RoBiIN HIRSCH

Modal Logic and Relativity

Abstract. We argue that modal logic is the natural logic to use to reason
about relativity theory. We define a complete modal axiomatisation of the
kinematics of special relativity theory.

Relativity "T'heory, in its most general sense, rejects the notion of absolute
space. In Relativity "I'heory statements such as “this rod is one meter long’ are
frowned upon, rather we should say “‘this rod is one meter long when measured
in this frame of reference”. When devising a logic to reason about relativity
theory, it is therefore natural to adopt a modal logic where every statement has
an implicit ‘point of view’. In that sense, a modal logic might be more true to
the subject matter of relativity theory. We do not claim that such an approach
will in itself provide new technical results in relativity theory, but apparent
paradoxes and other conceptual difficulties with relativity theory might be more
easily avoided in a modal setting. A second motivation for modal logic is that the
complexity of reasoning in a modal logic can often be lower than with first-order
logic. "T'hirdly, the currentarticle is only an initial step and we believe that modal
logic should be used to reason about general relativity where it is even more
important to work in a local framework. In this article we will consider how a
modal logic for special relativity theory might be devised.

A fundamental concept in relativity theory is that of the observation. For
Einstein, and his group of followers in the Vienna Circle, the precise nature
of an observation was of great importance. In Einstein’s original paper on
Special Relativity (Einstein 1905), he takes care to clarify the meaning of words
like “time”, “simultaneous’, “length”, etc. by replacing them by statements
concerning observers and observations. L.ater, l.ogical Positivists formulated the
verification principle, which stated that a proposition could be held to be true to
the extent that it could be tested by experiments and observations. The critical
thing about observations in relativity theory is that what is observed depends
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224 FOUNDATIONS OF SCIENCE

not only on the event but on the observer too. Later, we will define a modal
logic with a Kripke semantics in which each observer is a Kripke world.

One intriguing feature of observers is that they act both as subjects and as
objects—they see, but they can also be seen. In Einstein’s original paper, he
refers to an observer as ‘“‘the man at the railway-carriage window’’, suggesting a
point-like body moving through space. In most presentations of relativity theory,
an observer is a point-like body with its own world line in 4D spacetime. "T'his
tells us that when we see an observer, he looks one-dimensional. We see the
observer’s time axis, but we do not see his space axes. However, from his point of
view, an observer can see various events taking place at various spacetime points
distributed throughout the four dimensions of spacetime. Indeed, when we
think of an observer as a subject, it is better not to think of an individual point-
like body, but a whole team of colleagues arranged in a grid in three-dimensional
space, not moving relative to each other over time, who send messages to each
other (or perhaps to a central control centre) about their immediate observations.
But as we mentioned, only one member of the team of observers is directly
visible to observers from other reference frames. "T’hese two aspects of observers
are related in (Andréka & /. 2010) by an axiom that requires that all observers
see themselves at the space origin of their reference frame, at all times, i.e. their
world line is the time axis.

Here we consider two different applications of modal logic to special relativity
theory: the first approach has to do with modal frame definability, and the second
uses model definability. To take a simple and perhaps more familiar example of
frame definability, the logic S4 with axioms {{(p — ¢) — (Op — Og), Op —
p, Op — OOp} and inference rules modus ponens and necessitation defines
the set of all validities over Kripke frames whose accessibility relation is reflexive
and transitive, that is, S4 defines the validities of the class of reflexive transitive
frames. Furthermore, if these axioms are valid over any Kripke frame (W, R),
then R is transitive and reflexive over W, i.e. S4 defines the class of reflexive
transitive frames. For model definability, if we take the class of reflexive
transitive frames as given, the formula O(p — ¢—p), which is not valid over any
frame, defines those models where p is never ‘eventually true’.

For special relativity, the frame definability approach has already been
considered. A Kripke frame may be defined whose Kripke worlds are the points
of a four-dimensional Minkowski spacetime and where the accessibility relation
is “‘can send a signal to”” and the problem is to define a modal logic that derives
all modal formulas valid over frames with this accessibility relation. If we require
that signals travel at less than the speed of light and that a signal may be sent
from a spacetime point to itself (reflexivity of the accessibility relation) then
the set of modal validities is S4.2 (Goldblatt 1980; Shehtman 1983), the logic
obtained by adding the axiom QUp — [OOp to the axioms of S4. However,
S4.2 does not define this class of four-dimensional models, as the same set of
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validities hold over Minkowski spacetime of dimension 2, 3, ..., over Galilean
models or even over models with discrete time. S4.2 actually defines the class
of all reflexive, transitive and directed frames. If you consider an irreflexive
accessibility relation “‘can send a signal to a different point” then modal logic
can be more discriminating, however, the purpose of all this is to axiomatise the
validities of the given accessibility relation, it does not express the lengths of
rods or how they may be transformed when viewed by another observer.

The main focus of the current article is about model definability. We seek a
modal logic which is able to express the kinds of observations we might want
to make in four-dimensional spacetime, and it should also be able to express
the kinds of observations we might expect other observers to make. It can be
considered as part of a line of research which seeks to provide simple logical
axioms from which the main theorems of relativity theory can be derived. Many
such logics have been devised, we make no attempt to survey them here, see
(Andréka & /. 2000) for an extensive survey. In general, previous attempts to
provide a logic for relativity adopt a first-order, or in many cases second-order
(e.g. the axiom of continuity in (Schutz 1997)) logic. Consequently they adopt
Tarskian semantics. Global variables may be used to denote bodies, field values
etc. Instead of the Newtonian statement “Body b is at (x,y, z) at time t”, the
dependence of an observation on the observer is expressed by an observation
predicate W, so that W(o,b,z,y, z,t) expresses “observer o sees body b at
(z,y,2,t)".

In a modal logic in which the role of Kripke world is taken by an inertial frame
of reference, the dependence on the observer will be suppressed. The modal
operator { will permit us to transfer from one intertial frame to another. We will
take as given a frame in which the accessibility relation is the universal relation.
But what language should be adopted to describe the observations made within
a single reference frame? In order to keep the presentation fairly general, here
we use a two sorted first-order logic with one sort for bodies (B) and the other
for quantities (Q)). Variables of sort Q will be used to record coordinate values.
We may use subscripts b, ¢ for constants, functions and predicates to indicate
their sort. The predicate See 4, requires four coordinates and one body and tells
us that this body is observed at the four coordinate values. We avoid a number
of difficulties that sometimes arise with modal first-order languages by requiring
that the first-order variables have the same domain at each world of a structure.

The Language

Variables: b,c,... (type B), z,y,z,...(type Q)
Constants/functions: 0,1,4+, X (type Q)

Predicates: Phy, Obsy, <44, Seeqp

Formulas: ¢ = Atom|—=|(P1 V ¢9)|Fvard|Oe
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"The following abbreviations will be useful later.

vel(b) = (vo,v1,v2) means 3T Yy
[See(@b) =D y =7+ A X (U(), V1, V2, 1)]

|(zo, 1, 22)] means \/m

Structure As promised, our semantics will be based on Kripke-like structures,
where the Kripke worlds are inertial frames of reference. Thus a structure will
have the form

(W, B, F,I,WW x W)

where W is the set of Kripke worlds, 3 is the set of bodies, F' is the set
of quantities, I interprets variables as elements of § or F' (depending on the
sort of the variable), 0,1, 4, X, < as functions/predicates on F', and [ satisfies
I(Ph) UI(Obs) C 3, I(See) C W x F* x 3. As we mentioned before, the
sets 3, I are the same for all worlds (constant domains). Further, all constants,
functions and predicates in our language are rigidly designated, except for See 4,
which is expected to vary from one world to another. Given such a structure, we
may evaluate formulas in the obvious way. Let S = (W, 8, F, I, W x W) and

we W,
S = Obs(b) <= I(b) € I1(Obs)
SEt<s <<= (),I(s) € lI(<)
S,w |= See(x,y,z,t,b) <— (w,I(z,y,2,t,b)) € I(See)
S,wEgEdrg — W,B,F,I''WxW),wk¢

(some I’ that agrees with I except per-
haps on z)

SswEQOP < S,vkE¢(someve W)

Axioms for defining class of structures [J-V-closure of:

(1) (F,0,1,4, x,<) is a Real Closed Field, i.e. an ordered field where
every non-negative element has a square root (Euclidean) and every
polynomial of odd degree has a root.

In many presentations of special relativity, the ordered field is only required to
be Euclidean and this suffices for most of our results. Here we assume that the
field is a Real Closed Field in order to obtain a decidability result. Note that
all Real Closed Fields are elementarily equivalent to the real numbers ('T'arski
1951).

(2) Observers are inertial: Obs(b) — Jvgvyvy(vel(b) = (vg, v1,v2))
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(3) Speed of light is constant: Ph(b) — |vel(b)| =1
(4) 'T'here is an observer on every ‘slow line’, there is a photon on every ‘fast
line’.
|(vo, v1,v2)] <1 — 3b(Obs(b) A See(T, t,b) A vel(b) = (vo, v1,v2))
|(vo, v1,v2)] =1 — Fb(Ph(b) A See(Z, t,b) A vel(b) = (vg, vy, v2))

In view of the last axiom, for each observer and for all x,y, z,t € F', there are
bodies by, by, b3 moving on distinct lines that meet uniquely (pairwise and jointly)
at (x,y, z,t), according to that observer. T'he triple e = (by, by, b3) is called an
event, we may write See(z, y, z, t, €) instead of /\i=172‘3 See(z,y, z,t,b;).

(5) All observers see the same events:
See(x,y, z,t,e) — O3x,y, z,t See(x,y, 2,t, ).
(6) Symmertry. Let ey, e1, €, €] be events.

/\ (See(0,0,0,4,e;) A See(x!, y, 2, t),€})) —
i=0,1
O( /\ (See(0,0,0,4,¢}) A See(xs, i, 2, tir €5)) — (t =ty = t1 — to))

i=0,1

(7) Tsotropy: (A, ;-4 (|1Zi — 7| = [T, — T}|) A\, See(i, £, b:))

—
<>(/\i<4 See(f& t/v bt))
where ; is a triple of three spatial coordinates, for ¢ < 4.
The symmetry axiom implies that any two observers see each other’s clocks
slow at the same rate. 'T'his usefully rules out a situation where one observer
measures in seconds while another observer measures in years, it also rules out
the situation where one observer measures time going forward while the other
measures time going backwards. The isotropy axiom relates to the difference
between the one dimensional appearance of observers and the four dimensions
that an observer sees. Recall that when we see an observer, we see only his time
axis, we do not see the orientation of his spatial axes. 'T'he isotropy axiom states
that if T can see four bodies at Ty, . .. , T3 at time ¢, and if the spatial Euclidean
distances between the T; are identical to the distances between the T, then
another observer can see the same four bodies at Ty, ..., T3 at time t'. T can
transform myself to the second observer by performing an isometry of the spatial
coordinates followed by a time translation. Let Az be the set of six axioms, just
defined.

Having defined the semantics of our language and the axioms for our logic,
we now briefly evaluate our system by three criteria: how expressive is the
language? are the axioms complete over an appropriate class of structures? what
is the complexity of the satisfiability problem for formulas in our language,
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over Minkowski structures? As far as expressive power is concerned, it seems
that this language is capable of expressing most of the technical statements
you find in a textbook on special relativity. For example, given a velocity
vector U = (vg, v1,v2) and any formula 1) we may write Qzt) for 3b(vel(b) =
v A Q(vel(b) = 0 A v)), which means “there is a frame moving with velocity
v and % is true in that frame”. Our language should be able to express the
purely kinematic properties of special relativity. However, our language can only
express kinematic statements, we are not able to express properties relating to
mass, energy or electric charge, for example.
Next, we assess the deductive strength of our axioms.

Lemmal. LatS = (W, 5, F, I, W x W) |= Axioms 1--6 and let w,v € W. There
is a Poincaré map p - F* — F* (an isometry with respect to Minkowski distance in F*)
such that

(1) S,w = See(w,y,2,t,b) < S,v [ See(p(r,y, 2,1))

PROOF:

A map p: F* — F* satisfying (1) is uniquely defined, since S = 4, 5.
We have to show that p is a Poincaré map. By axioms 2 and 3, for any
b € I(Obs) U I(Ph), the set {(x,y, z,t) : S,w |= See(zx,y, z,t,b)} isa
line of F* and by axiom 4 each light line of F'* is the trace of a photon
and each slow line is the trace of an observer. Thus p maps lines to
lines and maps light lines to light lines. By the Alexandrov-Zeeman
theorem, p is a Poincaré transformation followed by a dilation and a field
automorphism induced transformation. By axiom 6, the dilation and
field induced transformations must be the identity transformations. O

"I'he isotropy axiom, axiom 7, is needed to complete the proof of the next lemma.

Lemma 2. Ler S | Ax, S’ = Ax be moo models of our axioms, where S =
W,B, F,I,W x W) and §' = W', I',F"\W' x W'). There are maps
W W' j:8— 0 andk : F — F' such that k is an ordered field embedding,
and for allw € W, b € (3,

S,w = See(x,y,2,t,b) <= S’ i(w) = See(k((x), k(y), k(2),k(t), (b))

Next, we define a standard model M. The set of worlds of M is the set of
Poincaré transformations of R*. If p is a Poincaré transformation and [ is a line
then we write p(l) for the image of [ under p, note that p(l) is always itself a
line. The set of bodies of M is L, the set of lines of R* of gradient at most one,
observers are the slow lines of gradient strictly less than one and photons are the
lines of gradient one. T'he interpretation I in the standard model is given by

(p,z,y,2,t,b) € Iny(See) <= (,y,2,t) € p(b)
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Theorem 1.
(1) M is a model of Ac.

(2) Forany formula @ of our language we have
ME¢ <= Azt ¢

T'he first part can easily be proved, simply by verifying that each of our
axioms holds in M. The second part follows from lemma 2. Thus our axioms
are complete for the validities of the standard model.

We now consider the decidability of the following decision problem: Is modal
formula ¢ satisfiable over models of Ax? If we allow arbitrary bodies to exist
in our models, then this problem is undecidable. We may reduce the tiling
problem to this satisfiability problem by considering each tile as a body that may
be observed at positions with integer coordinates and where the adjacencies are
expressed by universally quantified modal formulas. This undecidability arises
purely from the first-order part of our language and can be proved without using
the modalities. However, if we restrict to bodies whose paths are described
by polynomial equations, then the problem becomes decidable. Since we
have a universal modality, an arbitrary modal formula ¢ may be converted to
a disjunction of clauses of the form Oy A A, Oy, where 9, 1); are non-modal.
Such a clause is satisfiable iff 1 A 1); is satisfiable, for each 7. By our assumption
about the trajectories of bodies, such a non-modal formula may be translated into
a first-order formula in a language with a binary predicate < and functions +, X.
Tarski showed ('T'arski 1951; Canny 1988), by elimination of quantifiers, that
the satisfiability problem for this language over real closed fields is decidable,
although the complexity is rather high (at least double exponential). By imposing
restrictions on the use of the first-order connectives in our language, satisfiability
problems with lower complexities may be obtained.

Questions

e As an alternative to the current exposition, consider a modal logic for
special relativity theory where an observer sees a body not merely as a
line in four-dimensional space but as a line with a spatial orientation, so
at an instance we see a point and three spatial unit vectors.

e Can we define models of special relativity without variables? One
approach would be to use a propositional modal logic with S5 modalities
for moving in the directions of each of the spatial unit vectors and a
temporal modality for moving in time, along with the already included
modality for changing reference frame. It is known that this class
of frames cannot be finitely axiomatised and the equational theory is
undecidable (Hirsch & 4/ 2002), but here we are more interested in
model definability.
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e Can we use a similar framework to define a modal logic of general
relativity? A Kripke world could be considered as an open neighbourhood
in a coordinate system and the whole Kripke frame would correspond to
a manifold. An extra modality to transfer to an adjacent neighbourhood
would be needed. See (Shapirovski and Shehtman 2005) for useful
results on modal logics of regions in Minkowski spacetime.
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