apples’ should be close

to ‘eating pears’ but far from ‘eating red things’.

Glossary

Algorithm: a self-contained step-by-

step set of instructions describing a

process, mechanism, or function. An

algorithmic description of a

mechanism is sufficiently abstract to

be ‘multiply realisable’ – i.e., it may

be instantiated or implemented in

different physical substrates (e.g.,

biological, computational, mechanical)

whilst producing the same results.

For example, Darwin's account of

evolutionary adaptation (via repeated

applications of variation, selection,

and inheritance) is fundamentally

algorithmic and hence encompasses

many possible instantiations (e.g.,

including the molecular details

unknown at the time).

Associative learning/memory:

learning correlations between inputs

and outputs, or learning what

features co-occur in the input

[6,26,35,43]. Associative memory is

an ability to recall a pattern from a

stimulus, for example, ‘Darwin’ !

‘Evolution’, ‘Hebb’ ! ‘Learning’

(heteroassociative memory), or to

recall a complete pattern from a

noisy or partial stimulus, for example,

‘Cha-les -ar-in’ ! ‘Charles Darwin’,

‘-ona-d H-b-’ ! ‘Donald Hebb’

(autoassociative memory) [6].

Analogue of, for example, evolving

the mapping between genotype and

phenotype, or the correlations among

phenotypic features governed by

developmental interactions

[32,33,82].

Bayesian learning (Bayesian

updating): a learning method using

Bayes rule as a principled way to

incorporate new information with past

experience. Analogue of selection in

asexual population (replicator

equation) [20,29].

Bivariate model: a model that

captures pairwise interactions

between features (also known as

correlation model restricted to

pairwise correlations).

Correlation learning: see

associative learning.

Deep learning: learning high-level

representations by learning

correlations on top of correlations,

etc. Levels can be learned

simultaneously [29], or one at a time

(deep belief networks) [30].

Evo-devo: evolutionary

developmental biology [7,43]. Here,

we are particularly interested in the

evolution of developmental

organisations that change the
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covariance of phenotypic traits

(analogue of correlation learning) [32].

Evo-eco: evolutionary ecology

[39,42,54,55,64]. Here, we are

particularly interested in the evolution

of ecological relationships that

change the co-selection of species

(analogue of unsupervised correlation

learning) [69].

Evo-ego: the evolution of Darwinian

individuality [70,71,73,83]. We

propose the term ‘evo-ego’ [34] to

refer to the evolution of organisations

(reproductive structures) that change

the evolutionary unit – i.e., the level of

biological organisation that exhibits

heritable variation in reproductive

success [40]. Here, we are

particularly interested in the evolution

of reproductive relationships that

change the coinheritance of fitness

differences [76]. This includes new

modes of reproduction modifying the

heritability of collectives [40,78] (e.g.,

vertical transmission of symbionts, as

in the origin of eukaryote organelles

[83,84]), the origin of chromosomes

(via physical linkage of previously

independently replicating genetic

material [85]), changing reproduction

from migrant pool reproduction to

group fissioning [71], or

encapsulation in compartments (e.g.,

cell membranes, as in evolutionary

transition from replicators on a

surface to replicators in

compartments) [72,84].

Evolutionary connectionism: a

developing theory for the evolution of

biological organisation based on the

hypothesis that the positive feedback

between network topology and

behaviour, well understood in neural

network models (e.g., Hebbian

learning), is common to the evolution

of developmental, ecological, and

reproductive organisations

[32,34,65,68,79].

Hebbian learning: learning that

occurs by altering the strength of

synaptic connections between

neurons [6,14,29]. For example,

‘neurons that fire together wire

together’ is a Hebbian learning

principle that strengthens the

connection between two neurons

when they are activated at the same

time or by the same stimulus.

Pavlicev et al. [33] showed that the

action of natural selection adheres to

Hebbian principles when acting on

heritable variation that affects

correlations (e.g., gene regulatory

connections [32]). Power et al. [69]

In the asexual and sexual populations mentioned earlier, the implicit model space is simply a

point in genotype frequency space or allele frequency space, respectively. The latter is a

compact way of representing a distribution over genotypes at linkage equilibrium (a univariate

model, Box 1). This allows a limited sense of generalisation in that new combinations of alleles

can be generated from this distribution (i.e., by recombination). In fact, sexual reproduction

constitutes a surprisingly efficient trade-off between exploiting alleles that were fit on average in

past examples and sampling alleles in new combinations [19]. This simple type of generalisation

is ideal when alleles are actually independent (absent of epistasis) whereas asexual reproduction

is logical if genotypes cannot be decomposed into independently fit components. Although

assuming features are independent is often a pragmatic first approximation and, conversely,

assuming complete interdependence covers all eventualities, in most learning tasks neither of

these naive extremes is ideal.

For example, in a modular problem, where features in different modules are approximately

independent but features in the same module are not, then effective generalisation would be
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Box 1. Learning (and Evolution) as Model Fitting

Many learning methods operate by incrementally adjusting the parameters of a model to improve the fit with a set of

example data (training set) [14,26,29]. Consider a sample of points, for example, phenotypes, characterised by two

features or traits, some of which belong to a particular class (‘+’), for example, high-fitness phenotypes. Learning which

feature values are fit on average implicitly represents the class by a region in this 2D space (i). This enables a limited sense

of generalisation, for example, novel combinations of fit features generate new points in the same region (e.g., new

combinations of fit alleles). However, such a model might be unable to represent the class accurately (underfitting), as

depicted (e.g., the large region includes many unfit points, and the small region excludes approximately half the fit points).

The quality of generalisation can be improved by representing the class in a parameter space or model space (�genotype

space) that is different from the feature space (�phenotype space). A basic spectrum of model types is depicted. (i)

Representing a class by an average value for each individual dimension or trait is a univariate model. (ii–iii) A bivariate or

associative model can represent pairwise positive or negative correlations among features. Evolutionarily, this can be

captured as developmental mapping between genotypes and phenotypes that introduces phenotypic correlations. (ii) A

linear correlation model (like linear genotype–phenotype mapping [33]), for example, representing that trait 1 works well

only when trait 2 has a similar value, can improve the fit to some extent. (iii) However, a nonlinear correlation model is the

simplest model capable of representing multimodal distributions [32], for example, representing that high fitness is

conferred only when the two traits are both high or both low. The latter is particularly important because a multivariate

model can be constructed by layering one nonlinear model onto the outputs of another (hence deep learning [30]). (iv) In

general, multivariate models can represent any data arbitrarily accurately [29]. However, fitting a multivariate model by

incremental improvement (learning or evolution) can be troublesome if it is unnecessarily complex. One fundamental

problem is overfitting, where fitting the idiosyncrasies of the training data results in a model that fails to generalise well,

excluding some potentially desirable points (triangle) (Figure I)Q18 .

By separating model space from feature space, learned models can be used to generate or identify novel examples with

similar structural regularities, or (particularly relevant to evolution) to improve problem-solving or optimisation ability by

changing the representation of solutions or reducing the dimensionality of a problem [46,65,79].

(i) Univariate

models, too simple

(underfi�ng)

(ii) Linear correla�on

model, poor fit

(underfi�ng)

(iii) Nonlinear

correla�on model

(good fit)

(iv) Mul�variate

model, too complex

(overfi�ng)

Figure I. A Basic Spectrum of Model Types (i) to (iv).
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provided by new combinations of modules. Genetically, free recombination would disrupt

modules and asexual reproduction would fail to exploit the independence of one module from

another. An appropriate compromise is provided by an intermediate level of recombination, such

as when nucleotides within genes do not recombine, but genes do. Given intragenic epistasis

but not intergenic epistasis, the generalisation this provides explains a significant advantage for

sex [28]. However, this relies on an a priori correspondence between the physical linkage of

components and their epistatic dependencies [28].

Can Evolution Learn Like Neural Networks Learn?

More advanced learning requires more flexible model types (Box 1) that alleviate a dependence

on the original feature space; enabling items that appear to be different (far apart in feature

space) to be represented as nearby points in model space. A minimal example is a correlation

model – a simple way of representing interactions between features. The representation of

associations or correlations has the same fundamental relationship to learning as transistors

have to electronics or logic gates to computation (and synapses to neural networks). Although

mechanisms to learn a single correlation between two features can be trivial, these are also

sufficient, when built up in appropriate networks, to learn arbitrarily complex functionsQ5 [29]. This

type of learning can be implemented by incrementally adjusting the parameters of a correlation

model in the direction that reduces error (supervised learning) or maximises reward (rein-

forcement learning) (Box 2, i). For example, this is the basis of neural network learning models

(operating by adjusting synaptic connection strengths, hence connectionist learning) which have

been extraordinarily successful in numerous learning applications [29–31].

show Hebbian learning in the

evolution of ecological interactions.

Hopfield network: a simple type of

neural network model where each

neuron is (potentially) connected to

every other neuron bidirectionally

[6,31]. The Hopfield network has

been used as a mathematical model

for (non-neural) dynamical systems

and emergent collective behaviours in

many different domains including

gene regulation networks and

ecological networks.

Inductive bias: because, in principle,

there are many general concepts that

are consistent with a given set of

examples, learning from examples

always involves inductive bias (i.e.,

that a priori favours a given class of

generalisations). However, there are

rather generic inductive biases Q17that,

although fallible in principle, prove

extremely effective in practise.

Occam's razor is one such bias –

favouring simple models over more

complex models that explain the

same data [14]. See also parsimony

pressure.

Major evolutionary transitions:

evolutionary innovations that have

changed the evolutionary unit (the

level of biological organisation that

exhibits heritable variation in

reproductive success): from self-

replicating molecules, to

chromosomes, to simple cells, to

multiorganelle eukaryote cells, to

multicellular organisms, to social

groups [72,73] (see evo-ego).

Multivariate model: a model that

captures high-order correlations

(greater than pairwise interactions)

among features [29].

Overfitting: the tendency of a

learning algorithm to perform well on

the training set but poorly on the test

set resulting from fitting

idiosyncrasies of the training set.

Failure to generalise correctly [14].

Analogous to securing fitness

benefits in current selective

environment (robustness) at the

expense of potential fitness benefits

in future environments (evolvability).

Parsimony pressure: a technique

used in learning that penalises model

complexity to favour simple models

over complex ones. Simple models

often produce superior generalisation

by alleviating overfitting [14].

Reinforcement learning: trial and

error learning based on an

evaluative or reward signal, providing

the learner with a measure of the

value or quality of a given solution or
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Box 2. Supervised and Unsupervised Correlation Learning and the Level of Selection

(i) The Delta rule is a supervised learning rule that modifies model parameters so as to improve the output (or reduce the

error between the current output and the ‘desired’ output)

DW ij ¼ rdiX j

where Dwij is the change in the interaction coefficient between input j and output i, xj is the value of the input j, r is a

learning rate, and di is the desired change in the output (given by the error between the desired and actual outputs).

Intuitively, given heritable variation in correlations, natural selection for a target phenotype will evolve correlations in the

same direction as the Delta rule, that is, to improve the output [32].

(ii) Hebb's rule, often paraphrased as ‘neurons that fire together wire together’, is an unsupervised learning rule

(operating without an external ‘teacher’ to define desired outputs) that modifies model parameters in the direction that

amplifies the current output:

DW ij ¼ rX iX j

where xi is the sign of the current output of unit i.

Whereas supervised correlation learning reinforces correlations that are good, unsupervised correlation learning merely

reinforces correlations that are frequent. Nonetheless, this is sufficient for interesting system-level behaviours, such as

forming an associative memory of past states [6] building low-dimensional models of high-dimensional data, and in

some cases, improving system-level optimisation despite the absence of a global reward function [46,65]. When the

current output has the same sign as the desired or locally optimal output (i.e., xi = di), Hebb's rule and the Delta rule

change interactions in the same direction and hence produce the same dynamical consequences for the behaviour of

the system [32]. In other cases, when the current output is not optimal, unsupervised learning reinforces the current

output regardless of its value. Selection for robustness, for example, might be analogous to unsupervised learning.

(iii) An interesting parallel exists between unsupervised learning and evolutionary selection on individuals within a

collective. Specifically, when individual-level selection causes individuals to adopt behaviours that do not maximise

collective fitness (as per any social dilemma), the effect of individual selection is not equivalent to supervised learning for

the collective (i.e., xi 6¼ di). Yet, if each individual has adopted a state that is locally fit for them, then individual selection on

interactions will act to stabilise that state [65] (like selection for robustness at the collective level). This reinforces the

current system configuration (without regard to its effect on collective welfare) as per the action of unsupervised

correlation learning [65]. Accordingly, even when the collective is not a unit of selection, such as an ecological

community, unsupervised learning behaviours can be produced at the system level [69].

4 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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behaviour, used to amplify successful

and reduce unsuccessful behaviours

[14]. Analogue of selection.

Supervised learning: learning that

changes parameters of a behaviour in

the direction that reduces the error

(i.e., error = desired output – actual

output). Sometimes implies an

external teacher that knows the

desired output – but in practice, it

usually means simply modifying

parameters by gradient descent on

an error function (rather than by trial

and error) [14]. The combination of

random variation and selection can

affect the same changes in a model

given the same gradient, and thus an

analogue of selection for a particular

target phenotype or phenotypes [32]

(see also selection in varying

environments or for a set of target

phenotypes [8,49]).

Test set: data used to test the

accuracy of a model once built

(future performance). To test

generalisation, the test set includes

points that were not presented during

training [14]. Analogue of future/novel

selective environments.

Training set: data used to build a

model (past experience) [14].

Analogue of past selective

environments.

Trial and error learning: learning by

trialling behaviours at random until a

solution is discovered. If each new

behaviour that is sampled is a small

random modification of the previous

behaviour, this becomes a form of

incremental adaptation.

Underfitting: the condition that a

learned model has failed to accurately

fit the training set. Contrast to

overfitting [14].

Univariate model: a model that

treats each parameter as

independent (unable to represent

correlations).

Unsupervised learning: learning

that aims to optimise a task-

independent criterion function based

on current output only (e.g., stability

or robustness of the output). Occurs

without knowledge of a desired

output function/external teacher, for

example, by reinforcing the current

output regardless of its quality. In

particular, unsupervised correlation

learning, where correlations that are

already frequent in the training data

are reinforced (rather than

correlations that are good with regard

to a task, as in reinforcement/

supervised correlation learning). The

aim of unsupervised learning is to

Again, mathematical equivalences with evolution have recently been shown [26,32]. For evo-

lution, learning of this type requires separating phenotypes from genotypes and evolving the

parameters of a mapping between them. When there is heritable variation in this mapping that

affects phenotypic correlations, natural selection inevitably favours changes that adhere to

correlation learning principles [26,32]. A minimal example is the evolution of a single ‘relational’

allele, causing subsequent mutations to produce correlated variation in two phenotypic traits

[33] (e.g., via pleiotropy). Pavlicev and colleagues showed that selection on relational alleles

increases phenotypic correlation if the traits are selected together and decreases it if they are

selected antagonistically (Hebbian learning) [32,33]. This simple step from evolving traits to

evolving correlations between traits is crucial; it moves the object of natural selection from fit

phenotypes (which ultimately removes phenotypic variability altogether) to the control of phe-

notypic variability.

In larger biological networks, this principle has the same effect as it does in larger neural

networks (hence evolutionary connectionism [34]). In the Hopfield network [6], for example,

this type of learning is sufficient for simple cognitive behaviours such as forming an associative

memory (learning) capableQ6 of storing and recalling multiple distinct activation patterns, and

effective generalisation in numerous recognition and classification tasks [32,35]. Watson et al.

demonstrated conditions where evolved gene regulation networks produce exactly the same

behaviours [32], forming a distributed ‘developmental memory’ of multiple phenotypes selected

in the past, and generalising by producing new combinations of phenotypic modules (Figure 1).

These results, and others [26,34,36,37], demonstrate that evolution and learning are not merely

analogous processes but (different instantiations of) the same algorithmic principles. Transfer of
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Target phenotypes  Random ini�al

gene expression levels 

Developmental �me Adult

phenotypes

(C)

(D)

(J)

(I)(F)

(G)

(E)

(H)

(A) (B)

Figure 1. A Recurrent Gene Regulation Network (GRN) Evolved in a Varying Environment Exhibits Associative

Learning Behaviours. See [32] for details. When a Hopfield network is trained on a set of patterns with Hebbian learning it

forms an associative memory of the patterns in the training set. When subsequently stimulated with random excitation

patterns, the activation dynamics of the trained network will spontaneously recall the patterns from the training set or

generate new patterns that are generalisations of the training patterns [6,31,82]. Here the evolution of connections in a GRN

is shown to follow such Hebbian learning principles. The evolved GRN thus forms an associative memory of phenotypes that

have been selected for in the past, spontaneously recreating these phenotypes as attractors of development with the GRN

and also producing new phenotypes that are generalisations of them. (A–D) A GRN is evolved to produce first one

phenotype and then another in an alternating manner [8,49]: A = Charles Darwin, B = Donald Hebb (who first described

Hebbian learning). The resulting phenotype is not merely an average of the two phenotypic patterns that were selected in the

past (as per a univariate model or free recombination of phenotype pixels). Rather, different embryonic phenotypes (e.g.,

random initial conditions C and D) develop into different adult phenotypes with this evolved GRN match either A or B (one

initial phenotype that falls into each developmental attractor is shown). These two phenotypes can be produced from

genotypes that are a single mutation apart [32]. (E–J) In a separate experiment, selection iterates over a set of target

phenotypes (E–H). In addition to developing phenotypes that match patterns selected in the past (e.g., I), this GRN also

generalises to produce new phenotypes that were not selected for in the past but belong to a structurally similar class, for

example, by creating novel combinations of evolved modules (e.g., developmental attractors exist for a phenotype with all

four ‘loops’ [32], J) – see also [8]. This demonstrates a capability for evolution to exhibit phenotypic novelty in exactly the

same sense that learning neural networks can generalise from past experience [32].
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specific models and results between these intellectual domains is already proving productive.

Whilst it is important to apply analogies critically, learning theory is not just one thing – the issue is

not so much to determine where the analogy breaks down, but to find the right type of learning

theory for each of the biological phenomena that are in need of explanation. Below we discuss

three examples where learning theory makes sense of biological ideas that are currently

confusing, suggesting predictions that arise by transferring well-known learning results.

Future Prospects: Understanding How Evolution Transforms Itself

Learning theory offers new concepts and theoretical tools for tackling several important puzzles

in contemporary evolutionary biology. We identify specific learning models that inspire new

approaches to key open questions in evolutionary developmental biology (evo-devo), evolu-

tionary ecology (evo-eco), and evolutionary transitions in individuality (or ‘evo-ego’ [34]) (see

Outstanding Questions). Each of these areas is challenging for evolutionary theory because they

involve feedbacks where the products of evolution modify the mechanisms of the evolutionary

process that created them (Figure 2, Key Figure) [33,38–42]. Although it is clear that the

processes of variation, selection, and reproduction underpinning evolutionary adaptation are

not constants in natural populations, theoretical treatments of ‘modifier alleles’ that enable

selection to act on these processes are currently very limited. There is growing recognition that

an integrated framework that puts such feedbacks front-and-centre is desirable [43–45].

Learning theory is precisely the study of processes that change over time as a function of

past experience [14,29,46]. It is thus ideally suited to describing, not just how variation, selection,

and inheritance adapt phenotypes, but how natural selection modifies variation, selection, and

inheritance over time. We note that feedbacks on these three processes result in correlations or

covariance between components that were previously independent [34] (Figure 2). Learning

theory has well-understood models for each case.

Learning Theory Approach A. Evo-Devo: The Evolution of Evolvability and Correlation

Learning

The evolution of developmental biases and constraints, accumulated over past selection, might

improve the distribution of phenotypes explored in the future [7,38,47,48]. But the core issue in

the evolution of evolvability [7,38,47,49] is that selection cannot favour traits for benefits that

have not yet been realised [9,50].

Learning theory offers a solution. First, a memory of phenotypes that have been selected in the

past (e.g., Figure 1) can facilitate faster adaptation whenever these phenotypes are selected

again in the future [8,33]. Second, and more importantly, because learned models can

generalise (e.g., Figure 1J), an evolved memory can, as illustrated by Parter et al. [8], also

facilitate faster adaptation to new targets. In short, evolvability is to evolution as generalisation is

to learning.

Whilst generalisation is not always easy, it does not require clairvoyance – it simply requires the

ability to find structural regularities that are deep enough to be invariant over time [26].

Accordingly, the possibility that evolution can learn from experience to favourably bias future

exploration need not be any more mysterious than the basic result that learning from a training

set can produce good generalisation on an unseen test set [51]. This also sheds light on the

tension between robustness and evolvability. Here the problem is that adapting variation

mechanisms so that they are less likely to produce deleterious variants (e.g., via canalisation)

is often more immediately advantageous than adapting them so that they are more likely to

produce adaptive variants [9,52]. Learning theory understands this tension extremely well.

Specifically, overfitting occurs when learning improves performance on training data but

worsens performance on test data. To avoid this, the complexity of a model can be limited

(e.g., by applying a parsimony pressure) to prevent memorisation of unnecessary details and

discover categories, clusters, or

regularities inherent in the training

samples and hence reduce the

effective dimensionality of the data

[14] (Box 2).

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

6 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy



TREE 2028 1–11

force solutions to capture deeper regularities (Box 1). This explains why a cost of connections

increases evolved modularity and improves evolvability [51,53].

Using past experience to favourably direct future behaviour is a hallmark of intelligence. By

showing that incremental adjustment in the parameters of an appropriate model is sufficient to

achieve this, learning theory puts this behaviour within reach of evolution by natural selection,

and identifies conditions where it can learn to favourably direct future exploration (see Out-

standing Questions, prediction 1).

Learning Theory Approach B. Evo-Eco: Ecological Organisation and

Unsupervised Correlation Learning

Organisms can modify their biotic and abiotic environment and thereby alter the selective

pressures that act on themselves [39,41,44,54–57]. By modifying the network of ecological
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Challenges in Current Evolutionary Theory – Caused When the Products

of Evolution Modify the Mechanisms of Evolution
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Figure 2. Key components of evolution

by natural selection – variation, selection,

and inheritance [61] – are defined by

structures (boxed) that are themselves

modified by products of the evolutionary

process (dotted arrows). Evo-devo: the

evolution of developmental interactions

modifies the distribution of phenotypic

variation. Evo-eco: the evolution of ecolo-

gical interactions modifies the structure of

selective pressures. Evo-ego: the evolution

of reproductive interactions (e.g., vertical

transmission of symbionts, or transition

from replicators on a surface to replicators

in compartments) that modify evolutionary

individuality by changing mechanisms of

inheritance. These feedbacks are difficult

to accommodate in evolutionary theory but

are well studied in learning systems. We

note that each of these feedbacks results in

correlations or covariance between com-

ponents that were previously independent:

(i) the evolution of phenotypic correlations

mean that traits do not vary independently;

(ii) the evolution of ecological dependencies

mean that selection pressures on one spe-

cies are not independent of the selective

pressures on another; and (iii) the evolution

of new reproductive mechanisms mean

that evolutionary units are not inherited

independently. But, in evo-devo, correla-

tions evolve within a single evolutionary unit;

in evo-eco, correlations evolve between

multiple evolutionary units, and; in evo-

ego, correlations change the evolutionary

unit (such that multiple, previously separate

units become a new single unit at a higher

level of organisation) [34]. Learning theory

has models that correspond to each of

these cases.
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dependencies with other species, this might result in ecological organisations that increase the

self-regulation of ecosystem variables, the resilience of ecological networks, or the efficiency of

resource utilisation [58–60]. But since ecosystems are not, in most cases, evolutionary units

[42,61], such feedbacks could also result in effects that are destructive in the long term, for

example, making an ecosystem more brittle or susceptible to catastrophic regime change,

decreasing total biomass, etc. At present, however, we have no general organising principles for

understanding how the structural organisation of ecological networks changes over evolutionary

time, nor how this affects ecological functions and dynamics [42,54,60,62–64].

A different type of learning is relevant here. Unsupervised learning mechanisms do not

depend on an external reward signal. By reinforcing correlations that are frequent, regardless

of whether they are good, unsupervised correlation learning can produce system-level behav-

iours without system-level rewards (Box 2, ii). This can be implemented without centralised

learning mechanisms as in connectionist models of intelligence [6,29,34] or distributed

multiagent systems [65] (simple forms of collective intelligence [65–68]).

Recent theoretical work shows that selection acting only to maximise individual growth rate,

when applied to interspecific competition coefficients within an ecological community, produces

unsupervised learning at the system level [69] (Box 2, iii). This is an exciting possibility because it

means that, despite not being a unit of selection, an ecological community might exhibit

organisations that confer coordinated collective behaviours, for example, a distributed ecologi-

cal memory that can recall multiple past ecological states [69].

Learning theory shows that incremental adjustment in the parameters of individual behaviours is

sufficient to achieve such collective behaviours [65], putting them within reach of individual-level

selection. Accordingly, learning theory describes conditions where individual-level natural selec-

tion might facilitate ecological organisation and collective behaviour (see Outstanding Questions,

prediction 2).

Learning Theory Approach C. Evo-Ego: The Evolution of Individuality and

Deep Correlation Learning

In major evolutionary transitions [40,70–72] ‘entities that were capable of independent

replication before the transition can replicate only as part of a larger whole after the transition’

[72,73]. These transitions in individuality [40,70,74] involve the evolution of new mechanisms of

inheritance or reproductive codispersal (e.g., vertical genetic transmission, compartmentalisa-

tion, reproductive linkage) [72,73,75,76] that create new evolutionary units. But there is a catch:

if individual and group interests are aligned then selection applied at the group level does not alter

evolutionary outcomes, and if individual and group interests are not aligned then individual-level

selection will oppose the creation and maintenance of adaptations that enforce selection at the

group level [40]. Given this, how can evolution at one level of biological organisation systemati-

cally create reproductive organisations that facilitate nontrivial adaptation at a higher level of

organisation before that level of adaptation exists?

In neural networks, deep learning [30] exploits correlation learning at multiple scales to build

multivariate models (Box 1). Deep belief nets [30], an exciting recent development igniting

renewed interest in neural networks, achieve this in a bottom-up manner, ‘freezing’ each layer

before adding the next. This creates the need to infer low-level representations that are useful for

learning higher-order representations before the higher level of representation exists. Unsuper-

vised learning provides a solution. By reducing the effective dimensionality of the data it ‘primes’

good performance at the next layer, even though it is not informed by what the data will be used

for at the next level [35]. In evolutionary systems, selection at one level of organisation can

operate like unsupervised learning at a higher level of organisation (Box 2, iii) [69]. Abstract
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models incorporating these features show that individual-level selection can thus prime the

systematic formation of adaptive higher-level evolutionary units without presupposing selection

at the higher level [77,78]. New optimisation methods based on these principles demonstrate

problem-solving capabilities that cannot be achieved with single-level adaptation [77,79]. We

think this suggests that such deep optimisation principles might explain how evolutionary

transitions facilitate deep evolution y, that is, the evolution of adaptive biological complexity

through successive levels of biological organisation [34,40,70–72] (see Outstanding Questions,

prediction 3).

Efficiently reducing a problem by rescaling a search process at a higher level of representation is

another hallmark of intelligent problem solving. Again, learning theory places this within reach of

evolution by showing how incremental adaptation, in the right model, can achieve this.

Taken together, correlation learning, unsupervised correlation learning, and deep correlation

learning thus provide a formal way to understand how variation, selection, and inheritance,

respectively, might be transformed over evolutionary time (Figure 2). We do not claim that

evolvability, ecosystem organisation, or the level of evolutionary unit will always increase – on the

contrary, we argue that learning theory can be used to characterise the conditions when it will

and when it will not.

Concluding Remarks

Learning and evolution share common underlying principles both conceptually and formally

[16,18–22,26,32,34,37,69]. This provides access to well-developed theoretical tools that have

not been fully exploited in evolutionary theory (and conversely suggests opportunities for

evolutionary theory to expand cognitive science [80,81]). Learning theory is not just a different

way of describing what we already knew about evolution. It expands what we think evolution is

capable of. In particular, it shows that via the incremental evolution of developmental, ecological,

or reproductive organisations natural selection is sufficient to produce significant features of

intelligent problem solving.

In current evolutionary theory, it seems impossible that natural selection can anticipate what is

needed in novel selective environments, that ecological organisation can occur without com-

munity-level selection, or that new levels of individuality could emerge systematically from

selection on lower-level units. We argue that specific types of learning provide concrete models

for such phenomena and suggest predictions that might be tested. We think this offers the

potential to better explain how the process of random variation and selection results in the

apparently intelligent designs it produces.
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