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Abstract

In this note, we give a straightforward and elementary proof of a theorem by Aumann and Maschler

stating that in the well-known bankruptcy problem, the so called CG-consistent solution described by

the Talmud represents the nucleolus of the corresponding coalitional game. The proof nicely �ts into

the hydraulic rationing framework proposed by Kaminski. We point out further interesting properties in

connection with this framework.

1 Introduction

The bankruptcy problem is one of the oldest in the history of economics. In its simplest

form, we have a bankrupt �rm and creditors that wish to collect their claims. The total

demand exceeds the �rm's liquidation value. A natural question is how to divide this

value among the claimants. Depending on the notion of fairness, one can impose many

rules for such a division. For an an excellent survey on this matter see [10].

One of the oldest concepts can be found in the Talmud [8]. The proposed solution is

puzzling at �rst nevertheless it exhibits many nice properties. It is a mixture of the con-

cepts of constrained equal losses and constrained equal awards. The underlying rationing

was not clear until Aumann and Maschler solved the riddle in 1985 [2]. They gave an

elementary proof showing that each bankruptcy problem has a so called CG-consistent

solution. Moreover, this coincides with the examples in the Talmud. They also showed
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that the CG-consistent solution is the nucleolus of the corresponding bankruptcy game.

This is an interesting result that comes with a less elementary proof.

In 2000, Kaminski introduced a fascinating new concept to represent the bankruptcy

game and other similar problems [6]. In his hydraulic rationing, he proposed a physical

device wherein vessels correspond to claims and water corresponds to the �rm's liquidation

value.

Here we show an elementary proof of the nucleolus property using Kaminski's idea. In

many games especially in the case of bankruptcy games the negative excess of a coalition

can be more descriptive than simple excess. Translating the notion of negative excess into

the language of hydraulics is one of the key ideas of the proof. Our approach seems to be

more direct than that of Benoît published in 1997 [3].

2 The Model

In this section, we describe the basic notions of the bankruptcy problem. Readers familiar

with these concepts might want to skip this part and jump to the next section. For more

on the models of fair allocation see [11].

Let N = {1, 2, . . . , n} be a set of agents. The bankruptcy problem is de�ned as a pair

(c, E) where E ∈ R+ is the �rm's liquidation value (or estate/endowment) and c ∈ Rn
+

is the collection of claims with
∑n

i ci > E. Let B denote the class of such problems.

A solution of a bankruptcy problem is a vector x ∈ Rn
+ such that

∑n
i xi = E. For

convenience, we introduce x(S) =
∑

i∈S xi and c(S) =
∑

i∈S ci for any S ⊆ N . Hence

x ∈ Rn
+ is a solution if x(N) = E. A rule r : B→ Rn is a mapping that assigns a unique

solution to each bankruptcy problem. The dual of a rule r (denoted by r∗) assigns awards

in the same way as r assigns losses, namely r∗(c, E) = c− r(c, c(N)−E). A self-dual rule

is one with r∗ = r, such rule treats losses and awards the same way.

We formalize four rules that we will need later. The reader can �nd several character-

izations of these rules in [4] and [7].

The constrained equal-awards (CEA) rule assigns equal awards to each agent subject

to no one receiving more than his claim. The dual of this rule is the constrained equal-

losses (CEL) rule. In this case losses are distributed as equally as possible subject to no

one receives a negative amount. Formally:

Constrained equal-awards: For all (c, E) ∈ B and i ∈ N , CEAi(c, E) = min(ci, λ)

where λ solves
∑
min(ci, λ) = E.

Constrained equal-losses: For all (c, E) ∈ B and i ∈ N , CELi(c, E) = min(0, ci −
λ) where λ solves

∑
min(0, ci − λ) = E.

Another well-known rule is the random arrival rule. Suppose the claims arrive se-

quentially and they are fully compensated until the money runs out. The random arrival
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rule computes award vectors for every possible ordering of claims and then takes the

average. Hence it produces the same award vector as the Shapley-value applied to the

corresponding bankruptcy game[8].

The Contested Garment Principle is a division formula that can be derived from the

Talmud. There are two claimants and a divisible piece of good. According the principle,

each claimant should give the part of the good that he does not contest to the other

claimant. Then the rest is split up equally.

Figure 1: The Contested Garment Principle

Note that the CG-principle does not distinguish between claims that exceed the size

of the estate. Claims that are larger than the estate are treated as if they were 'only'

claiming the whole and not more.

De�nition 1. Let r(c, E) be a division rule de�ned on each (c, E) ∈ B. We say that

r is pairwise consistent if for all N ′ ⊂ N , where |N ′| = 2 if x ≡ r(c, E), then xN ′ =

r(cN ′ ,
∑

N ′ xi).

The stronger version, consistency1 is obtained by dropping the restriction |N ′| = 2.

For more on this topic see [5].

We refer to the pairwise consistent rule that divides the endowment between any two

agent by the Contested Garment Principle as the CG-consistent solution.

De�nition 2. Let (c, E) be a bankruptcy problem. A solution is called CG-consistent, if

for all i 6= j the division of x(i) + x(j) prescribed by the contested garment principle for

claims ci, cj is (x(i), x(j)).

The CG-consistent solution (or Talmud rule) can be written formally as

Ti(c, E) =

min {ci/2, λ} if E ≤ 1
2
c(N),

max {ci/2, ci − µ} if E > 1
2
c(N),

where λ and µ are chosen so that
∑

i∈N Ti(c, E) = E.

Observe that the Talmud rule is the combination of the constrained equal awards and

the constrained equal losses rules.

1In the paper of Aumann and Maschler this property is called self-consistency [2].
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3 Hydraulic rationing

Proof techniques that use the principles of mechanics were very common in the ancient

times2. The increasing number of examples in the literature shows that these are no

less useful today. Just to mention some well-known instances: the shortest path in a

directed graph can be found using a system of strings and knots, congestion games can be

represented by electric circuits, and - as in our case - rationing problems can be modeled

using hydraulic systems.

To prove the Aumann-Maschler result on the nucleolus, we will employ Kaminski's

idea and construct a speci�c hydraulic. In this hydraulic, every claim is represented by a

vessel while the �rm's liquidation value corresponds to the amount of water we pour into

this system. Our vessels have a peculiar hourglass-shape with the following characteristics:

• Each vessel has an upper and lower tank of a shape of a cylinder.

• The upper and lower tanks have the same volume and they are connected with a

capillary.

• The capillaries have negligible volume.

• The cylinders have a circular base with area of 1.

• The volume of vessel i is equal to the size of agent i's claim.

• Finally each vessel has the same height denoted by h. We may assume h = cmax

where cmax denotes the largest claim.

Note that the last condition implies that the vessel with the largest volume has no

capillary part. We say that a hydraulic is talmudic if it incorporates the above character-

istics.

Figure 2: A connected talmudic hydraulic

2Archimedes wrote to Eratosthenes: "I thought �t to write out for you and explain in detail... a certain

method, by which it will be possible for you... to investigate some of the problems in mathematics by

means of mechanics. This procedure is, I am persuaded, no less useful even for the proof of the theorems

themselves..."
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It is not included in the above list but for a proper representation every vessel has to

have also a capillary on the top tank where the air can leave the vessel. During the proof,

we will need two types of vessel systems (or hydraulics). In a connected hydraulic, vessels

are connected with capillaries at the bottom. This way, if we pour water into any of the

vessels each vessel starts to �ll up. In case of a disconnected hydraulic, vessels are not

connected by capillaries. Thus di�erent vessels can have di�erent 'water levels' depending

on how much water we pour into them.

We say that a hydraulic H corresponds to a bankruptcy problem (c,E) if the following

conditions hold

• H has n vessels

• the volume of the ith vessel is equal to the size of the claim of agent i

• there is E amount of water distributed among the vessels.

A hydraulic that corresponds to a bankruptcy problem always implicitly de�nes an

allocation rule. The nature of the rule depends on the shape of the vessels.

Here we show the representation of the rules we have already mentioned.

Figure 3: The representation of CEA, CEL and Talmud rules

Observation 3. (Kaminski) Let (c, E) be a two-person bankruptcy problem and let H
be the corresponding connected talmudic hydraulic. The solution x de�ned by the common

water level z in H is CG-consistent.

Indeed, it is not hard to check that the common water level z induces the same

allocations as the CG-principle. For a detailed explanation the reader is referred to [1] or

[6].

Corollary 4. Each bankruptcy problem has a unique CG-consistent solution.

To further illustrate the robustness of Kaminski's method, we observe an interesting

property of consistent solutions.

Observation 5. A rule is consistent if and only if it corresponds to a connected hydraulic

in which a shape of a vessel depends only on the respective claim size.
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Consistency of a rule means that a connected hydraulic corresponds to the same rule

after removing some of its vessels. Note that the Random arrival rule is an example of a

rule that is non consistent. This is so because if a claim disappears then the shape of the

remaining vessels has to change.

Another remarkable feature of the hydraulic approach is that it characterizes self-

duality in a succinct way.

Observation 6. The Talmud rule is a self-dual one.

Let H be a connected talmudic hydraulic with E amount of water in it. We have to

show that the corresponding rule T is a self-dual rule, or formally, that

T ∗(c, E) = c− T (c, c(N)− E).

We can translate this into the language of hydraulics. Let x = (x1, x2, . . . , xn) be the

solution induced by the common water level. Now consider a copy of H which is fully

�lled with water. Let y = (y1, y2, . . . , yn) be the distribution of air when we let out E

amount of water from the fully �lled hydraulic. As the �gure shows the distributions are

the same.

Figure 4: The hydraulic H with E and c(N)− E amount of water in it.

Actually more is true. Easy to conclude the following fact.

Observation 7. A rule is self-dual if and only if it corresponds to some horizontally

symmetric connected hydraulic.

4 The Nucleolus of the Bankruptcy Game

Bankruptcy problems can be modeled as coalitional games. Let us recall some basic

notions of cooperative games. A cooperative game in characteristic function form is an

ordered pair (N, v) consisting of the player set N = {1, 2, . . . , n} and a characteristic

function v : 2N → R with v(∅) = 0. Furthermore x ∈ Rn is called an allocation if it is
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e�cient i.e. if x(N) = v(N). We say that an allocation x is an imputation or individually

rational if x(i) ≥ v(i) for all i ∈ N . The set of imputation is denoted by I(N, v).

I(N, v) = {x ∈ Rn | x(N) = v(N), x(i) ≥ v(i) for all i ∈ N}.

Given an allocation x ∈ Rn, we de�ne the pro�t (or negative excess) of a coalition S

as

p(S, x) := x(S)− v(S).

Let θ(x) ∈ R2n be the pro�t vector that contain the 2n pro�t values in a non-decreasing

order.

We say that a vector x ∈ Rm lexicographically precedes y ∈ Rm (denoted by x � y)

if either x = y or there exists a number 1 ≤ j < m such that xi = yi if i ≤ j and

xj+1 < yj+1.

De�nition 8. The nucleolus is the vector of allocations of a game x ∈ Rn
+ that lexico-

graphically maximizes θ(x) over I(N, v)3. In other words,

N(v) = {x ∈ I(N, v) | θ(y) � θ(x) for all y ∈ I(N, v)}

Let N = {1, 2, . . . , n} be a set of agents and (c, E) ∈ B a bankruptcy problem. For

any S ∈ 2N the characteristic function of the related bankruptcy game is

v(c,E)(S) = max (E − c(N \ S), 0)

The characteristic function represents the worth of each coalition S. By de�nition, it is the

value that is left from the �rm's liquidation value E = v(N) after the claim of each agent

of the complement coalition N \S has been satis�ed. This is the value that coalition S can

achieve without any e�ort. Recall that the pro�t of coalition S is p(x, S) = x(S)−v(c,E)(S).

If a coalition S has nothing after all other claimants outside the coalition have been paid

o� then its pro�t will be x(S). Otherwise the gain of S should be decreased by v(c,E)(S)

since S would get v(c,E)(S) anyway.

We need two small observations. Let H be a disconnected hydraulic. Now x(S) is

the amount of water that is distributed among the vessels that belong to coalition S.

The next lemma shows that the pro�t of coalition S is the minimum of the following two

amounts: the water contained in S and the air contained in N \ S.

Lemma 9. Let v(c,E) be a bankruptcy game on player set N and x an imputation. The

pro�t of S ⊆ N can be written as

p(x, S) = min (x(S), c(N \ S)− x(N \ S)). (1)

3It is well-known that the nucleolus of any cooperative game is unique. This is because if two di�erent

allocations x and y have the same pro�t vector then θ(x) = θ(y) ≺ θ( 12 (x+ y)) [9].
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Proof. We apply the de�nition:

p(x, S) = x(S)− v(c,E)(S) = x(S)−max(0, E − c(N \ S)) = x(S) + min(0,−E + c(N \ S)) =

= min(x(S), x(S)− E + c(N \ S)) = min(x(S), x(S)− x(N) + c(N \ S)) =

= min(x(S), c(N \ S)− x(N \ S))

Our second observation is that the CG-consistent solution coincides with the nucleolus

for two person bankruptcy games. We prove this with the following lemma.

Lemma 10. If (c, E) is a two-person bankruptcy game with N = {1, 2} and x is a solution

of it then p({1}, x) + p({2}, x) = E − (v(c,E)({1}) + v(c,E)({2})). This means that the sum

of the pro�ts of the two players is exactly the doubly claimed amount (i.e. the part of

estate that is not conceded by any of the agents).

Proof. By de�nition, p({1}, x) + p({2}, x) = x({1})− v(c,E)({1}) + x({2})− v(c,E)({2}) =
x({1}) + x({2})− (v(c,E)({1}) + v(c,E)({2})) = E − (v(c,E)({1}) + v(c,E)({2})). As we have
seen, v(c,E)({i}) is that part of the estate that the other player does not claim, the right

hand side is the exactly the doubly clamied part.

Figure 5: The doubly contested part is divided equally by the CG rule.

Lemma 11. If (c, E) is a two-person bankruptcy game then its CG-consistent solution is

the nucleolus of the corresponding coalitional game.

Proof. As p(x, ∅) = p(x,N) = 0 for any solution x of the game, the nonzero coordinates

of θ(x) are the pro�ts of the single players. As the sum of these pro�ts are constant by

Lemma 10, the pro�t vector is lexicographically increasing if we decrease the share of the

player with the greater pro�t and increase the share of the player with the smaller pro�t.

This means that the nucleolus is that solution where the pro�ts of the two players are

equal, that is, where the doubly claimed part is halved. This is exactly the CG-consistent

solution.

Now we are ready to formulate the elementary proof we promised.

Theorem 12 (Aumann-Maschler [2]). The CG-consistent solution of a bankruptcy prob-

lem is the nucleolus of the corresponding coalitional game.
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Proof. Let t denote the CG-consistent solution of bankruptcy game (c, E) and assume

x 6= t for some solution x of the game. We shall show that there is another solution x′

lexicographically greater than x such that x′ and t agrees in more coordinates than x and

t. Clearly, this immediately implies Theorem 12.

As x and t are di�erent solutions, there are players i and j such that xi > ti and

xj < tj. Construct solution x
′ from x such that we start to decrease i's share and increase

j's share until we reach x′i = ti or x
′
j = tj. (In other words, if we start from disconnected

hydraulic representing x then we let some water from vessel i to vessel j until one of the

water levels reaches the water level of t that is strictly between the two original levels.)

Clearly, x′ agrees with t on more coordinates than x did.

Observe that if p(x, S) 6= p(x′, S) then either i ∈ S 63 j and p(x′, S) < p(x, S) or

i 6∈ S 3 j and p(x′, S) > p(x, S). Let Sj,i denote the set of coalitions that contain j but

not i. Therefore, to show that θ(x′) � θ(x), it is enough to prove that any decreased

pro�t is at least as great as the smallest increased pro�t, that is

min
S∈Si,j

p(x′, S) ≥ min
S∈Sj,i

p(x′, S). (2)

If we think about the disconnected hydraulic that corresponds to x′ then the pro�t is

either the amount of water in S, namely x(S) or the amount of air in the complement

coalition N \S, namely c(N \S)−x(N \S). By Lemma 9, this is the minimum of these two

amounts. Observe that the smaller the coalition S the smaller the value x(S). Moreover,

the bigger the coalition S the smaller the value c(N \S)−x(N \S). Therefore looking at
the coalitions in Si,j, either {i} or N \ {j} has the minimum pro�t. Similarly, looking at

coalitions Sj,i, either {j} or N \ {i} has the minimum pro�t. Formally, it is an exchange

of minima and an application of Lemma 9, as follows

min
S∈Si,j

p(x′, S) = min
S∈Si,j

{min{x(S), x(N \ S)− c(N \ S)}} =

min{ min
S∈Si,j

{x(S)}, min
S∈Si,j

{x(N \ S)− c(N \ S)}} = min{x′(i), c(j)− x′(j)}

A similar calculation shows that

min
S∈Sj,i

p(x′, S) = min{x′(j), c(i)− x′(i)}

To �nish the proof, we have show that

min{x′(i), c(j)− x′(j)} ≥ min{x′(j), c(i)− x′(i)}. (3)

These minima depend only on the payo� of i and j, no other coalitions are involved.

Since we have a disconnected hydraulic we may forget about the other vessels for the

moment and concentrate on the vessel system of {i}∪{j}. In this context (3) is equivalent
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to saying that p(x′, {i}) ≥ p(x′, {j}). We selected x′ in such a way that x′(i) is not less

than the CG-consistent share of i and x′(j) is not more than the CG-consistent share of j.

We have seen that the Talmud rule is consistent and for the restricted game this implies

that i gets at least as much as her CG-consistent share. By Lemma 11, the CG-consistent

solution of the restricted game gives the same pro�t to both players, hence the pro�t of i

is not less in this game than that of j, and this is exactly what we had to prove.

To illustrate the power of the hydraulic approach, we repeat the somewhat tricky

argument of the last paragraph in the language of the vessels. Consider disconnected

hydraulic corresponding to x. As i has more and j has less than their respective CG-

consistent shares, the water level according to x is higher in the ith vessel than in the jth

one.

Figure 6: Before and after the water exchange

To obtain solution x′ from x, we let some water from vessel i into vessel j. We stop

as soon as any of the levels reach the common water level of the CG-consistent solution.

Now x′ still has the property that the water is higher in vessel i than in vessel j. Lemma

11 shows that equal water level means equal pro�ts in two vessel hydraulics. Therefore

the x′-pro�t of i is more than the x′-pro�t of j for the two vessel hydraulic, just as we

claimed.

Remark: Though the above proof works without introducing the hydraulic framework,

some statements, like observation 3 and 6 are more transparent this way. We think that

the main advantage of hydraulics is that it makes easier to interpret notions like pro�t

and nucleolus and helps to �nd and prove the right statements.
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