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Whose Logic is Three-Valued Logic?

Abstract. ‘It would be unfair to judge that I use a three-valued logic or
that I abandon the principle of zertium non datur”, writes Imre Ruzsa in his
(Ruzsa 1991, 11.). For Ruzsa a truth value gap (the “third” truth value) arises
only from the “defects” of our expressions (for example when a definite
description does not denote anything) and not because there are “gaps’ in
reality. In the first part of the paper we explain in some detail how the truth
value gaps arise and how they are transmitted in Ruzsa’s system. In the second
part we will argue that there may be sentences which in a sense reflects real
gaps, in other words, that the third truth value is a real truth value.

1 THE SEMANTICS OF SEMANTIC VALUE GAPS

One of Imre Ruzsa’s main achievements in logic is his system of intensional
logic with semantic value gaps. A semantic value gap arises when a well formed
expression of our (natural or artificial) language fails to denote anything. The
simplest case is perhaps a definite description without a denotation (e.g. ‘the
present king of France’). In Ruzsa’s system there are denotations even in
such cases—these are the artificial entities “filling” the gaps. The individual
denoted by ‘the present king of France’ is not a real individual: Ruzsa’s choice
is the set U, the set of “‘real” (actual and possible) individuals, simply because
evidently U ¢ U. A bit more precisely: the type ¢ of individuals has the domain
D() = U U{U}, and ©(¢) = U is the type’s zero entity—the “object” denoted
by e.g. the empty descriptions.

Systems of intensional logics have in general two kinds of semantic values:
the extensions—in Ruzsa’s terminology, factual values—and the intensions. In
the type o of sentences the factual values are the truth values, the intensions are
functions from worlds and times (technically, from the set I = W x T, where W
is the set of possible worlds and 7" is the linearly ordered set of time moments) to
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20 RUZSA’S WORK

the factual values. The truth values are represented by 3 = {0, 1,2}, ©(0) = 2
being the zero entity representing the truth value gap. If a sentence p has 2 as
factual value (in a world w in a given moment t) than we say it has no ‘“‘real”
truth value (in the world w in the moment t). The “‘real” truth values are of
course 0 (representing falsity) and 1 (representing truth).

From the basic types ¢ and o, we get the other (functor) types. For example,
predicates are expressions of type o(¢). 'The domain of this type is the set of all
functions f : D(0) — D(¢) for which f(U) = 2. The zero entity of this type
is the constant function having 2 for all the arguments. A predicate is partial if
its interpretation o (P) : D(t) — 3 maps more than one individual to 2.

In what follows | A|,; = denotes the factual value of A at the indexi = (w,t) €
W x T according to the valuation v. If ¢ is an index, d(i) C D(:) is the set
of the ““actual’ individuals at ¢, that is, the actual individuals in the world w at
the time moment ¢. If z is a variable of type ¢, than the value v(z) is always an
element of D(v); if v(z) ¢ d(i), then |z|,; = ©(¢) and similarly for constants of
type ¢. It could happen that a value of variable in the world w at the moment ¢
is an individual not belonging to the domain of w at t—in such cases the factual
value of the variable is the zero entity of the type.

Definite descriptions are handled as it is expected. If F'is of type o(¢) then the
factual value of IF (‘the F")is |[IF|,; = w; if {u € d(7) : |F|yi(u) = 1} = {w;},
and in all other cases |IF'|,; = O(¢). If there is exactly one F' in the world w at
the moment ¢, then |IF|,; is #is object; and if the set of the F's is empty or has
more than one element, |IF|,; is the zero entity.

The identities are (of course) expressions of type 0. If A and B are of the
same type «, then

2 if |Al,; = O(a) or |Blw = O(a)
|A =Bl =<1 if |Al,; = |Blu # 6(a)

0 otherwise

According to this rule, if on one side of an identity stands an expression having
the zero entity of its type as its factual value then the identity’s factual value will
be automatically 2. It has the (somewhat strange) consequence that non-existent
individuals cannot be identical even with themselves. For example the sentence
‘the present king of France’ = ‘the present king of France’ falls in the truth
value gap.

Ruzsa—following an idea of Tarski—defines the propositional connectives
in terms of A and =. The technical details (see (Ruzsa 1991, 39—41)) do not
concern us, only the truth tables governing the connectives. 'T'he truth tables for
negation, conjunction, and alternation are the following:
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FERENC CSABA: WHOSE LOGIC IS THREE-VALUED LOGIC? 21

p‘wp p/\q‘102 p\/q|102
110 1 1 0 2 1 11 2
0 1 0 |0 0 2 0 1 0 2
2 2 2 12 2 2 2 |12 2 2

T'he tables for the conditional and the biconditional (the latter is simply the =
in the type 0):

pDgqll 0 2 p=q|l 0 2
1 [1 0 2 1 |10 2
0 |1 1 2 0 [0 1 2
2 12 2 2 2 |12 2 2

I'hese tables are the weak Kleene tables. 'I'he connectives working according
to them always transmit the truth value gap from the part to the whole. This
is not true for the strong Kleene connectives for which the truth tables are the

following:
p‘ﬂp p&q‘l 0 2 p\/q|1 0 2
110 1 1 0 2 1 111
01 0 0 00 0 (1 0 2
2| 2 2 2 0 2 2 (1 2 2
pDgq|l 0 2 p=q|1 0 2
1 1 0 2 1 1 0 2
0 11 1 0 01 2
2 1 2 2 2 2 2 2

The strong Kleene conjunction, alternation, and conditional does not transmit
the truth value gap: for example, if p is true then the value of p V ¢ is 1 (true)
even if the truth value of g is 2. 'T'he strong Kleene connectives are in better
harmony with “the logic of empirical investigations’’, the conception that Ruzsa
calls epistemic. In such a logic 2 denotes the value “‘yet unknown”’.

Why did Ruzsa decide in favor of the weak versions? The question has (at
least) three answers. One is a bit personal: the epistemic conception reminds him
of the “‘so called” intuitionist logic; and this logic, according to his conception,
does not even deserve the name ‘logic’.! T'he second, and less personal, answer
is that using Ruzsa’s system’s temporal operators and introducing an epistemic
operator, one could probably succeed in modeling some aspects of the “‘epistemic
conception”.

IHe once told us the following story. In a conference (probably in the sixties) when he
used the arrow for the conditional, the chair asked him: ““So you are an intuitionist, aren’t
you?’ At the very moment he decided to use the horseshoe symbol: let there be no mistake.
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22 RUZSA’S WORK

But Ruzsa’s most prominent reason is the importance of the transmittal of
the semantic value gaps, a phenomenon we have already seen in the definitions
of the domain of functor types and that of the factual values of the identites. A
general theorem of his system states that this phenomenon holds in general.?

Summing up: in extensional contexts, a semantic value gap is a special
“illness” for which the treatment is: not allowing it to disappear. A truth value
gap is really a gap, arising from clashes of language and reality; it is impossible
for the “real world” to have gaps.

My credo is simply this: A sentence may or may not have a truth value. If it
has one then it expresses a statement which is either true or false. The lack
of a truth value is not a third truth value. (Ruzsa 1991, 11.)

2 ABSOLUTELY UNDECIDABLE SENTENCES

In the epistemic conception the semantic value gaps are due to the gaps in
our logic. By contrast, Ruzsa’s approach is ontological. As he puts it:

In (...) informal reasonings, the sources of value gaps are located in the
realm of facts, in the formal semantics they [are] located in the interpretations
of the (formal) language. (Ruzsa 1991, 12.)

"The facts of which Ruzsa speaks are facts of the world a@nd facts of our language,
gaps only arise when something is mistaken in our expressions. Are there sources
of truth value gaps ““in the world” in which our language plays no significant
role? In other words: are there gaps in reality? Before trying to answer this
question, let’s go back once more to the epistemic conception. According to our
knowledge of it, every (well-formed, unambiguous) sentence p must fall in one
of the following seven cases:

(1) pis true, and we know (proved, verified) that it is true

(2) pis true; we do not know that yet, but we will

(3) pis true, but we will never know that it is true

(4) pis absolutely undecidable (even God cannot determine its truth value)
(5) pis false, but we will never know that it is false

(6) pis false; we do not know that yet, but we will

(7) pis false, and we know that it is false

In cases (1), (2), (6) and (7) there are no difficulties. Moreover, we have good
candidates that are of case (3) or of case (5). For example, let p be the sentence

10
The value of the digit in the 100" "¢h place of the decimal expansion of

7 — 3 equal to zero. 3

ZIf A (of type @) is an extensional component of B (of type (), then |Al,; = O(a) =

| Blvi = ©(f), for the details see (Ruzsa 1991, 33.)
3Cf. (Feferman 2006).
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The truth value of this sentence can be determined in principle by a mechanical
check—but this check is far beyond our computational powers. Nevertheless,
we can say that this sentence has a determinate truth value and God knows what
it is.

What about case (4)? Does the existence of absolutely undecidable sentences
threaten God’s omniscience? We can say with Michael Dummett: not at all. God
knows the answer to every question that has answer, and He knows of every
question whether it has an answer. If there really are questions which has no
answer even for Him then the divine logic must be three-valued, and instead of
a truth value gap, there will be a genuine third truth value.?

In comparison with God, in this respect (too) we are in a more uncomfortable
position: we cannot in principle distinguish cases (4), (5), and (6). The reason
lies in what can be called the ‘“Hauptsatz” of undecidable propositions: if p
is an absolutely undecidable statement, then we cannot prove “constructively”
that it is really the case. The proof (due to Martin-Lof°) relies heavily on the
constructivist (verificationist) conception of negation: proving —p amounts to
showing that any attempt to prove p will eventually be blocked (in mathematics,
by a contradiction; in general, by some serious difficulty). Proving that p is
undecidable amounts to a proof that any attempt to prove p, as well as any
attempt to prove —p, will eventually be blocked. But it is nothing but a proof of
—p, and ——p, respectively. We arrive at a contradiction (a serious difficulty).

So we have to rely on our intuitions.

3 FINITE KNOWLEDGE OF THE INFINITE

We cannot prove of a sentence that it is absolutely undecidable, but we
can perhaps imagine what such a sentence could be. Feferman’s (in fact, the
intuitionists’) example about the decimal expansion of 7 gives a clue. If we—with
our limited means—cannot end a process that is too long, it is conceivable that
an infinite process is such that even an infinite mind cannot go through it.

But we must be careful. Even we, finite beings know very much about
the natural numbers, we can prove for example that for every natural umber
n, 7" is divisible with 6, that there are infinitely many primes and so on. We
have methods which make the infinite finite, that is, methods (first of all,
mathemartical induction) by which we can prove, say, that for some property F,

4Gee e.g. (Dummett 2006, 108—109).

5(Martin-Lof 1995). Martin-Lof actually “proves” that there are no undecidable propo-
sitions. His proof relies on the intuitionist conceptions of proposition, truth, falsity, and
knowledge. For someone not in the intuitionist camp, his conclusion can be formulated as
follows: there may be absolutely undecidable propositions, but we cannot produce one about
which we can prove that it is really absolutely undecidable. Cf. (Feferman 2006, 147.).
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there are infinitely many numbers for which it holds. Augustine and many of his
followers believe that for God it is so with every property F.

As for their other assertion, that God’s knowledge cannot comprehend things
infinite, it only remains for them to affirm, in order that they may sound the
depths of their impiety, that God does not know all numbers. For it is very
certain that they are infinite. . . Does God, therefore, not know numbers on
account of this infinity; and does His knowledge extend only to a certain
height in numbers, while of the rest He is ignorant? Who is so left to himself
as to say sor?

. . . if everything which is comprehended is defined or made finite by the
comprehension of him who knows it, then all infinity is in some ineffable way
made finite to God, for it is comprehensible by His knowledge.(Augustine
1993, Book XII., Chapter 18.))

According to this conception, the property ‘n is one member of a twin prime-
pair’ is for God as simple as for us the property ‘n is a prime number’: He can
decide whether it holds for infinitely many numbers or not. He can perhaps
“see” some higher-order structure which decide the matter (as in the case of
Fermat’s last theorem there are structures revealed by the theory of analytic
functions that decide that a property holds for all natural numbers bigger than
2). But is it really the caser Is every property of natural numbers such that it
is in principle possible ‘“making it finite”’—deciding in finite steps, whether it
holds for infinitely many numbers or not? If there is a property F' for which even
God has no other choice in order to decide whether it holds for infinitely many
numbers than to check ““all”’ the numbers one after another, then the sentence
‘there are infinitely many numbers 7 for which F'(n) holds’ is a good candidate
for being absolutely undecidable.

We can argue that—pace Augustine—in this case even God cannot determine
the truth value of this sentence (but He would know #af). Such a sentence
would then be per definitionem absolutely undecidable, and as such, it would
signal the presence of a real gap “in the world™.

4 INFINITE TASKS

What makes it impossible even for God to run through an infinite series of
computations? The strongest argument can be extracted from the paradoxes of
super-tasks. 'T'he classic example of these paradoxes is Thomson’s lamp.

There are certain reading-lamps that have a button in the base. If the lamp is
off and you press the button the lamp goes on, and if the lamp is on and you
press the button the lamp goes off.

Suppose now that the lamp is off, and I succeed in pressing the button
an infinite number of times, perhaps making one jab in one minute, another
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jab in the next half-minute, and so on. . . After I have completed the whole
infinite sequence of jabs, i.e., at the end of two minutes, is the lamp on or off?
It seems impossible to answer this question. It cannot be on, because I did not
ever turn it on without at once turning it off. It cannot be off, because I did in
the first place turn it on, and thereafter I never turned it off without at once
turning it on. But the lamp must be either on or off. T'his is a contradiction.’

One lesson from the paradox is simply this: carrying out a super-task is
conceptually impossible. For “at the end” of the infinite series of tasks, there
could be a discontinuity which cannot be explained. Russell famously called
it only “medically impossible” running through the whole expansion of 7, see
(Russell 1953, 143.). By contrast, Michael Dummett argues that “the reason why
we cannot survey an infinite totality is not the deficiency of human capabilities:
it is that it is senseless to imagine an infinite task completed” (Dummett 2006,
70-71; the italic is Dummett’s).

Arithmetic can be a natural realm of super-tasks. If there is a property F' of
natural numbers for which the truth value of F(n) for each number 7 can be
determined by finite computation but there are ““absolutely’ no general method
for determining whether F'(n) holds for infinitely many numbers or not then
even a “Divine Arithmetician” who can carry out a computation “infinitely
quickly” cannot determine the truth value of the statement #here are infinitely
many n_for which F holds or, of the statement there are infinitely many n for which
F does not hold. For to decide these statements, She has to check every number
n, that is, by running through an infinity of tasks. And this is impossible—even
for the Divine Arithmetician. The reason is that the same kind “‘discontinuity’
would arise as in the case of the Thomson’s lamp. For suppose the “prover”
has a white paper. After checking F'(0), she paint it black; then after checking
F(1) she paint it again white; and so on. (If she can decide whether F'(n) is true
or false then manipulating the paper is only a simple extra.) What color will be
the paper after checking all of the natural numbers? There is no answer—the
super-task cannot be carried out.”

®Thomson (1954), cited in (Sainsbury 2009, 12.). The paradox resembles that of the
staccato run, a variant of Zeno’s Racetrack paradox. In the staccato version the runner - say,
Achilles - runs for half a minute, then pauses for half a minute, then runs for a quarter of a
minute, then pauses for a quarter of a minute, and so on ad infinitum. At the end of two
minutes he will have stopped and started in this way infinitely many times. Each time he
pauses he could perform a task of some kind. Then at the end of two minutes he will have
performed infinitely many of these tasks. On the staccato run and other paradoxes of the
infinite, see (Moore 1990).

Tt is a (super-)task for the philosophers of time to explain exactly what makes it
impossible for (even) the Divine Arithmetician to run through an infinite series of tasks. For
if the continuum of time has the structure—say—of the real numbers than for ‘“‘someone”
who could count with no speed limit, it may be possible to determine whether F'(0) holds or
not in a minute, F'(1) in half a minute, F'(2) in a quarter of a minute and so on. . .
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26 RUZSA’S WORK

If p is such a sentence then it may happen that God does not know whether
it is true or false. (But even in this case He knows #«z.) And in this case we can
call 2 a rea/ truth value.

5 WHAT WOULD RUZSA SAY

Without any doubt this argument would not affect Ruzsa’s philosophical
position. If there was a knock-down argument against his—Platonist—view
from the standpoint of the constructivists and the intuitionists, it would not be a
philosophical argument like the preceding one. And I can imagine Imre Ruzsa
stamping his foot saying: “‘after all, there are infinitely many n for which F'(n)

23 >k

is true or there are only finitely many such n, there is no third possibility”.
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