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Abstract. Let p be a prime, G a locally finite p -group, K a commutative

ring of characteristic p . The anti-automorphism g 7→ g−1 of G extends

linearly to an anti-automorphism a 7→ a∗ of KG . An element a of KG is

called symmetric if a∗ = a . In this paper we answer the question: for which

G and K do the symmetric units of KG form a multiplicative group.

Let G be a group, K a commutative ring (with 1), and U(KG) the group

of units in the group algebra KG . The anti-automorphism g 7→ g−1 of G

extends linearly to an anti-automorphism a 7→ a∗ of KG ; this extension

leaves U(KG) setwise invariant. An element a of KG is called symmetric

if a∗ = a .
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It is an open problem to find the noncommutative KG in which the sym-

metric units form a multiplicative group. Here we solve this under the as-

sumption that K has prime characteristic, p say, and G is a locally finite

p-group. Our result is the following.

Theorem. Let p be a prime, K a commutative ring of characteristic p , and

G a nonabelian locally finite p-group. The symmetric units of KG form a

multiplicative group if and only if p = 2 and G is the direct product of an

elementary abelian group and a group H for which one of the following holds:

(i) H has an abelian subgroup A of index 2 and an element b of order 4

such that conjugation by b inverts each element of A ;

(ii) H is the direct product of a quaternion group of order 8 and a cyclic

group of order 4 , or the direct product of two quaternion groups of

order 8 ;

(iii) H is the central product of the group 〈x, y | x4 = y4 = 1, x2 = [y, x] 〉
with a quaternion group of order 8 , the nontrivial element common to

the two central factors being x2y2 ;

(iv) H is isomorphic to one of the groups H32 and H245 defined below.

The relevant definitions are:

H32 =
〈
x, y, u

∣∣ x4 = y4 = 1,

x2 = [y, x],

y2 = u2 = [u, x],

x2y2 = [u, y]
〉
,

H245 =
〈
x, y, u, v

∣∣ x4 = y4 = [v, u] = 1,

x2 = v2 = [y, x] = [v, y],

y2 = u2 = [u, x],

x2y2 = [u, y] = [v, x]
〉
.

Note that in case (i) all elements of H outside A have order 4 and so any

one of them can serve as b . The list of groups in this theorem is part of the
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list in Theorem 1.2 of Bovdi and Kovács [1], and the proof relies heavily on

Lemma 1.4 of that paper.

The proof of the Theorem will occupy the rest of this note.

Set S = { t | t ∈ G, t2 = 1 } ∪ { g + g−1 | g ∈ G, g2 6= 1 } , and note that

the symmetric elements of KG are precisely the K -linear combinations of

the elements of S . Like the fixed points of any anti-automorphism of any

group, the symmetric units form a subgroup in U(KG) if and only if they

commute with each other. It is well known that once K is of characteristic

p and G is a locally finite p -group, the augmentation ideal of KG is locally

nilpotent, and so every element congruent to 1 modulo this ideal is a unit.

In particular, −1 + g + g−1 is a symmetric unit in KG whenever g ∈ G . Of

course, t is a symmetric unit whenever t ∈ G and t2 = 1. This proves that

the symmetric units form a multiplicative group if and only if every pair of

elements of S commutes.

In particular, for a given p this issue is independent of the choice of K .

It will be convenient to call a locally finite p-group good if every pair of

elements in S commutes (say, in KG with K = Z/pZ). Note that all

abelian groups are good, all subgroups of good groups are good, and that a

locally finite p-group is good if all its 2-generator subgroups are good.

In a good group, any two involutions (that is, elements of order 2) com-

mute. If g and t are as in the definition of S , then the only way t and

g + g−1 can commute is if gt (= t−1gt) is either g or g−1 . In the second

case the subgroup 〈g, h〉 generated by g and t is a nonabelian dihedral group

and therefore contains noncommuting involutions. This proves that in a good

group every involution is central.

Next we prove that if g , h are noncommuting elements in a good group

G , then there exist x , y in G such that 〈g, h〉 = 〈x, y〉 and xy = x−1 . To

this end, note that any two of g , h , gh generate the nonabelian group 〈g, h〉 ,
so by the previous paragraph none of them can have square 1. On the other
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hand, g + g−1 and h + h−1 commute: thus

gh + gh−1 + g−1h + g−1h−1 = hg + hg−1 + h−1g + h−1g−1.

If gh occurs more than once on the left hand side, we must have gh = g−1h−1,

so x = gh , y = h will do. Otherwise gh must equal one of the summands

on the right hand side. That summand cannot be hg , for g and h do not

commute; nor can it be h−1g−1 , for (gh)2 6= 1. Thus either gh = hg−1 , in

which case x = g , y = h will work, or gh = h−1g , and then we can take

x = h , y = g .

This already shows that the prime p involved in a nonabelian good group

can only be 2.

The point established in the second last paragraph can be taken further:

in those circumstances, x and y can be chosen so that the order of y is 4.

To see this, note first that (xy)−1 = xy−1 6= xy , hence xy + xy−1 and

y + y−1 must commute. Given that the characteristic is 2, this leads to

x(y2 + y−2) = x−1(y2 + y−2). If the cosets x〈y〉 and x−1〈y〉 are different,

this forces y2 + y−2 = 0, that is, y4 = 1. If x〈y〉 = x−1〈y〉 , it is easy

to deduce that this is the only nontrivial coset of 〈y〉 in 〈x, y〉 . Groups

of 2-power order with a cyclic subgroup of index 2 are well known (see

for example Section 109 in Burnside’s book [2]); the nonabelian groups of

this kind with all involutions central are precisely the generalized quaternion

groups. (We count the quaternion group of order 8 among the generalized

quaternion groups.) Of course, each generalized quaternion group can be

generated by a pair of elements x , y such that xy = x−1 and y4 = 1.

We sum up these conclusions in the following.

Lemma 1. If G is a nonabelian good group, then p = 2 and each non-

abelian 2-generator subgroup of G is either a generalized quaternion group

or a semidirect product

C2m o C4 =
〈
x, y

∣∣ x2m

= y4 = 1, xy = x−1
〉
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with m ≥ 2 . ¤

If m > 2 then there are other semidirect products that might be called

C2m o C4 , but we shall always mean this one.

Lemma 2. If G is a nonabelian good group and the exponent of G is not

4 , then G has an abelian subgroup A of index 2 and an element b of order

4 such that conjugation by b inverts each element of A .

Proof. Set A =
〈
a ∈ G

∣∣ a4 6= 1
〉
. Suppose first that A is nonabelian. Then

there are noncommuting elements g , h in A whose orders are greater than 4.

In a generalized quaternion group, all elements of order greater than 4 lie in

one cyclic subgroup, so 〈g, h〉 cannot be a generalized quaternion group. In

a C2m o C4 , all elements outside 〈x, y2〉 have order 4, so 〈g, h〉 cannot be

a C2m o C4 either. This contradiction to Lemma 1 proves that A must be

abelian.

Let b be any element of G outside A : by the definition of A , then b4 = 1.

If a4 6= 1, then a and b cannot commute (else we would have (ab)4 6= 1 and

then a, ab ∈ A , b ∈ A would follow, contrary to the choice of b). In a

generalized quaternion group or in a C2m o C4 , an element of order greater

than 4 can only be conjugate to itself or to its inverse, so Lemma 1 implies

that ab = a−1 . It follows that b inverts every element of A . That includes

b2 , so b4 = 1, and as all involutions are central we cannot have b2 = 1. ¤

It follows from Lemma 1 that if G is a nonabelian good group of expo-

nent 4 and if g, h ∈ G , then 〈g2〉 is central and 〈g, h〉/〈g2〉 is abelian or

dihedral. Under somewhat weaker hypotheses, Lemma 1.4 of [1] asserts that

G is a direct product of an elementary abelian group and a group H such

that either H satisfies one of the conditions (i)–(iv) of our Theorem, or H

is an extraspecial 2-group, or H is the central product of an extraspecial

2-group with a cyclic group of order 4. All central products of this kind and

all extraspecial 2-groups except the quaternion group contain noncentral in-

volutions, while the quaternion group satisfies condition (i). This completes

the proof of the ‘only if’ part of our Theorem.
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The proof of the ‘if’ part is much easier. The definition of good group

directly yields that the direct product of an elementary abelian 2-group and

a good 2-group is always good: thus it suffices to check that if p = 2 and

one of the conditions (i)–(iv) holds then H is good.

Consider case (i) first. We have already remarked that in this case all

involutions of H lie in A , so they are all central. If g ∈ A , then g + g−1

commutes with every element of H and is therefore central in KH . If both

g and h are elements of H outside A , one can play the role of b and the

other can be written as ab with a ∈ A , and (b + b−1)2 = 0 implies that

(b + b−1)((ab) + (ab)−1) = 0 = ((ab) + (ab)−1)(b + b−1). Thus in this case H

is good.

In the other three cases H has exponent 4 and we know (from O’Brien’s

Lemma 4.1 in [1], or by direct calculation) that all involutions in H are

central. We can also see that the Frattini subgroup 〈h2 | h ∈ H 〉 of H has

order 4. Thus if g, h ∈ H , then 〈g, h〉 has order at most 16. The groups of

order dividing 16 are well known (see for example Section 118 in [2]); there

are only two 2-generator nonabelian groups of exponent 4 among them in

which all involutions are central, and both of those satisfy condition (i).

Thus by the previous paragraph 〈g, h〉 is good, and so g + g−1 commutes

with h + h−1 . We conclude that H is good in each of these cases.

This completes the proof of the Theorem.
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