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Abstract
Fine tuning features for NP chunking is a difficult task. The effects of a modification are sometimes unpredictable. Feature selec-
tion/tuning is usually made in trial-and-error style with long iterating times. Thus, an online toolkit was developed, which addresses
three tasks: (1) it can investigate a training corpus made for NP chunking, (2) it makes POS feature suggestions for better NP chunking,
and finally (3) the new dataset can be exported. The kit automatically counts an approximated F-score on the fly, as a quick feedback to
the linguist. The kit was tested on English and Hungarian corpora. It proved to be able to accelerate preparing datasets for NP chunking
effectively, and it gives useful POS feature suggestions from WordNet, resulting in better F-scores. The toolkit needs only a browser (no
dependency, nothing to install), and it is easy to use even for non-technical users. The development of features can be controlled in a user
friendly way. The tool combines the abstraction ability of a linguist and the power of a statistical engine.

1. Introduction

The task of noun phrase (NP) extraction from a sen-
tence is called NP chunking. This can be considered a se-
quential tagging process which gives a label to each word
describing its role in the phrase. Various label sets are used
in this task, out of which the IOB set contains only three
items: beginning of a NP (”B”), inside (”I”) or outside the
NP (”O”). One of these labels are assigned to each word
in the text. The label set can also be more detailed. For
instance, a chunk composed of one token (a single) may
have its own label (”S”).

The input data of chunking traditionally has the fol-
lowing format: each word is in a new line with a tab-
separated feature list. Feature can be any property of the
given word: part-of-speech category, length of the word,
countable/uncountable, animate or not, abstract or not, etc.
The linguist has to find adequate features, the use of which
will result in better F-scores. In a typical scenario, when
the selection or modification is done, the NP chunking pro-
cess will be run and after a while its quality can be seen. If
the improvement is only moderate or not satisfactory, the
linguist can modify the parameters of the NP chunker and
some input features, and has to execute the program again.
This iteration, however, takes time due to the requirements
of statistical learning methods.

The present article would like to help at that point
where the linguist tunes the features. The toolkit described
gives an overview about the structure of the training set,
and can give a feedback about the modifications of features
on the fly, without running real tests. Standard evaluations
will be needed only at the end, since the toolkit is used only
to prepare datasets and to speed up feature tuning.

Certainly, the method described (and its results) can be
reached with command line tools as well. The added value
is this user friendly online tool, which can be used for users
without advanced computer skills as well.

2. Related works
There are two basic types of improving chunker per-

formance: software or data improvements. Several re-
searches create, combine or improve a tagger engine,
which performs better on the same data (Koeling, 2000;
Osborne, 2000; Sun et al., 2008). Other approach is to
find, define or combine features and/or labels which pro-
duce better F-score for the given chunking task (Shen and
Sarkar, 2005; Simon, 2013). F-score is typically counted
against a gold standard: correctly recognized chunks are
true positive (tp), incorrect ones are false positive (fp), and
missing ones are false negative (fn). Precision is counted
by tp / (tp + fp), recall by tp / (tp + fn), and F-score is the
harmonic mean of precision and recall.

Specialization also works, for instance, when IOB la-
bels are split into more detailed classes (Molina and Pla,
2002; Shen and Sarkar, 2005). In that approach labels
(above a threshold) are completed with part-of-speech
(POS) category. For example, the following (word, POS,
IOB) tuple (You, PRP, B-NP) get detailed IOB label: (You,
PRP, PRP-B-NP). Our solution is similar, however, we try
to fine tune the POS info instead of the labels.

For feature tuning the classical approach is the trial-
and-error style: the linguist adds many features to the data
(new columns to each word) and (s)he tries out them and
their combinations. This means several train/test phases
and more weeks iteration time. This paper is connected to
the data improving, and it tries to help only to prepare the
dataset before tagging.

3. Problem of feature tuning
A key aspect of NP chunking is the set of features

which are used in labelling algorithms of any type. At this
abstraction level, the feature set is independent from the
chunking method. Thus, the task of feature selection can
be separated from the actual algorithm, and its direct effect
on F-score can be monitored.



Thus questions like how the features can be selected or
which ones help labelling come up. Since in solving such
problems, a linguist is usually involved, we might rely on
their good intuitions. However, their work is also to be
supported.

The available statistical NP chunker methods have a
common point from this aspect (Koeling, 2000; Osborne,
2000). All of them are used as black boxes, no one can con-
trol their feature level processes. However, they can easily
be applied to any language or data. On the contrary, rule
based systems are fully controlled by linguists, but they
are built manually in a slow process, and they are strongly
connected to the given language and part-of-speech tagset
(Déjean, 2000; Johansson, 2000).

4. Idea
The basic idea of our method is to combine the intu-

ition and control of a linguist and the power of statistical
engines. A set of texts contains useful information regard-
ing the connection between features and IOB labels that
can be extracted by statistical algorithms using these texts
as training data. For instance, a human would hardly find a
few features which behave differently with respect to IOB
labelling. These features therefore need to be split into
more types.

Our aim is to detect and show the best features (from
the aspect of IOB labelling), and to find the ones which
need manual fine tuning. At the end of the process, training
and test sets can be exported (see Figure 1) and used in any
type of NP chunkers. The features tuning in this article
focuses only on the POS information. However, the tool
can work on other features as well, but POS feature tuning
is able to demonstrate the tool and its usage.

Figure 1: Dataset preview at exporting (word, POS, word-
net synsets, iob label)

5. Toolkit
An online tool1 was developed, which contains a

training and test set for NP chunking. At the moment
CoNLL2000 (Tjong Kim Sang and Buchholz, 2000) data-
set is imported. CoNLL2000 contains the following tuples:

1https://github.com/endredy/onlineChunkerToolkit

word, POS, IOB label. Although, IOB labels can also be
tuned successfully (as mentioned in section 2.), in this art-
icle feature tuning is limited to POS fine-tuning only. This
strong limitation is only for simplifying and demonstrating
the impact of the toolkit.

Moreover, there are plenty of methods for feature se-
lection. These methods can handle many types of feature,
and they reduce effectively their number. But automatic
feature selection is able to distinguish between useful and
unuseful features, and this process is a black box for a hu-
man. (In practice: it might show which feature columns
can be skipped.) On the one hand, in our case we investig-
ate only one feature (POS). On the other hand, this toolkit
would like to keep the feature tuning supervised and con-
trolled by a human. Therefore automatic feature selection
was not applied.

The tuples of the dataset are simple, and the tool can
demonstrate the basic idea on it: statistical suggestions
help the linguist to make useful modification on the data-
set. In practice, the tool is able to tune other features as
well.

To sum it up, this tool can optimize one feature at a
time, in our case POS is tuned. But it can be applied to any
features (not only for POS), even to output of another fea-
ture selection methods. The tool was tested with English
and Hungarian datasets.

Statistical or rule based chunkers perform better with
features which occur always with the same IOB label. On
this assumption, we would like to have such features. It
can be achieved when features have low cardinality, and if
more specific sub-features would cause higher kurtosis in
the distribution of features and their IOB labels. In other
words, if the number of IOB labels assigned to a given fea-
ture would decrease with a more specific feature, it should
be used. For instance, supposing NOUN have 3 IOB labels
(B, I, E) with the same probability, but a special subset
MISTER has most of the time only label B, then usage of
this sub-feature would help the system performance. This
conditions are fulfilled at the case of POS not only in Eng-
lish but in Hungarian, too. In this article English POS is
tuned, but similar features exist in agglutinative languages
as well. For clarity, these new sub-features (subPOS) are
used as new decision classes instead of the original fea-
tures.

The toolkit investigates the training set, and makes sug-
gestions for features classified to more than one different
IOB labels. Of course, this can be normal (a noun can
stand in different positions of a NP), but it can also indic-
ate that certain part-of-speech (POS) categories should be
split into more detailed POS tags for better IOB labelling.
For instance, a word might behave differently in a given
POS category than the others (with respect to labelling),
therefore this word should get a new category. These sug-
gestions are important, and the main function of the toolkit
is to hunt for them.

The features of the toolkit:

• the best feature patterns are detected,

• ambiguous patterns are shown,

• features can be browsed with respect to IOB labelling,



• new features can be defined, which are applied to the
training/test sets,

• it may speed up feature tuning

• a regular-expression-based grammar is built automat-
ically to verify quality,

• grammar rules can be added manually as well,

• it estimates an approximately F-score of the training
set on the fly

• each suggestion comes from the training set only, the
test set is kept separately. The test set is used only
when final modifications are exported.

• modified training/test datasets can be exported

• the tool is open source

6. How it works
Firstly, toolkit investigates the training set, secondly,

it offers feature suggestions in more ways: browsing
POS tags (ordered by frequency/assigned IOB label num-
ber/usefulness respect to IOB labelling), listing all valid
NP sequences with POS, and listing POS suggestions
which might correlate better with IOB labels (generated
from WordNet, details in Section 7.). If user accepts some
suggestions (or create a new one), the dataset is automatic-
ally investigated again with the modified POS, and it starts
over again. If a feature sequence (in our case POS se-
quence) always gets the same IOB label in the training set,
then this pattern will be signed with a green check icon,
and it will be put into a grammar set. Other patterns will be
signed with a red x, more than one IOB labels are assigned
to them. (Figure 2) However, accepting every green case
would result in overfitting and in low recall. It is therefore
important that all decisions are done by the linguist, the
tool only prepares and suggests. If (s)he accepts general
cases (not data specific ones), overfitting can be avoided.

Figure 2: Red and green NP patterns with respect to IOB
labels

At his moment, rules are used only for verifying F-
score, they do not play role in the final exported data-
set. The grammar contains regular expression rules, just
like the grammar found in the Natural Language Toolkit
(NLTK) (Bird et al., 2009). The difference is that our
rules are executed from javascript in a browser, not in a

standalone Python program, and the results can be seen on
the fly in a window. Their syntax is similar, but the gram-
mar engine is written from scratch in our case, serving two
aims. First, it can give a fast feedback about the last modi-
fications: whether they moved the dataset into a better state
or not. Second, grammar rules can be tuned. Red patterns
can be overviewed, and if a pattern seems to be acceptable,
it can be put into the grammar with one click.

In addition, features can be overviewed with respect to
IOB labelling: each feature shows its assigned IOB labels
(from the training set). If a feature has only one label, it
is the best case. (Statistical NP chunkers will learn it eas-
ily.) If not, then one can browse all its occurrences in the
training set (Figure 3).

Figure 3: Browsing all occurrences of a POS pattern and
its context with respect to their IOB labels

At this point, there are usually some words which be-
have differently than most words in the same category. For
instance, in the CoNLL2000 dataset the word ”Mr.” has the
part-of-speech tag NPP, but it behaves differently from the
other proper names: ”Mr.” likes to stand at the beginning
of a NP. (In other words it gets most of the time labelled
as ”B”.) The toolkit supports to find easily that type of
features, which get mostly one label (80%), and presents
them to the user who can split the POS category by one
click. Our toolkit gives the opportunity to create a new so
called macro, and the given word will have the new feature
instead of the original one. In this case ”Mr.” will get the
tag MISTER, therefore it can be handled separately. This
way, the feature tag of the odd word is replaced with a new
one. The macro can be defined based on features, the sur-
face form, the stem of the word or a regular expression
pattern as well (latter two options are for future usage).

When features are browsed, one can define a new
macro with one click. The program automatically writes
a macro and gives an opportunity to modify it.

Macro definition supports the creation of a more
powerful grammar: not only features (for example part-
of-speech tags) but the surface form of words can also be
added to the rules by their macro name. (Figure 4)

This is made automatically by the toolkit: if new mac-
ros are applied (a button is pushed), then the training set
is converted with macros, and the extraction of the best



Figure 4: Examples for defining new categories (macros):
based on surface form of word, stem or regex

feature sequences is done with these new features. If the
F-score is not increased, then the added macros are useless.
They should be dropped and other ones can be added. The
evaluation takes only a few seconds, much faster than, for
instance, tests in real statistical NP chunkers. The F-score
is an approximately value based on a simple NP grammar,
which is built automatically from features and IOB labels.
It is not a real F-score, just a metric how features correlate
to IOB labels. It is counted on training set, and it might
show how ”IOB friendly” the dataset is. (Test set is separ-
ated, it is used only at exporting modified dataset.)

7. WordNet helps discovering new features
Another source of possible feature suggestions is

WordNet synsets (Miller, 1995). First of all, synsets and
hyponyms of each word were generated into a dataset (sep-
arated by slash). Second, these synsets were split by slash,
and every single synset was investigated with respect to
IOB labelling.

Figure 5: Examples for feature suggestions generated from
WordNet

Finally, synsets were sorted by the number of IOB la-
bels and frequencies: best synsets have one or rarely two
labels. If the user likes any of the suggestions, it can be
added by a single click. WordNet synset suggestions will
be used instead of the originally POS in the exported data-
set, and every related word will have it. For instance, POS
of the word period could be period.n.07 instead of NN, be-
cause the former correlates better to its IOB labels than the
latter one. Some suggestions are shown in Figure 5.

8. Experimental results
The CoNLL2000 dataset was imported into the toolkit.

As we focused on NP chunking, other labels (VP, PP, etc.)

were eliminated from the dataset and they were changed to
the label ”O”.

During the evaluation, first, POS features were eval-
uated by their co-occurrences with IOB labels. Second,
some macros were added to the dataset, concentrating on
words having the same POS category, but different beha-
viour. The best WordNet suggestions were also added, and
finally, training and test data were exported and used in
several NP chunkers.

All these steps were made with the help of the toolkit,
and only POS were fine-tuned. Results were measured on
this modified CoNLL2000 dataset.

The baseline test was made with the unigram and bi-
gram NP chunkers of the NLTK toolkit. In addition, a new
statistical tagger was also used in the evaluation: HunTag3
(not yet published), which is a general-purpose sequen-
tial tagger with linear SVM classifier (Maximum Entropy)
of Liblinear (Fan et al., 2008) and Maximum Entropy
Markov Models (Ratnaparkhi et al., 1996). This tool is
developed in an ongoing parallel project.

method F-score
NLTK - unigram chunker
with original tags 83.2%
with modified tags by toolkit 83.8%
NLTK - bigram chunker
with original tags 84.5%
with modified tags by toolkit 86.1%
HunTag3
with original tags 92.68%
with modified tags by toolkit 92.74%
voting system between more chunkers

(Shen and Sarkar, 2005)
with original tags 92.74%
with modified tags by toolkit 94.12%
voting system between more chunkers + HunTag3
with original tags 93.13%
with modified tags by toolkit 94.59%

Table 1: CoNLL2000 test runs with and without the
toolkit, only POS data were modified

Results show the usefulness of the toolkit: it could help
every NP chunker to reach higher F-scores (Table 1).
The current state-of-the-art NP tagger is SS05 (Shen and
Sarkar, 2005), which achieves 95.23% on the CoNLL2000
dataset. Its method is based on voting between more
data representations, which means different IOB labelsets
(IOB1, IOB2, IOE1, IOE2, O+C) and each IOB label is
completed with POS. This solution modifies the IOB la-
bels, specialized them with POS. This idea is similar to
our approach, however, we try to fine tune the POS info in-
stead of the labels. SS05 voting system was reimplemented
in python: conversions between different IOB labelsets,
adding POS to labels, training each representation with
TnT tagger of NLTK (Bird et al., 2009), converting res-
ults to a common labelset, and voting between the results.
HunTag3 was also added as a 6th system (see Table 2), and



it could improve the final F-score of the voting (+1.4%).
Even though our results are lower than SS05, but our aim
was to demostrate the power of the toolkit, when using to
boost the results of existing chunkers.

voting format with original POS modified POS
by the toolkit

IOB1 92.01% 93.57%
IOB2 90.71% 92.04%
IOE1 90.64% 92.18%
IOE2 88.67% 89.96%
O+C 90.52% 91.71%

after voting 92.74% 94.12%
after voting,

HunTag3 added 93.13% 94.59%

Table 2: Detailed results of the voting system between dif-
ferent data representations: not only IOB labels (based on
SS05) but POS were also modified by the toolkit. It could
improve each voting format.

9. Conclusion
Hundreds of features increase not even the training

space and time, but contradictory features may prevent to
reach higher F-score in the task of NP chunking. Manual
detection of missing or inaccurate features is more than
problematic. However, the tool presented in this paper
could easily improve the quality of the features quickly
(+2% F-score improvement).

No doubt, the results of this toolkit could be reached
with command line tools as well. However, the steps of the
data tuning were made in a user friendly web application,
with mouse clicks in a short time, without any advanced
IT user skills. This toolkit is designed for linguists who are
not developers but have good intuitions and a web browser.

This toolkit provides an automated way of training set
analysis. The user is guided through the problematic cases
by the program. A person cannot overview all the specific
details of a corpus, while a machine can not make abstrac-
tion. This toolkit connects the two approaches: details are
shown to the user who can decide on the use of the fea-
tures.
Any learning algorithm can work better with a more con-
sistent dataset and with more IOB-friendly features.

10. Future plans
The toolkit can be used to build a regular expression

based NP grammar. At this moment it is used only for the
verification of feature tuning. It would be interesting to
build a simple rule-based NP chunker with this grammar.
Rules may contain POS categories, macros, surface forms
of words with the power of regular expressions. An al-
gorithm is needed which merges rules in the simplest form
and patterns should be imported from a bigger corpus (e.g.
web). Then, it may result in a new NP chunker. Of course
a language can not be described with finite patterns, but if
the corpora is huge enough, this idea may work.
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