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Extension of Stability Radius to Neuromechanical
Systems with Structured Real Perturbations

David Hajdu, John Milton and Tamas Insperger

Abstract—The ability of humans to maintain balance about
an unstable position in a continuously changing environment
attests to the robustness of their balance control mechanisms
to perturbations. A mathematical tool to analyze robust sta-
bilization of unstable equilibria is the stability radius. Based
on the pseudospectra, the stability radius gives a measure
to the maximum change of the system parameters without
resulting loss of stability. Here we compare stability radii for a
model for human frontal plane balance controlled by a delayed
proportional-derivative feedback to two types of perturbations:
unstructured complex and weighted structured real. It is shown
that 1) narrow stance widths are more robust to parameter
variation; 2) stability is maintained for larger structured real
perturbations than for unstructured complex perturbations; and
3) the most robust derivative gain to weighted structured real
perturbations is located near the stability boundary. It is argued
that stability radii can effectively be used to compare different
control concepts associated with human motor control.

Index Terms—robustness, stability radii, neural engineering,
time-delay systems, neurofeedback, biomechanics.

I. INTRODUCTION

THE high morbidity and mortality associated with falls
in the elderly provides a strong motivation to understand

the nature of the mechanisms that maintain human balance [1],
[2]. One challenge is to uncover the peculiarity of the control
algorithm that is capable of stabilizing unstable equilibria in
the presence of delay. However once stabilization is achieved
a second challenge arises, namely, how robust is the control in
the face of changes in system parameters that arise because of
the effects of external perturbations and changes in posture?

The effects of external perturbations on the nervous sys-
tem are most often manifested through effects on systems
parameters. Periodic perturbations, e.g. parametric excitation,
can stabilize an inverted pendulum [3] and prolong the time
that a stick can be balanced on the fingertip [4]. Random
perturbations, namely parametric noise, underlie the sponta-
neous fluctuations in pupil size [5] and has important roles in
motor [6], [7], [8] and balance [9], [10], [11], [12] control.
For balance control during quiet standing, changes in control
parameters can be associated with changes in stance width
[13], [14], [15].

In robust control theory two more general concepts are used
to describe the effects of parameter perturbations on stability.
First, the parameter perturbations can be real or complex
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valued [16], [17], [18]. Second, the magnitude of the effects of
perturbations on system parameters may be unstructured, i.e.
unrelated to the unperturbed system parameters, or may be
structured or weighted structured to reflect a dependence on
system parameters [19], [20], [21]. Physical interpretation of
complex-valued perturbations of systems with real parameters
is controversial, since the real characteristic roots can become
complex without a conjugate pair. Unstructured perturbations
can lead to irrelevant or non-physical effects. Consequently it
is important to determine the robustness of stability for balance
control to structured real perturbations.

In a seminal paper, Bingham and Ting [14] introduced
the techniques of pseudospectral analysis and robust control
to study the effects of unstructured complex perturbations
on the control of human balance. The key concept is that
of the stability radius [19], namely the magnitude of the
change in some system parameters, such as the inertia or
the geometric dimensions, required to destabilize the control
mechanism. In [14], a model of human frontal plane balance
with delayed proportional-derivative feedback [13], [22], [23]
subjected to unstructured complex perturbations was analyzed.
Surprisingly, it was found that the stability radius increases
with decreasing stance width and, for a given stance width,
the more robust gains are located in the middle of the stable
region in the unperturbed parameter space.

Here we extend this approach by computing the stability
radii for the same model for balance control subjected to
weighted structured real perturbations. Our analysis confirms
the observation that the maximum stability radius increases
with decreasing stance width. However, there are two impor-
tant caveats. First, the maximum perturbation required to cause
instability is approximately 6-10 times larger than obtained
for complex unstructured perturbations. In other words, the
stability radii computed by Bingham and Ting [14] are very
conservative. Second, the most robust derivative gain is located
very close to the lower stability boundary. This observation is
consistent with previous suggestion that feedback gains for
human balance control may be tuned very close to stability
boundaries [10], [24].

The outline of this paper is as follows. In Section II, we
present the model for human frontal plane balance control
developed by Bingham and co-workers [13]. The concepts
of pseudospectra and stability radius are briefly reviewed in
Section III with special attention to unstructured complex and
weighted structured real perturbations. Then, in Section IV, we
compare the stability radii calculated for the balance model
subjected to unstructured complex perturbations and to those
obtained for weighted structured real perturbations. Finally, we
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discuss further applications of these techniques to the study of
human balance control.

II. DYNAMICAL MODEL

We investigate the mechanical model of frontal-plane bal-
ance control introduced in [13]. The corresponding four-
bar linkage mechanism is shown in Fig. 1. The outer links
represent the legs and the link in the middle replaces the
torso. The center of masses are indicated by gray dots. The
stabilizing joint torque T , which is a result of a feedback
mechanism, is acting at the hips. The anthropometric data for
the four-bar linkage model is given in Table I according to
[13]. The two parameters of interest are the hip width W and
the stance width S. Following [13], the feedback delay is set
to τ = 150ms.

A. Linearized equation of motion

The equation of motion can be derived using the Lagrange’s
equations of the second kind. According to [13], the general-
ized coordinate of the one-degree-of-freedom mechanism is
taken to be the angle ϕ1(t). Introduce perturbation q(t) =
ϕ1(t) − ϕ∗1, where ϕ∗1 corresponds to the upper equilibrium
of the body. The linearized equation of motion can then be
written as

Ĩ q̈(t) + G̃ q(t) = Q(t), (1)

where the reduced inertia Ĩ and the gravitational term G̃ are
calculated as

Ĩ = 2(mLL
2 + IL) +

mT(hTα−Wβ)2 + ITα
2

W 2
, (2)

G̃ = −g
(
mT(hTα)

2

W 2
− (2lmL + LmT)(αβ

2 − L2S)

LWβ

)
(3)

with
α = S −W and β =

1

2

√
4L2 − α2. (4)

Since G̃ < 0, the system is unstable when Q(t) ≡ 0. Assum-
ing delayed proportional-derivative feedback mechanism, the
generalized force Q(t) can be written as

Q(t) = −Ci(kpq(t− τ) + kdq̇(t− τ)), (5)

where kp and kd are the proportional and derivative control
gains, τ is the reflex delay and Ci is a constant, which depends

TABLE I
ANTHROPOMETRIC DATA FROM [13].

Description Symbol Value Unit
Nominal human mass m 70 kg
Nominal human height h 1.8 m
Leg mass mL 0.161m kg
Leg length L 0.53h m
Leg center of mass l 0.293h m
Leg inertia IL 0.03mh2 kgm2

Trunk mass mT 0.678m kg
Trunk center of mass hT 0.108hT kgm2

Trunk inertia IT 0.02mTh
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Fig. 1. The frontal-plane model of human mediolateral balance control
including a four-bar linkage mechanism according to [13].

on the choice of the feedback signal. If the hip’s angular
position and velocity is used as feedback signal (i.e., if the
actual joint torque is T (t) = kpϕ2(t− τ)+kdϕ̇2(t− τ)), then

Ci = Chip :=
S

W

S −W
W

, (6)

where S is the stance width and W is the hip width. If the
center of mass excursion is used as feedback signal, then

Ci = Ccom :=
S

W

hTLmTα−W (LmT + 2lmL)β

LW (2mL +mT)
. (7)

In [13] and [14], these two types of feedback signals were
analyzed. Note that the case Ci = Chip presents a singularity
when S = W since in this case ϕ1 = ϕ3 while the trunk is
always vertical (ϕ2 = 0). Therefore, here we rather concen-
trate on the control of the center of mass. There is a debate
whether the center of mass position is directly controlled by
the neural system or it is controlled indirectly through the
body geometry [25]. Although this question has important
neurological implications, from a mathematical point of view,
indirect control of the center of mass for small displacements
corresponds only to a reparametrization of the equations
associated with direct control. The fact that many sensory
organs for balance are in the head suggests that the control
of the position of the head is also a possible control strategy,
namely

Ci = Chead :=
S

W

(
αhH
W
− β − α

W

)
, (8)

where hH indicates the distance of the head from the middle
of the hip.

As in [14], it is assumed that the delay and the control
gains are invariant to system changes (see also [15]) and only
the parameters of the mechanical model vary. The variations
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in the model parameters can be represented as uncertainties
in the reduced inertia Ĩ , the gravitational term G̃ and the
configuration-dependent coefficient Ci. In order to concentrate
the uncertain parameters, Eq. (1) is rearranged in the form

Iq̈(t) +Gq(t) = −kpq(t− τ)− kdq̇(t− τ), (9)

where

I =
Ĩ

Ci
and G =

G̃

Ci
. (10)

Now all of the uncertainties are included in the normalized
parameters I and G. The equation of motion can then be
written in the first-order form

ẋ(t) = Ax(t) + BKTx(t− τ) (11)

with x(t) = (q(t), q̇(t))T and

A =

(
0 1
−GI 0

)
, B =

(
0
1
I

)
, K =

(
−kp
−kd

)
. (12)

We are interested in the robustness of this system against
changes in the parameters I and G.

III. ROBUST STABILITY ANALYSIS

In [14], the robust stability of system (11) was determined
using the complex stability radius associated with the perturba-
tion of matrix A. This corresponds to perturbation of each ele-
ments of A by a complex number (including the entries 0 and
1, which shall be invariant to system changes). This approach
gives a conservative estimate of the actual robust stability
associated with structured real perturbations. Furthermore,
uncertainties of the mechanical parameters affects not only
the system matrix A but also the input matrix B. This effect
was also neglected in [14]. In this section, the robust stability
analysis is presented in case of real-valued changes of the
parameters I and G. First, the ε-pseudospectrum is reviewed,
then unstructured complex, weighted structured complex, un-
structured real and weighted structured real stability radii are
given step-by-step according to the literature [17], [18], [20],
[21].

The ε-pseudospectrum σε of a matrix A is defined as

σε := {λ ∈ C : λ ∈ σ(A + δA), where ‖δA‖ < ε}, (13)

where σ denotes the spectrum, ‖·‖ is an arbitrary matrix norm
and δA is a perturbation matrix [26]. It is known, that Eq. (13)
is equivalent to

σε := {λ ∈ C : ‖R(λ,A)‖ > 1/ε}, (14)

where R(λ,A) = (λI−A)−1 denotes the corresponding
resolvent operator with I being the identity matrix. The ε-
pseudospectrum plays an important role in the definition of
stability radius of time-delay systems.

A. Unstructured complex stability radius

Perturbations of the system matrix A is characterized by the
perturbation matrix δA. The corresponding perturbed equation
reads

ẋ(t) = (A + δA)x(t) + BKTx(t− τ). (15)

According to the stability radii theorem (see, e.g., [17]), the
unstructured complex stability radius corresponding to the
complex-valued perturbation of the entire system matrix A
reads

rAC =

(
sup
ω≥0
‖(iωI−A−BKTe−iωτ )−1‖2

)−1
, (16)

where ‖ · ‖2 denotes the spectral norm. If the nominal system
with δA = 0 is stable, then the perturbed system with any
δA satisfying the condition ‖δA‖2 < rAC is stable, too.
Consequently, the robust stability boundaries for perturbations
of different sizes are given by the contour curves of rAC .

In case of perturbations of the input matrix B by δB, the
governing equation reads

ẋ(t) = Ax(t) + (B + δB)K
T
x(t− τ). (17)

The corresponding complex stability radius reads

rBC =

(
sup
ω≥0
‖e−iωτKT(iωI−A−BKTe−iωτ )−1‖2

)−1
.

(18)

The unstructured complex stability radius corresponds to
a complex perturbation of all the elements of the matrices
A and B (even the elements 0 and 1), and is therefore a
conservative estimation of the actual stability radius. A more
realistic stability radius is the weighted structured stability
radius, where each of the system parameters I , G are perturbed
individually.

B. Weighted structured complex stability radius

The characteristic equation of (11) on the imaginary axis
can be written in the form

D(ω) = det(iωI−A−BKTe−iωτ )

= I(iω)2 +G+ kpe
−iωτ + kdiωe

−iωτ . (19)

In case of weighted perturbations of the system parameters
as I + δI and G + δG, the perturbation matrix should be
introduced

∆ =

(
wI δI
wG δG

)
, (20)

where wI and wG are the weights of the perturbations with
respect to the nominal inertia I and the nominal gravitational
term G, respectively. If |δI| < εI |I| and |δG| < εG|G|, where
εI and εG are the radii of uncertainties, then the corresponding
weights are

wI =
1

εII
, wG =

1

εGG
. (21)

For instance, if I is perturbed by maximum 2%, then wI =
(0.02I)−1. If wI → ∞ or wG → ∞ then no perturbation
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on I or on G is allowed [20]. This formalism allows the
perturbations satisfying

(‖∆‖2)2 =

∣∣∣∣ δIεII
∣∣∣∣2 + ∣∣∣∣ δGεGG

∣∣∣∣2 ≤ 1. (22)

Thus, the allowed perturbations lie within an ellipse of main
axes εII and εGG in the plane (δI, δG).

Following [20], the complex stability radius corresponding
to the perturbation matrix ∆ can be calculated as

r∆C =
1

supω≥0 ‖D(ω)−1w(ω)‖2
, (23)

where w(ω) is the complex weight function

w(ω) =
(

(iω)2

wI

1
wG

)
. (24)

If the nominal system is stable and r∆C < 1, then the
system is robustly stable for any perturbations satisfying (22).
Consequently the robust stability boundary associated with the
uncertainty radii εI and εG is given by the contour curve
r∆C = 1. Contour curves r∆C = z with any z ∈ R+ give
the robust stability boundaries associated with the uncertainty
radii zεI and zεG.

C. Unstructured real stability radius

If only real entries of the perturbation matrix δA in (15)
are allowed, then the corresponding real stability radius can
be calculated following [17] and [18] as

rAR =
1

supω≥0 µR(W(ω))
, (25)

where

µR(W(ω)) = inf
γ∈(0,1]

σ2

(
ReW −γImW

γ−1ImW ReW

)
(26)

and

W(ω) = (iωI−A−BKTe−iωτ )−1. (27)

Here σ2 denotes the second largest singular value.
Similarly, in case of real-valued perturbation of the input

matrix B, the real stability radius reads

rBR =
1

supω≥0 µR(W(ω))
, (28)

with (26) and

W(ω) = e−iωτKT(iωI−A−BKTe−iωτ )−1. (29)

D. Weighted structured real stability radius

Weighted structured real stability radius is a straightforward
combination of unstructured real [17], [18] and weighted struc-
tured complex [20], [21] stability radii and can be calculated
as

r∆R =
1

supω≥0 µR(W(ω))
, (30)

where

µR(W(ω)) = inf
γ∈(0,1]

σ2

(
ReW −γImW

γ−1ImW ReW

)
(31)

and

W(ω) = D(ω)−1w(ω). (32)

Here, ∆ is defined as in (20). Similarly to the previous cases,
the robust stability boundaries associated with the uncertainty
radii εI and εG is given by the contour curve r∆R = 1, while
the contour curves r∆R = z, z ∈ R+ give the boundaries
associated with the uncertainty radii zεI and zεG.

IV. RESULTS

Stability boundaries of the nominal system (without pertur-
bation) in terms of the delayed feedback gains can be found in
[13]. Robust stability boundaries in case of complex unstruc-
tured perturbation of the system matrix A were provided in
[14]. Here, robust stability analysis is presented for real-valued
perturbation on the system parameters I and G. The stable
regions of the nominal system in the parameter plane (kp, kd)
were determined numerically using the semi-discretization
method [27]. Stability radii and the robust stability boundaries
are determined only in the stable regions.

In order to be able to compare the unstructured complex
stability radius with the weighted structured real one, we
introduce the relative stability radii. For complex perturbation,
we use the ratio of the norm of the perturbation and the norm
of the state matrix:

r̃AC :=
rAC
‖A‖2

. (33)

This number gives the relative complex perturbation that is
allowed on the system matrix A without losing stability. For
weighted structured real perturbation, we set the uncertainty
radii to εI = 1 and εG = 1 and introduce the relative stability
radius as

r̃∆R := r∆R

∣∣∣εI=1
εG=1

. (34)

This number gives the relative real perturbation that is allowed
on the inertia I and the gravitational term G without loosing
stability. Now, the relative stability radii r̃AC and r̃∆R can
directly be compared.

Figure 2 compares the robust stability boundaries and
the pseudospectra calculated using complex unstructured and
real weighted structured perturbations. Panel a) in Fig. 2
shows the robust stability boundaries for complex unstruc-
tured perturbations of the system matrix A using the same
concept as in [14]. The equation under analysis is given in
the first order form (11) and the robust stability boundaries
are determined using the complex stability radius given by
(16). Different contour curves associated with relative stability
radii r̃AC = 0, 0.02, . . . , 0.08 are presented. These contour
curves corresponds to 0, 2, . . . , 8% complex perturbation of
the system matrix A.

Panel b) in Fig. 2 illustrates the pseudospectrum associated
with the control gains kp = 1140 and kd = 290. This point
is indicated by point A in panel a). The three rightmost
characteristic roots are indicated by black dots and their
pseudospectra associated with different perturbation levels are
indicated by thin lines. The relative complex stability radius
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Fig. 2. Stability chart and corresponding pseudospectra with stance width
ratio S/W = 1.2: a) complex stability radii; b) complex pseudospectra at
parameter point A; c) real stability radii; d) real pseudospectra at parameter
point B.

at this parameter point is r̃AC = 0.041, i.e., the correspond-
ing pseudospectrum just touches the imaginary axis. This
indicates that there exist a complex perturbation δA with
‖δA‖2/‖A‖2 = 0.041 such that the perturbed system loses
asymptotic stability. Thus, a 4.1% complex perturbation of A
can already destabilize the system.

Panel c) in Fig. 2 shows the robust stability boundaries
obtained by the weighted structured real stability radius ac-
cording to (30) with εI = 1 and εG = 1. Different contour
curves indicate different relative weighted structured real sta-
bility radii r̃∆R . For instance, the contour curves r̃∆R = 0.1
indicates the robust stability boundaries corresponding to
maximum 10% perturbation of the inertia I and maximum
10% perturbation of the gravitational term G.

Panel d) in Fig. 2 shows the pseudospectra corresponding
to the same control gains as in panel b). This point is also
indicated by point B in panel c). It can be seen that the change
of the three rightmost characteristic roots for real perturbations
is qualitatively different from that of the complex perturba-
tions: the real characteristic multipliers of the nominal system
remain real and moves on the real axis as the perturbation
changes. The wandering of the complex pair of eigenvalues
is also different: they sharply drifts to the imaginary axis in
a specific direction. The relative real stability radius at this
parameter point is r̃∆R = 0.44. This means that the system can
loose stability if the real-valued perturbations satisfy(

δI

0.44I

)2

+

(
δG

0.44G

)2

≥ 1. (35)

In other words, larger than 44% perturbation on the inertia I
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feedback of center of mass excursion; b) position feedback of head excursion.
The uncertainties of both the inertia and gravitational terms are 20%.

or on the gravitational term G can destabilize the system. This
numerical example demonstrates that the complex stability
radius gives a strongly conservative estimate of the relative
stability radius. 4.1% relative complex perturbation on the
system matrix A may already destabilize the system, while the
size of the relative real perturbation on I and G, which gives
an unstable system, is 44%. The maximum relative stability
radii in the robust stability diagrams show a similar tendency:
r̃AC = 0.0814 while r̃∆R = 0.5801 (both points are indicated
by dots in panels a) and c) of Fig. 2).

Figure 3 shows the effect of the use of different feedback
signals. Panel a) shows the case when the position and the
velocity of the center of mass is applied as feedback signal
according to [13], [14] (Ci = Ccom). Panel b) presents the
case when the feedback signal is the position and the velocity
of the head (Ci = Chead). The uncertainty radii for both cases
are εI = 0.2 and εG = 0.2, i.e., the maximum perturbations
are 20% for both parameters. Although the robust stability
boundaries are different for the two feedback concepts, they
are similar in topology, namely, there is no choice of (kp, kd),
which can robustly stabilize the system for stance width ratios
S/W ranging from 0.7 to 1.5. This observation suggests that
the nervous system might tune control gains to accommodate
different S/W configurations.

Figure 4 shows the change of the robust stability bound-
aries under different size of perturbations. The panels can be
considered projections of the four-dimensional robust stability
diagram in the parameter space (kp, kd, εI , εG). The uncer-
tainty radius εI for the inertia is kept constant in each row,
while each column represents constant uncertainty radius εG
for the gravitational term. For instance, the case εI = 20%
and εG = 40% corresponds to perturbations which lie within
the ellipse in the plane (δI, δG) defined by (22) with main
axes 0.2I and 0.4G.

Stable regions for delayed feedback controllers are typically
bounded by a straight vertical line representing static loss of
stability and a curved boundary representing dynamic loss of
stability [28], [29]. It can be observed that the uncertainty of
the inertia shifts the static stability boundary to the right, but
does not affect significantly the dynamic stability boundary.
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The uncertainty in the gravitational term shifts drastically
the dynamic stability boundary, but does not affect the static
stability boundary. In case of the presented parameter combi-
nations and stance widths, robust stability boundaries are more
sensitive to uncertainties in the inertia than in the gravitational
term.

Figure 5 shows the stabilizing feedback gains and the
maximum relative stability radii for different stance width
ratios. In panels a), b) and d), e), the stabilizing feedback
gains are indicated by gray shading, the gains associated with
the maximum relative stability radii are marked by solid lines.
Panels c) and f) presents the maximum relative stability radii
as function of the stance width ratio S/W . Panels a), b) and c)
shows the results obtained by unstructured complex stability
radius according to [14], while panels d), e) and f) correspond
to the weighted structured real stability radius. For both types
of perturbations the largest stability radii are associated with
narrow stance widths.

There are two main differences between the complex and
the real stability radii shown in panels c) and f). First, the
maximum relative complex perturbation of the system matrix
A without loosing stability is less than 10%, while this ratio
for the real perturbation of the inertia and the gravitational
term ranges between 48–63%. Thus, the allowed real pertur-
bation on the actual mechanical parameters is much larger
than the complex one. Second, the most robust derivative gain
(kd) is located close to the lower stability boundary for the real
perturbation, while it is about in the middle of the stable region
for the complex perturbation. Note that the actual feedback
gains fitted to human response to perturbation are in the lower
left corner of the stable region [13], which corresponds to the
most robust control gains obtained by the real stability radius.
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Figure 6 shows simulations of the model at narrow (S/W =
0.5) and wide (S/W = 2) stance widths using the feedback
gains associated with complex stability radius rAC = 0.6.
The initial conditions for the simulations were q(0) = 0
and q̇(0) = 0.1 rad/s and Matlab dde23 solver was used to
determine time histories. These plots confirm the results by
[14]: trajectories of the center of mass are similar for different
stances while the restoring torque is significantly larger for
narrow stance. The corresponding relative complex stability
radii are r̃AC = 0.074 and 0.045, i.e., 7.4% and 4.5% com-
plex perturbations are allowed on the system matrix A. The
relative real stability radii (r̃∆R = 0.341 and 0.275) show that
these perturbations actually correspond to significantly larger
perturbations on the real system parameters: 34.1% and 27.5%
perturbations are allowed on the inertia and the gravitational
term. It can be observed that, for these parameters, the center-
of-mass trajectories are similar to the response of a critically
damped system in agreement with [14].

V. DISCUSSION

The calculation of stability radii can be used to assess
the effects of parametric perturbations on the dynamics of a
model for balance control with delayed proportional-derivative
feedback. In other words, the control gains that are essen-
tial for the maintenance of balance are the ones associated
with the largest stability radius. In a previous study [14],
it was shown that the largest stability radii in response to
unstructured complex perturbations occur for narrow stance
widths. Here we confirmed that this is also true for more
realistic perturbations and, in particular, those that take the
form of weighted structured real perturbations. However, there
are two quantitative differences between the effects of complex
and real perturbations. First, the stability radii in response to
weighted structured real perturbations are 6-10 times larger
than observed for unstructured complex perturbations. Second,
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Fig. 6. Center-of-mass trajectories for different stance widths obtained by
time-domain simulations using feedback gains associated with rAC = 0.6.

the most robust derivative gains are located closer to the
stability boundary when the parameter perturbations are real
valued. This latter observation is consistent with previous
suggestion that feedback gains for human balance control may
be tuned very close to stability boundaries in order to minimize
energy requirements for maintaining balance [10], [24].

Most individuals experience greater instability when stand-
ing with a narrow stance and are typically most comfortable
when S/W ≈ 1. Thus the observation that the stability
radius is largest for a narrow stance seems counterintuitive. As
explained in [13], the lack of robustness at wide stance is due
to the reduction in rotational inertia, while the destabilizing
gravitational moment remains nearly constant, which results in
an increased leverage of the muscle torque and hence a larger
sensitivity to parameter perturbations. It should also be noted
that the feeling of larger instability for a narrow stance is not
related to the robustness against parameter perturbations, but
rather robustness against perturbations in the state variables,
which is associated with the basin of attraction of the equilib-
rium position. For example, an important requirement for the
maintenance of balance during quiet standing is that the center
of mass must stay within the base of support located beneath
and between the soles of the feet. In mathematical terms
the base of support is approximately the basin of attraction
for the upright position [30]. A much studied example of
the effect of perturbations in the state variables on standing
balance is the ankle-hip-step strategy adopted by subjects in
response to increasingly large perturbations [31], [32], [33],
[34]. Presumably the unsteadiness felt by individuals standing
with narrow stance widths reflect the role of other corrective
mechanisms which are activated as the edge of the basin of
attraction is approached [35].

Our analysis shows that the control preserves stability even
for ≈ 50% perturbations of the inertia. This is in some sense
in agreement with the results of [36], where the effect of
adding weight and inertia on balance was analyzed during
quiet standing. They separated the effect of added inertia and
added weight and showed that adding inertia by itself had no
effect on balance while adding weight by itself had a slight

negative effect on balance. It should be emphasized that in this
paper we analyzed temporary perturbations of the inertia and
the gravitational term, which is not equivalent to permanent
change of these parameters, where the neuromuscular control
gains are already adjusted. For instance, it is known that obese
persons have a higher risk of falling than lightweight individu-
als [37]. Overweight can hardly be considered as a temporary
perturbation of the inertia since individuals can accommodate
their neural control gains continuously according to their
actual weight. In [38], a proportional stabilizing force (an
added stiffness) was applied at the hip while standing, which
is equivalent to a permanent perturbation of the gravitational
term. It was shown that subjects adjusted their control gains
to compensate for the change in the stiffness parameter.

Previous studies have emphasized that balance control
mechanisms are benefited by tuning the parameters near, or
even on stability boundaries [10], [24]. It is more efficient
to initiate quick movements from an unstable position than
from a stable one and the energy demands for such control
are relatively small. In addition, dynamical systems tuned
towards the edge of stability can exhibit a variety of complex
behaviors, collectively referred to as critical phenomena [39],
which may provide mechanisms for self-regulated balance, e.g.
on-off intermittency [10].

Many types of control mechanism have been postulated for
the stabilization of unstable positions including proportional-
derivative-acceleration feedback [40], [41], [42], intermittent
predictive control [43], [44], intermittent activation of feed-
back control [45], [46], [47], predictor feedback [48], [49]
and act-and-wait control [50]. Moreover, the effects of pertur-
bations are important for other tasks related to human balance
control during motion [51], such as stick balancing [10], [4],
balance control during postural sway [52], [46], maintaining
a constant force in an unstable environment [53] or balancing
on tightropes and slacklines [54]. Since all of these tasks
are impacted by parametric perturbations we anticipate that
techniques, such as those related to the stability radius, will
become increasingly important for identifying robust mecha-
nisms for neural control.
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