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ABSTRACT 

It is well-known that gas/vapour bubbles in 

liquids growth indefinitely if the ambient pressure 

exceeds Blake’s critical threshold. For several 

decades of investigations, researchers tried to find 

numerical evidence for the stabilization of such 

bubbles by applying a harmonically varying pressure 

field on the liquid domain (ultrasonic irradiation) in 

this regime, with only partial success. Since, the 

applied linearization on the bubble models restricted 

the findings only for small amplitude radial 

oscillations. Therefore, the present paper intends to 

reveal the particularly complex dynamics of a 

harmonically excited bubble near, but still below 

Blake’s threshold. The computed solutions with a 

variety of periodicity, e.g., from period 1 up to period 

9, form a well-organised structure with respect to the 

pressure amplitude of the excitation, provided that 

the applied frequency is higher than the first 

subharmonic resonance frequency of the bubble. 

This predictable behaviour provides a good basis for 

further investigation to find the relevant stable 

oscillations beyond Blake’s threshold. Although, the 

investigated model is the very simple Rayleigh—

Plesset equation, the applied numerical technique is 

free of the restriction of low amplitude oscillations. 

Keywords: bubble dynamics, bifurcation 

structure, nonlinear analysis, Rayleigh—Plesset 

equation, ultrasonic stabilization, transient chaos 

NOMENCLATURE 

𝑡 [𝑠]  time 

𝑅 [𝑚]  bubble radius 

𝑝 [Pa]  pressure 

𝑃 [Pa]  ambient pressure 

𝑇 [K]  ambient temperature 

𝜌 [kg/m3]  density 

𝜇 [kg/(m ∙ s)] dynamic viscosity 

𝜔 [rad/s]  angular frequency 

𝜎 [Nm]  surface tension 

𝜅 ratio of the specific heats 

 

Subscripts and Superscripts 

∙ time derivative 

𝐿 liquid 

∞ far away from the bubble 

𝐴 amplitude 

𝐺 gas 

𝑉 vapour 

𝐶 critical condition 

𝑅 relative quantity 

𝑟𝑒𝑓 reference quantity 

1. INTRODUCTION 

Irradiating a liquid with high frequency high 

intensity ultrasound, bubbles and bubble clusters are 

formed, called acoustic cavitation [1]. During the 

oscillations of the bubbles, their wall velocities can 

exceed thousands of m/s due to the inertia of the 

liquid domain. This phenomenon is usually called as 

collapse phase, and often referred to as inertial 

cavitation [2]. At the collapse sites, the generated 

extreme conditions, such as the high temperature and 

pressure or the induced shock wave, are exploited by 

various ultrasonic technological applications. 

In sonochemistry, for instance, the utilization of 

ultrasound can increase the efficiency of various 

chemical reactions [3-5]. This novel technology has 

been spread in food and other inorganic industrial 

applications, in which the keen interest is to produce 

homogeneous mixtures from immiscible liquids, 

alteration of the viscosity of many food systems, 

increase the efficiency of heterogeneous catalysis, 

wastewater treatment or pasteurisation etc., see e.g. 

[6, 7]. Moreover, the application of ultrasound can be 

a new, novel and promising technology in cancer 
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therapy via the tissue erosion effect of acoustic 

cavitation [8]. 

Although the ultrasonic irradiation generates 

bubble ensembles, the study of a single spherical 

bubble is an important building block in both the 

theoretical and numerical understanding of the 

fundamentals of the applications. Therefore, many 

researchers have investigated the dynamics of a 

single bubble with sophisticated numerical analysis 

and with an increasing complexity of the physical 

modelling. The accumulated numerical results are 

summarised in many books, reviews and papers [1-

2, 9-19]. 

The majority of the studies usually deal with 

liquid water at room conditions, that is, at 25 𝑜C 

ambient temperature and at 1 bar ambient pressure. 

In this case, stable bubble oscillation is ensured 

because of the strictly dissipative nature of physical 

system. At very low ambient pressure, however, such 

behaviour cannot be guaranteed. By lowering the 

pressure below the well-known Blake’s critical 

threshold [20] the bubbles tend to grow indefinitely 

(without ultrasonic irradiation). This phenomenon is 

known as the classic cavitation. 

For several decades of investigations, 

researchers tried to find numerical evidence for the 

stabilization of the bubbles by applying a 

harmonically varying pressure field on the liquid 

domain (ultrasonic irradiation) in this regime with 

only partial success. Since, the applied linearization 

on the bubble models restricted the findings only for 

small amplitude radial oscillations. The first 

significant advancement is obtained by Hegedűs [12] 

who could prove the existence of stably oscillating 

bubbles beyond Blake’s threshold without any 

restriction in the nonlinearities. Although his result 

is a notable milestone, the stable solutions found 

correspond only to a special kind of bubble 

behaviour, called period 1 oscillations. 

The main aim of the present paper is to reveal 

the complex dynamics of a harmonically excited 

spherical air/vapour bubble placed in water near, but 

still below Blake’s threshold. The found solutions 

show a variety of periodicity, e.g., from period 1 up 

to period 9, which form a well-organised structure 

with respect to the pressure amplitude of the 

excitation, provided that the applied frequency is 

higher than the first subharmonic resonance 

frequency of the bubble. This predictable behaviour 

provides a good basis to extend the already acquired 

understanding by Hegedűs [12] from period 1 

solutions to oscillations with arbitrary periodicity 

beyond the critical threshold. Although the applied 

model is the simple Rayleigh—Plesset equation, the 

employed numerical technique does not involve 

linearization or other reduced order modelling. 

Therefore, the presented technique can be easily 

extended for more complex models with high 

amplitude oscillations. 

2. THE BUBBLE MODEL 

The bubble model governing the evolution of the 

bubble radius is the simple well-known Rayleigh—

Plesset equation [9] written as 

𝑅𝑅̈ +
3

2
𝑅̇2 =

1

𝜌𝐿

(𝑝𝐿 − 𝑝∞), (1) 

where the dot stands for the derivative with respect 

to time, 𝑅(𝑡) is the time dependent bubble radius, 𝜌𝐿 

is the density of the liquid water. The pressure at the 

bubble wall in the liquid side is 𝑝𝐿  and far away from 

the bubble 

𝑝∞(𝑡) = 𝑃∞ + 𝑝𝐴 𝑠𝑖𝑛(𝜔𝑡) (2) 

is a sum of the static ambient pressure 𝑃∞ and the 

harmonic driving with pressure amplitude 𝑝𝐴 and 

angular frequency 𝜔. The relationship between the 

pressure inside and outside the bubble at its wall is 

defined by the mechanical balance: 

𝑝𝐺 + 𝑝𝑉 = 𝑝𝐿 +
2𝜎

𝑅
− 4𝜇𝐿

𝑅̇

𝑅
. (3) 

Here, the total pressure inside the bubble is the 

sum of the non-condensable gas pressure 𝑝𝐺  and 

vapour pressure 𝑝𝑉. The vapour pressure was 

constant during the simulations, but it depended on 

the constant ambient temperature. The surface 

tension is 𝜎 and the liquid kinematic viscosity is 𝜇𝐿. 

The air inside the bubble follows a simple adiabatic 

state of change written in the form according to [12]: 

𝑝𝐺 = (
2𝜎

3𝜅𝑅𝐶

) (
𝑅𝐶

𝑅
)

3𝜅

, (4) 

where 𝑅𝐶 is the equilibrium bubble radius of the 

unexcited system (𝑝𝐴 = 0) at Blake’s threshold (see 

the detailed explanation below) and 𝜅 = 1.4 is the 

ratio of the specific heats for diatomic gas content. 

In the bubble model, we assume that the water 

contains some amount of dissolved gas. The seeds or 

nuclei-sites, which can be pre-existing gas micro 

bubbles, are the week points of the liquid where the 

acoustic cavitation can be initiated. The mass of gas 

inside the bubble than can grow by rectified diffusion 

forming larger gas/vapour bubbles [21]. The process 

of rectified diffusion has orders of magnitude larger 

time scale than the period of the acoustic forcing. 

It is important to emphasize that the constant 

vapour pressure and adiabatic state of change for the 

gas content is a severe assumption [22]. In the 

present study, however, the main aim is to reveal the 

topology of the stable periodic solutions rather than 

the precise physical description. This simple model 

allows to perform detailed parameter studies, which 

were essential in the understanding of the topology. 

Moreover, many other oscillators in different 

branches of science have the same/similar 

topological description implying that the found 

structure is universal in harmonically excited 

systems. Therefore, we expect the same qualitative 

behaviour for more complex bubble models, as well. 



1.1. Equilibrium radius of the unexcited 
system 

The equilibrium bubble radius curve of the 

unexcited system (𝑝𝐴 = 0 𝑃𝑎) is presented in Fig. 1 

at ambient temperature 𝑇∞ = 37  𝑜𝐶, and computed 

by means of Eqs. (1) to (4) by setting all the time 

derivatives to zero. The stable 𝑅𝐸
𝑠  and the unstable 

𝑅𝐸
𝑢 equilibrium radii are represented by the black and 

red curves, respectively. The two kinds of long-term 

behaviour are separated by the Blake’s critical 

conditions marked by the dot in Fig. 1, where the 

curve turns back and tends to infinity as the tension 

approaches to zero. 

According to [12], the critical condition can be 

characterised by its critical equilibrium radius set to 

be 𝑅𝐶 = 0.1 𝑚𝑚, which is the upper limit of the 

typical nuclei size in water [9]. Then, the critical 

tension can be formulated as 

𝑝𝑉 − 𝑃𝐶 =
2𝜎

𝑅𝐶

3𝜅 − 1

𝜅
= 1067 𝑃𝑎. (5) 

By defining a dimensionless relative pressure as 

𝑃𝑅 =
𝑝𝑉 − 𝑃∞

𝑝𝑉 − 𝑃𝐶

, (6) 

three main region can be distinguished in the 

horizontal axis. If 𝑃𝑅 < 0 there is only one stable 

equilibrium radius, the system is strictly dissipative 

and all the trajectories tend to this sole stable 

behaviour. In case of 0 < 𝑃𝑅 < 1, an unstable fix 

point appears beside the stable one. In spite of the 

existence of stable long-term behaviour, stable 

oscillations cannot be guaranteed in this parameter 

domain, and bubbles may grow to infinity for a given 

set of initial conditions. Above 𝑃𝑅 = 1 (beyond 

Blake’s threshold), equilibrium radii are completely 

absent. Regardless of the initial conditions, it is 

impossible to obtain stable oscillation. Again, this 

region was the keen interest by many researchers to 

find evidence for the stabilization mechanism of 

harmonic forcing discussed in more detail in the 

Introduction. 

Although Hegedűs [12] have already find the 

evidence for the existence of stable solutions, it is 

restricted only to period 1 oscillations. In his work, 

the crucial starting point was the exploration of all 

the stable period 1 solutions in the pressure 

amplitude 𝑝𝐴 – frequency 𝜔 parameter plane at 

relative pressure 𝑃𝑅 = 0.9. 

Therefore, the main aim of the present study is 

to reveal and explore the structure and organization 

of the periodic solutions at the same relative pressure 

(0.9) marked by the blue vertical line in Fig. 1. This 

means that the ambient pressure is 𝑃∞ = 5458 𝑃𝑎. 

The obtained topological description is an important 

progress toward the extension of the numerical 

results beyond Blake’s threshold from period 1 

solution to arbitrary periodicity. 

 

Figure 1. Equilibrium bubble radius curve as a 

function of the tension 𝒑𝑽 − 𝑷∞ at ambient 

temperature 𝑻∞ = 𝟑𝟕  𝒐𝐂. The solid black and red 

curves are the stable and unstable equilibrium 

radii, respectively. The black dot denotes Blake’s 

critical threshold. 

1.2. Dimensionless quantities and 
parameter values 

Throughout the paper, dimensionless quantities 

were used for better numerical behaviour, such as, 

dimensionless time: 

𝜏 =
𝜔𝑡

(2𝜋)
. (7) 

Observe that in the dimensionless system the period 

of the excitation becomes unity 𝜏𝑜 = 1. The 

dimensionless bubble radius and wall velocity are 

𝑦1 =
𝑅

𝑅𝐶

 (8) 

and 

𝑦2 =
2𝜋𝑅̇

𝑅𝐶𝜔
, (9) 

respectively. Finally, the relative frequency is 

defined as 

𝜔𝑅 =
𝜔

𝜔𝑟𝑒𝑓

, (10) 

where the reference frequency, according to [12], is 

𝜔𝑟𝑒𝑓 = √
4𝜎

𝜌𝐿𝑅𝐶
3 = 16793

𝑟𝑎𝑑

𝑠
. (11) 

The values of the applied parameters and 

material properties are summarized in Table 1. The 

liquid properties are calculated from the Haar—

Galagher—Kell equation of state [23] with 𝑃∞ =
5458 𝑃𝑎. and with 𝑇∞ = 37  𝑜𝐶. 

Table 1. Values of the applied parameters and 

material properties 

Property Value 

Ambient pressure 𝑃∞ 5458.3 Pa 

Ambient temperature 𝑇∞ 37 𝑜𝐶 

Surface tension 𝜎 0.07 𝑁/𝑚 

Liquid density 𝜌𝐿 993.13 𝑘𝑔/𝑚3 



Liquid dyn. viscosity 𝜇𝐿 6.858 ∙ 10−4  
𝑘𝑔

𝑚 ∙ 𝑠
 

Vapor pressure 𝑝𝑉 6418.8 𝑃𝑎 

Bubble size 𝑅𝐶 0.1 𝑚𝑚 

Relative pressure 𝑃𝑅 0.9 

Pressure amplitude 𝑝𝐴 0 𝑘𝑃𝑎 –  10 𝑘𝑃𝑎 

Excitation frequency 𝜔𝑅 0.1 –  5  

2. RESULTS AND DISCUSSION 

The simplest and still widely used method to find 

stable oscillations is to take an initial value problem 

solver and integrate system (1) to (4) forward in time 

by applying suitable initial conditions 𝑦1(0) and 

𝑦2(0). After the convergence to a stable solution 

(attractor), some characteristic properties of the 

found solution are recorded. For instance, the points 

of the Poincaré map (see the detailed description 

later), the maximum bubble radius and wall velocity 

of the bubble oscillation, the largest Lyapunov 

exponent to reveal the existence of chaotic attractor 

or the periodicity in case of periodic orbits. In the 

following, with this simple method, the stable 

solutions will systematically be explored as a 

function of the pressure amplitude 𝑝𝐴 and excitation 

frequency 𝜔. 

1.2. Unique features of the oscillations 

Due to the non-strictly dissipative nature of the 

system, the hunting for stable oscillations is not 

trivial. Figure 2 shows two examples for a stable 

(black curve) and for an unstable (red curve) 

transient trajectory by applying relatively close 

initial conditions. Keep in mind that the period of the 

excitation of the dimensionless system 𝜏𝑜 is unity, 

therefore, the integer values of the horizontal axis 

represents integer number of acoustic cycles. 

Consequently, after surviving approximately 8 

cycles, the unstable solution starts to diverge 

exponentially from the stable one, and tends to grow 

infinitely. 

 

Figure 2. Dimensionless bubble radius vs. time 

curves for a stable bubble oscillation (black 

curve) and for an unstable transient solution (red 

curve). 

The technique to overcome this difficulty is to 

apply several randomized initial conditions. The 

more the number of the initial conditions the greater 

the probability to find stable orbits. During the 

numerical calculations, 20 initial conditions were 

used at a given parameter combination. As a by-

product, this method is capable to explore the co-

existence of the different kind of attractors. Figure 3 

represents three kind of stable periodic solutions at 

pressure amplitude 𝑝𝐴 = 2556 𝑃𝑎 and at relative 

frequency 𝜔 = 5. Observe that the periods of the 

oscillations are equal to (black), 7 times (blue) and 

21 times (red) the period of driving. In the language 

of nonlinear dynamics, these solutions are called 

period 1, 7 and 21 attractors, respectively. Such co-

existence is a clear evidence for the non-linear nature 

of the bubble oscillator. 

The periodic orbits in the state space, 𝑦1-𝑦2 

plane, form closed curves, see the lower panel of Fig. 

3. Because of the time dependent harmonic forcing, 

the trajectories in this plane can intersect themselves 

demonstrated by the blue curve corresponding to the 

period 7 orbit. Therefore, in the forthcoming 

diagrams, only the points of the Poincaré section will 

be presented, which are obtained by sampling the 

continuous solutions with the period of the driving. 

This technique is very common in periodically 

driven non-linear systems [24]. Observe that the 

trajectory of the period 21 solution is omitted, and 

only the 21 number of red Poincaré points are 

depicted in order to avoid overcrowding of the 

figure. 

 

Figure 3. Co-existing stable period 1 (black), 

period 7 (blue) and period 21 (red) attractors. 

Upper panel: dimensionless bubble radius vs. 

times curves. Lower panel: trajectories in the 

state space. The dots are the points of the 

Poincaré section. 



Another interesting feature of the system is the 

presence of transient chaos [25], which further 

complicates the finding of stable bubble motions. 

Such oscillations are chaotic, but they are unstable in 

nature. Therefore, they are extremely difficult to 

find. Integrating the system backward in time cannot 

solve the problem either, as they are usually related 

to chaotic saddles. The appearances of solutions with 

a relatively long seemingly stable behaviour which 

finally become unstable as the time tends to infinity 

are good indicators for the existence of a chaotic 

saddle. An example for such transient bubble 

oscillation is presented in Fig. 4, where the solution 

seems to be stable up to 80 acoustic cycles. 

The determination of some characteristic 

properties, such as the largest Lyapunov exponent, 

fractal dimension etc., of the transient chaos needs 

huge number of numerical computations. A typical 

technique, for instance, is to measure the escape rate 

of several trajectories, initiated randomly [25]. 

Although the method is relatively simple, for 

sufficient precision, the application of millions of 

initial conditions is usually required. 

During the numerical computations, the 

maximum number of allowed acoustic cycles were 

1500. After this, the solution was regarded as stable 

chaos provided that its Lyapunov exponent was 

positive. If the Lyapunov exponent is negative and 

the solution does not converged until 1500 cycles, 

then the solution was discarded. 

 

Figure 4. Unstable solutions with a very long 

seemingly stable behaviour indicating the 

presence of transient chaos. 

1.2. Topological structure of the 
periodic attractors 

A more condensed representation of the 

behaviour of the bubble is the bifurcation diagram, 

where a particular property of the found attractors, 

e.g. the maximum of the bubble radius or a single 

component of the Poincaré section, is presented as a 

function of a parameter. In Fig. 5. the first co-

ordinate of the Poincaré section 𝑃(𝑦1) is plotted 

against the pressure amplitude 𝑝𝐴 at 𝜔𝑅 = 1. The 

periodicities of the found attractors are marked by 

arabic numbers. 

 

Figure 5. Example for a bifurcation diagram, that 

is, the first component of the Poincaré section is 

presented as a function of the pressure amplitude 

𝒑𝑨 as control parameter at relative frequency 

𝝎𝑹 = 𝟏. 

From the stable equilibrium radius 𝑅𝐸
𝑠  of the 

unexcited system, a stable period 1 solution emerges 

as the pressure amplitude is started to increase from 

𝑝𝐴 = 0 𝑃𝑎. It becomes unstable at 𝑝𝐴 = 172 𝑃𝑎 and 

a new period 2 attractor comes to existence through 

a period doubling (PD) bifurcation. This period 

doubled solution turns back and become unstable at 

approximately 𝑝𝐴 = 205 𝑃𝑎 via a saddle-node (SN) 

bifurcation. The unstable branch (computed in [13] 

for a similar structure) turns back again via an SN 

bifurcation at 𝑝𝐴 = 19 𝑃𝑎 establishing a period 2 

attractor co-existing with the former period 1 stable 

solution. 

Observe that in a relatively wide parameter 

range a period 3 attractor emerges via an SN 

bifurcation and go through a PD bifurcation. Such 

co-existence of the attractors is a common feature of 

non-linear systems. 

In order to get a global picture about the relevant 

periodic attractors in the pressure amplitude 𝑝𝐴 - 

relative frequency 𝜔𝑅 parameter plane, a series of 

bifurcation diagrams were computed and presented 

in Fig. 6, similar to that of demonstrated in Fig. 5. As 

the relative frequency is increased from 2 to 5 a 

remarkably complex and intriguing structure is being 

evolved. 

At relative frequency 𝜔𝑅 = 2 (Fig. 6A), the 

main bifurcation structure is formed by the period 1, 

2, 3, 4 and 5 solutions. Their organisation seems to 

follow a simple rule, namely, between the 

appearance of two solutions with period 𝑋 and 𝑌, 

there is another one with period 𝑋 + 𝑌. Observe, for 

instance, that between the period 3 and 2 attractors 

there is a period 5 stable solution, as well. Further 

increasing the relative frequency, the obtained results 

strongly supports this structural description, see Fig. 

6B to Fig. 6D. Gradually, more and more attractors, 

up to period 9, emerge through SN bifurcations 

towards the negative pressure amplitudes, whose 

periodicities obey the aforementioned simple rule. 



This topological description in terms of the 

periodicity is summarised by a pictogram in Fig. 7 

up to level four. In the literature, this organisation is 

called as Farey-ordering, and it seems to a universal 

rule describing the topology of the stable solutions in 

many dynamical systems [26-30]. 

 

 

 

 

Figure 6. Series of bifurcation diagrams with the 

pressure amplitude 𝒑𝑨 as control parameter at 

different relative frequencies 𝝎𝑹. 

 

Figure 7. Organisation structure of the periodic 

attractors as a function of the pressure amplitude 

𝒑𝑨 as control parameter in terms of periodicity 

above relative frequency 𝝎𝑹 > 𝟐. 

It should be noted, that a fine co-existing 

substructure exists for each periodic attractor, see 

e.g. the stable solutions with very high periodicities 

in the range of period 4 and 3 solutions in Fig. 6.B. 

The analysis of these attractors is out of the scope of 

the present investigation. 

5. SUMMARY 

In case of a spherical gas/vapour bubble, at 

constant, but sufficiently low ambient pressure 

(beyond Blake’s critical threshold) equilibrium 

radius does not exist and the bubble tends to grown 

indefinitely. In this parameter region, Hegedűs [12] 

could find evidence for stable bubble oscillation by 

applying harmonically varying pressure filed on the 

liquid domain, however, only for a special, period 1 

solutions. In order to extend this knowledge to 

arbitrary periodicity, this paper focuses on the 

topological description of the stable solutions at low, 

but still above the critical threshold. The results show 

that organisation of the attractors follows a simple 

rule characterised by the well-known Farey-

ordering. This finding is vital and necessary to leap 

forward, and obtain a good theoretical understanding 

for the stabilization mechanism for ambient 

pressures beyond Blake’s critical threshold. 

The mathematical model was the simple 

Rayleigh—Plesset equation, which is a second order 

non-linear ordinary differential equation. The size of 

the applied bubble was 0.1 mm placed in liquid 

water. 
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