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16We used numerical simulations based on the finite-element method (FEM) to calculate both the amplitude and
17phase information of the scattered electric field from random rough surfaces, which can be directly compared to
18ellipsometric measurements and effective medium approximation (EMA) calculations. FEM can serve as an
19exploration tool for the relationship between the thickness of the surface roughness evaluated by Bruggeman
20EMA and the morphological parameters of the surface, such as the root mean square height, the lateral auto-
21correlation length, and the typical average slope. These investigations are of high interest in case of poly-
22crystalline and amorphousmaterials. The paper focuses on the simulations of rough Si surfaces. The ellipsometric
23calculations from FEMand EMA simulationsmatch forwavelengths of illuminationmuch shorter than the typical
24feature size of the surface. Furthermore, for these cases, the correlation between the EMA thickness and the root
25mean square height of the roughness for a given auto-correlation length is quadratic, rather than linear, which is
26in good agreement with experimental measurements and analytical calculations presented in recent reports.
27© 2016 Published by Elsevier B.V.
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39 1. Introduction

40 Characterizing surface roughness with ellipsometry has become a
41 routine practice since the birth of spectroscopic ellipsometry because
42 of its fast, non-destructive, and in-line capabilities. The most widely
43 used models describe the surface roughness with an effective medium
44 approximation (EMA), i.e. the surface roughness is considered a
45 homogeneous layer with an effective dielectric function mixed from
46 the dielectric functions of the twomedia separating the rough interface.
47 A good review about the relationship between surface morphology and
48 EMA roughness can be found in Ref. [1]. Many experimental compari-
49 sons have been made between the EMA measured by ellipsometry
50 and the morphology measured by atomic-force microscopy (AFM) for
51 different Si samples: wet etched and thermally annealed Si [2], CVD
52 deposited poly-Si [3,4], and poly-Si-on-oxide [5], as well as for in-situ
53 growth of amorphous hydrogenated Si [6] and CVD deposited
54 microcrystalline-Si on amorphous Si [7]. These works all concluded at
55 a positive linear relationship between EMA roughness and AFM root
56 mean square height, but all with different linear parameter values
57 (slope and offset). One study even showed a negative correlation [8],

58stating that AFM measurements indicate an increase in root mean
59square height while ellipsometry suggests a smoothening of roughness.
60To better grasp the kaleidoscope of these different results, the present
61study simulates the ellipsometric response of a large number of random
62Si surfaces with well-defined root mean square heights and correlation
63lengths. The numerical simulations have been made by finite-element
64methods (FEM). FEM is a numerical technique tofind approximate solu-
65tions of partial differential equations. Optical FEM is based directly on
66the linear Maxwell's equations in frequency domain. Computation of
67the electric (and themagnetic) field amplitudes are solved on a polygo-
68nal mesh, typically triangular, with piecewise-polynomial interpolation
69between the mesh points. Arbitrary geometrical objects can be defined
70with permittivity and permeability values assigned to each object
71(more specifically, assigned to the mesh points approximating the ob-
72ject). A summary of the vast areas of interest of the optical FEM can be
73found in Ref. [9]. The ellipsometric simulations of the random rough
74surfaces may be considered in our case as the “measured” samples
75and the effective medium roughness as the model to be fitted. This ap-
76proach reveals many interesting effects concerning the relationship be-
77tween the surfacemorphology and the thickness of the EMA roughness.

782. Model structures

79Electromagnetic near fields resulting from plane wave illumination
80of silicon surfaces with roughness were simulated using the finite-
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81 element solver JCMSuite (version 2.16). Specular reflection amplitudes
82 (and intensities) were obtained from far field results computed in
83 post-process as a spatial (discrete) Fourier spectrum. Although the
84 Maxwell equations are solved as stationary wave solutions in frequency
85 domain, from the complex scattered electric fields, both the amplitude
86 and phase information can be obtained. As the electric fields of the
87 incident plane waves polarized parallel (P) and perpendicular (S) to
88 the plane of incidence in the finite-element simulations are defined
89 with unit amplitudes, the ellipsometric complex ρ is obtained as the
90 ratio of the reflected complex amplitudes of the P and S polarizations.
91 The ellipsometric angles are defined in the usual way as Ψ =
92 tan−1(ρ) and Δ = arg(ρ), where tan Ψ is the amplitude ratio and Δ is
93 the phase difference, respectively, of the complex reflection coefficients
94 of P and S polarized light [10,11]. The spectra were simulated in a
95 wavelength range from200 to 1000nm, in steps of 10 nm, for the angles
96 of incidence of 65° and 75°. The near-field amplitudes had to be
97 computed individually for eachwave vector of the illumination, because
98 of the optical dispersion of the Si material [12].
99 For computational reduction, the simulation domain was 2-
100 dimensional, with a translational symmetry in the direction perpendic-
101 ular to the plane of incidence. This very useful simplification is based on
102 the assumption that cross-polarizations due to the anisotropic nature of
103 the simulated surface (as opposed to a real randomly rough 2D surface)
104 are negligible, as the surface features are much smaller than (λ).
105 Furthermore, to eliminate scattering-like artifacts at the edge of the
106 surface, periodic boundary conditions were used at these lateral sides
107 of the computational domain. For the two remaining sides, transparent
108 boundary condition was applied. The topographic points of the surface
109 were generated with D. Bergström's Open Source MATLAB code [13]

110in such a way that the height distribution followed a Gaussian statistics.
111For visualization, a portion of the simulation mesh of a surface with a
112correlation length of 10 nm and a root mean square roughness of
1132.5 nm is shown in Fig. 1a (left) with the height distribution histogram
114(right). An easyway to achieve such a height distribution is to convolute
115a predefined Gaussian filter on an uncorrelated (Gaussian) distribution
116of surface points generated by random numbers (i.e. white noise) [14].
117The advantage of this approach is that the standard deviation of the
118uncorrelated distribution and of the Gaussian filter will be inherited
119and account for the root mean square height (RRMS) and the correlation
120length (ξ) of the surface, respectively. Of course, due to the stochastic
121nature of the structure, small deviations will be present between the
122predefined standard deviations and the RRMS values. To achieve
123adequate Gaussian statistics and diminish deviations from nominal
124values, the length of the surface to be simulated (L) was chosen such
125that L/ξ ≥ 500. Additionally, L was at least 5 μm so that diffraction due
126to periodic boundary conditions would be negligible (parameter
127convergences as a function of L were studied). The simulated
128topographical parameters for ξ were 2.5, 5, 10, and 20 nm, while for
129the RRMSwere 0.5, 1, 1.5, 2.5, 3.5, 5, 7.5, 10, 15, and 20 nm. The combina-
130tions of all these parameter values are simulated, totaling in 40 points.
131JCMSuite permits adaptive mesh refinement, i.e., after a pre-
132generated grid (following the curvature of the geometry), local grid
133refinements are applied as a function of the previously solved field
134amplitude gradients and a new refined mesh is calculated. These steps
135can be iterated to achieve adequate convergence and necessary
136precision. Faster convergences can be achieved when using higher
137FEM degrees. In our simulations, computational costs and ellipsometric
138angle convergences as a function of the refinement steps and the FEM

Fig. 1. Scattering simulation of one of the generated surface roughness for a plane wave incident at 75° at a wavelength of 600 nm. (a) Local grid structure after one refinement step (left)
and the Gaussian distribution of surface heights (right). Near field intensity image and far field intensity angular distribution for (b) P polarization and for (c) S polarization (with−75°
meaning the specular reflection).
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139 degreewere also investigated. For the currentmorphologies (ξ and RRMS

140 are smaller than λ), a suitable compromise for computation costs was 1
141 refinement step and a FEM degree of 3, with which a Ψ convergence
142 smaller than 10−2 and a Δ convergence smaller than 10−1 degree
143 were achieved.
144 The FEM-simulated spectra were fitted with a planar thin layer
145 structure using the transfer matrix method [11], where the surface
146 roughness is considered to be an effective medium volumetrically
147 composed of 50–50% of the two media [10, pp. 181–184]. D. E. Aspnes
148 et al. concluded that the Bruggeman EMA showed the best fit results
149 for the ellipsometric evaluations of various rough surfaces [15] and
150 has been extensively used for such evaluations since then. The simplest
151 single-layer EMA representing the surface roughness (see inset in
152 Fig. 2a) has only one fit parameter, namely, its thickness value (dEMA).
153 The void is kept fixed at 50% as mentioned above, as the screening
154 parameter as well, kept fixed at a value of 1/3, representing spherical
155 inclusions in the EMA model. The fitting algorithm minimizes the
156 mean square error (MSE), indicating the merit of fit. In our case, for
157 one fitted parameter,

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−2

XN

j¼1
ΨFEM

j −ΨEMA
j

� �2
þ ΔFEM

j −ΔEMA
j

� �2
� �s

;

159159 where the superscripts ‘FEM’ and ‘EMA’ of Ψ and Δ indicate the FEM
simulation values and the fitted EMA values, respectively, while N is

160 the number of independently simulated spectral points.

161 3. Results and discussion

162 The small surface features cause high-intensity spots in near field
163 around the sharp features of surface protrusions for the P polarization,
164 which are not present for the S polarization (see left images of Fig. 1b
165 and c, respectively, for plane wave illumination at an angle of incidence
166 of 75° and a wavelength of 600 nm). The difference for the two
167 polarizations is clearly accountable in the diffracted far field intensity
168 values as well. The right-hand side images of Fig. 1b and c show the
169 angular intensity distributions of the two polarizations. Although the
170 ellipsometric angles were calculated solely from the 0th order
171 (specular) diffracted amplitudes, it is interesting to note that apart
172 from the specular intensity differences (diffraction efficiency of 0.11
173 for P polarization and 0.73 for S polarization), there is (generally) an
174 order of magnitude difference in the higher order diffracted angles
175 between the two polarizations. For cases where λ is much larger than
176 the typical feature size of the surface roughness, non-specular scattering
177 would be negligible for ellipsometric considerations and also EMA
178 models are applicable. Atwavelengths comparable to the typical feature
179 size, scattering starts to dominate and EMA clearly fails to describe the
180 roughness. To demonstrate this phenomenon, Fig. 2 shows the EMA-
181 fitted spectra on simulations with an increasing RRMS value (RRMS = 1,
182 5, and 10 nm for Fig. 2a–c, respectively) for an identical ξ = 10 nm.
183 For the RRMS = 1 nm (dEMA = 0.3 nm), an almost perfect match can be
184 fitted, while for the RRMS=5nmcase (dEMA=6.7 nm), small deviations
185 at the UV part of the spectra start to appear with an increase in theMSE
186 value. Finally, for the RRMS =10 nm case (dEMA=24 nm), fitting on the
187 whole spectra would be inappropriate, biasing the evaluated rough-
188 ness; the fit shown in Fig. 2c was made in a wavelength range of 800–
189 1000 nm only (MSE = 1), and the Ψ and Δ angles were generated
190 (extrapolated) to the whole range to point out the huge deviations
191 from the FEM simulations below λ = 600 nm. These deviations are
192 more pronounced than what would be expected in case of a real
193 measurement fitted with EMA models at these RRMS values. The differ-
194 ence is probably because of the simplification of using 2D models. 3D
195 simulations will be made in future studies to investigate these effects.
196 For the following discussion, only the simulations where the whole
197 spectral range can be fitted with the EMA model (MSE b 3) are

198considered. Fig. 3 summarizes the dependence of dEMA on the RRMS and
199ξ values. The most conspicuous effect is that separate relations can be
200established between the dEMA and the RRMS, depending on ξ. Interesting-
201ly, quadratic relation fits are much more accurate than simple linear
202ones at these parameter ranges. Additionally, the different “curvatures”
203indicate that ellipsometry is more sensitive to sharper surface rough-
204ness features in the microscopic regime, i.e., for shorter ξ values, fitted
205dEMA increases at a higher pace as a function of RRMS than for longer ξ
206values. This effect agrees well with the conclusion made in Ref. [8]
207that ellipsometry is sensitive on roughness only on relatively short

Fig. 2. FEM simulations ofΨ and Δ spectra fitted with an EMA surface roughness (see the
model in the inset) of the sampleswith a nominal correlation length (ξ) of 10 nmandwith
a nominal root mean square roughness of (a) 1 nm, (b) 5 nm, and (c) 10 nm.Mean square
errors (MSE) are also included in the graphs.
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208 length scales, also demonstrated by 2 linear fits with different slopes in
209 Ref. [2]. In other words, the high-wavenumber contributions of the
210 power spectral density of the surface points dominate the polarization
211 change.
212 The quadratic relation between dEMA and RRMS was also shown to
213 exist in Ref. [16], where the change in polarization due to the interaction
214 of light with the microscopically rough surface was calculated by
215 second-order Rayleigh–Rice formalism (developed by Franta and
216 Ohlidal [17]) and fitted to the EMA calculations. Furthermore,
217 Yanguas-Gil et al. [18] calculated a small correlation length approxima-
218 tion of the Rayleigh–Rice theory for self-affine surfaces. Such surfaces
219 have RRMS values that scale as Lα, were α is the roughness exponent,
220 an additional characteristic parameter originating from the dynamics
221 of roughness growth. In the calculations, a dEMA ~ RRMS

2 /ξα relationship
222 was proven. Similar to the interpretation done in Ref. [18], that the av-
223 erage surface slope (Rdq, root mean square average of the local slope,
224 see Ref. [19]) scales as RRMS/ξα, the dEMA value can be plotted as a func-
225 tion of the product of this Rdq and the RRMS value. Fig. 4 reveals a linear
226 correlation for the present study. Excellent linear fit is achieved for
227 RRMS*Rdq values smaller than 2 nm. For larger values, downward

228deviations from the extrapolated line appear, hinting at higher order
229corrections in the Rayleigh–Rice formalismwith, for example, a second-
230ary effect of ξ on dEMA at a unique RRMS*Rdq value (see inset in Fig. 4). The
231linear relationship, mentioned in the many experimental reports [1–7],
232between RRMS measured by AFM and dEMA measured by ellipsometry
233can be explained by the fact that the slopes remain constant in most
234roughening dynamics [1].

2354. Conclusions

236Finite-element method proves to be a very useful tool to simulate
237the ellipsometric response of light reflected frommicroscopic stochastic
238surface roughness. Not hindered by the sample preparation and the
239experimental conditions, one can define ideal Gaussian random surfaces
240with well-defined morphological parameters, such as the RMS rough-
241ness and the correlation length in our case. As the effective medium
242approximation is the most widely used model in ellipsometric evalua-
243tions of surface roughness, the present paper focused on the correlation
244between the fitted EMA thickness and the RMS roughness. A linear
245relationship between the dEMA and the product of the RMS roughness
246and the average surface slope has been found for smaller dEMA values,
247in accordance with the results analytically calculated with Rayleigh–
248Rice formalism andwith the vast experimental measurements reported
249in previous papers. The deviation from the linear relationship
250foreshadows further corrections between the relationship of dEMA and
251the surface morphological parameters.
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