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Abstract. Computational morphologies often consist of a lexicon and
some rule component, the creation of which requires various competences
and considerable e�ort. Such a description, on the other hand, makes an
easy extension of the morphology with new lexical items possible. Most
freely available morphological resources, however, contain no rule compo-
nent. They are usually based on just a morphological lexicon, containing
base forms and some information (often just a paradigm ID) identifying
the in�ectional paradigm of the word, possibly augmented with some
other morphosyntactic features. The aim of the research presented in
this paper was to create an algorithm that makes the integration of new
words into such resources similarly easy to the way a rule-based morphol-
ogy can be extended. This is achieved by predicting the correct paradigm
for words not present in the lexicon. The supervised machine learning al-
gorithm described in this paper is based on longest matching su�xes and
lexical frequency data, and is demonstrated and evaluated for Russian.
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1 Introduction

Morphological analysis is an important task in any natural language processing
chain, preceding any further analysis of texts. It is also unavoidable in infor-
mation retrieval, or indexing algorithms, where the lemma of words are to be
used in order to have a robust representation of the information present in the
documents. In this case, the morphosyntactic features identifying the speci�c
member of the paradigm of the lexical item are irrelevant, only the lemma is
required.

Large-scale computational morphologies are usually created using a morpho-
logical grammar formalism that minimizes the amount of information necessary
to include in the source lexicon about each lexical item by providing some rule-
based method of formalization of the morphological behavior of words. This al-
lows an easy extension of the morphology with new lexical items. This approach
also gives the creator of the morphology complete control over the quality of the
resource. Building rule-based morphological grammars, however, requires three-
fold competence: familiarity with the formalism, knowledge of the morphology,
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phonology and orthography of the language, and extensive lexical knowledge.
Many morphological resources, on the other hand, contain no explicit rule com-
ponent. Such resources are created by converting the information included in
some morphological dictionary to some simple data structures representing the
in�ectional behavior of the lexical items included in the lexicon. The representa-
tion often only contains base forms and some information (often just a paradigm
ID) identifying the in�ectional paradigm of the word, possibly augmented with
some other morphosyntactic features. With no rules, the extension of such re-
sources with new lexical items is not such a straightforward task, as it is in the
case of rule-based grammars. However, the application of machine learning meth-
ods may be able to make up for the lack of a rule component. In this paper, we
intend to solve the problem of predicting the appropriate in�ectional paradigm
of out-of-vocabulary words, which are not included in the morphological lexicon.
The method is based on a longest su�x matching model for paradigm identi�-
cation, and it is showcased with and evaluated against an open-source Russian
morphological lexicon.

The context in which we explored the possibilities of automatic paradigm
identi�cation, was the following task. We needed to make a pop-up dictionary
capable of handling and correctly lemmatizing all in�ected word forms of the
vocabulary of a speci�c Russian�Hungarian dictionary. The morphological en-
gine integrated in the dictionary program is Humor ([12, 10]), a constraint-based
morphological analyzer, which was �rst developed for Hungarian morphology. In-
stead of creating a Humor-based Russian morphology from scratch, we decided
to adapt an LGPL-licensed Russian resource, available from www.aot.ru ([13]).
The core vocabulary of this morphology is based on Zaliznyak's morphological
dictionary [16]. It contains 174 785 lexical entries, each of which are classi�ed
into one of 2 767 paradigms. The resource was converted to the Humor formal-
ism, and its coverage needed to be extended to cover the whole vocabulary of the
dictionary. For the evaluation of the performance of the paradigm assignment
algorithm, we used various disjunct parts of the aot resource. In addition, we
used the frequency distribution of Russian lemmas, taken from Serge Sharo�'s
Russian internet frequency list.3

The paper is structured as follows: after a short summary of related work,
the features used for predicting Russian in�ectional paradigms are described in
Section 3. This is followed by description of the su�x model and the ranking al-
gorithm we use. Finally, in Section 6, the performance of the system is evaluated,
followed by an error analysis.

2 Related work

Morphological paradigm prediction has been a �eld of interest, especially for
researchers dealing with in�ectional, or at least compounding languages. Such
languages have a complex morphology, which cannot be covered by hand-made

3 http://corpus.leeds.ac.uk/frqc/internet-ru.num
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lexical resources. Some studies aim at solving this problem by learning in�ec-
tional paradigms from raw text corpora by clustering word forms in the cor-
pus and analyzing the resulting clusters ([9, 8, 3]). Other unsupervised methods
applied to morphology induction are that of [15], [6] and [5], the latter using
morphemes to encode a corpus by grouping morphemes into structures, called
signatures, representing in�ectional paradigms. These models, however, mainly
aim at only segmenting word forms into stems and a�xes: stem alternations
cause paradigms to be scattered into unrelated subparadigms. However, the per-
formance of unsupervised methods is far behind those using existing resources
either as an inventory of in�ectional pattern rules, or as annotated data for
supervised machine learning algorithms.

Raw text corpora are also used in approaches where word form statistics are
used to validate in�ectional forms generated by a predicted paradigm candidate
for a given word. If the resulting word forms are not represented in a corpus,
then the paradigm is not valid. Some examples for such methods are described in
[4] and [11]. The algorithm of [7] exploits both lexical features and corpus-based
information to determine in�ectional behavior by analogy. The author of [14]
also de�nes string-based and corpus-based features used for a support vector
machine classi�er to decide if a predicted paradigm is valid or not. The most
similar approach to our method is the one used in [1], implemented in parallel
with our research, however they emphasize paradigm generalization.

Our approach di�ers from most of the previous ones in that we use a mor-
phological lexicon as annotated data and the frequency distribution of raw text
corpora. We address the problem of predicting in�ectional paradigms based on
the lemma and some given lexical features which are usually available in some
less-sophisticated dictionaries. Based on the information coming from the dic-
tionary, the morphological lexicon can be extended in a more robust manner
than in cases when only raw word form corpus frequency data is available, and
lemma, categorial features and the paradigm all need to be estimated from that
data.

3 Features a�ecting the paradigmatic behavior of Russian

words

When attempting to predict the in�ectional paradigm for Russian words, certain
grammatical features of the lexical item need to be known in order to have a
good chance of guessing right. Lemma and part of speech are obviously necessary
features, although part of speech can be guessed from the lemma for adjectives
and verbs with rather good con�dence. Nevertheless, we assumed these to be
known, as these properties of words are present in any dictionary.

For nouns, a number of additional features (gender, countability and ani-
macy) play a role in determining the morphosyntatctic feature combination slots
which make up the paradigm of the given lemma. There are also nouns, which
are undeclinable. Of these features, gender is indicated for each headword in
any dictionary, and undeclinable nouns are also usually marked as such. Certain
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abstract, collective and mass nouns (and, in the aot resource, also many proper
names) lack plural forms, while there are also pluralia tantum, which have no
singular. Some of the latter, however, are easier to recognize, due to their lemma
exhibiting typical plural morphology.

Animacy a�ects the nominal paradigm in a manner that does not in�uence
the actual set of possible word forms. However, there is a case syncretism in
Russian, which depends on animacy. For animate nouns, plural accusative co-
incides with genitive (for masculine nouns, the same applies also to singular).
For inanimate nouns, on the other hand, the form of accusative matches that of
the nominative. This di�erence is still present in the case of homonyms, where
one of the senses of the word is animate, and another form is inanimate. This
phenomenon is illustrated in Figure 1 with the word ¼æ `hedgehog: animal', and
`Czech hedgehog: a static anti-tank obstacle'. Note, however, that the animacy
feature, although it is present in the aot lexicon, is not generally made explicit
in other dictionaries, because a human user can infer this information from the
meaning of the word. We thus have not used this information.

¼æ[num:Sg.cas:Nom]

åæà[num:Sg.cas:Gen]

åæó[num:Sg.cas:Dat]

åæà[num:Sg.cas:Acc]

åæîì[num:Sg.cas:Ins]

åæå[num:Sg.cas:Prp]

åæè[num:Pl.cas:Nom]

åæåé[num:Pl.cas:Gen]

åæàì[num:Pl.cas:Dat]

åæåé[num:Pl.cas:Acc]

åæàìè[num:Pl.cas:Ins]

åæàõ[num:Pl.cas:Prp]

(a) ¼æ[N.gnd:Mas.ani:Ani][:8];

¼æ[num:Sg.cas:Nom]

åæà[num:Sg.cas:Gen]

åæó[num:Sg.cas:Dat]

¼æ[num:Sg.cas:Acc]

åæîì[num:Sg.cas:Ins]

åæå[num:Sg.cas:Prp]

åæè[num:Pl.cas:Nom]

åæåé[num:Pl.cas:Gen]

åæàì[num:Pl.cas:Dat]

åæè[num:Pl.cas:Acc]

åæàìè[num:Pl.cas:Ins]

åæàõ[num:Pl.cas:Prp]

(b) ¼æ[N.gnd:Mas.ani:Ina][:9];

Fig. 1: Di�erences in case syncretism of the lemma (¼æ 'hedgehog') depending
on whether it is animate (a) or inanimate (b).

Similarly, the set of valid morphosyntactic feature combinations for verbs de-
pends on verbal aspect and transitivity/re�exivity. Thus, these properties need
to be known for verbs, and, indeed, they are listed in dictionaries. E.g. non-
transitive verbs lack passive participles; verbs of perfective aspect lack present
participle forms; and many verbs of imperfect aspect lack past participial (es-
pecially passive) forms. The adverbial participial forms a verb may assume also
depend on aspect (and also on other idiosyncratic lexical features).

Defectivities of the adjectival paradigm, e.g. the lack of short predicative
forms and synthetic comparative and superlative forms depend on semantic and
other, seemingly idiosyncratic, features of the lexeme. E.g. relational adjectives
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usually lack these forms. Such properties, however, were not made explicit in the
aot lexicon, neither are they present in normal dictionaries, so we did not use
any lexical features for adjectives beside part of speech.

Thus, when de�ning the feature set for predicting in�ectional paradigms of
words, we assumed that the lemma and the lexical properties mentioned above:
part of speech, gender, verb type, etc., are known. Other morphological char-
acteristics relevant for in�ection that cannot be derived neither from a simple
dictionary, nor from the surface form of a word, such as animacy, optional stress
variation, idiosyncratic orthographic variations, or other irregularities were not
made available to the system. Thus, our model is not necessarily able to predict
paradigmatic behavior depending on such features.

The other set of features we used are n-character-long su�xes of the lemma
for various lengths n. The maximum su�x length is a parameter of the algorithm.
It was set to 10 in the experiments reported in this paper. In order to exploit this
information, a su�x model is created based on the lexicon. An illustration of
how this model including both the endings and the lexical features is generated
is shown in Figure 2.

4 Creation of the su�x model

A su�x trie is built of words input to the training algorithm in the form shown
in the right column of Figure 2.

ìóìè¼[N.n.*.-];prd:25 ìóìè¼|n*[N.n-25]

îñòðè¼[N.n.-];sfx:¼;prd:1709 îñòðè#¼|n[N.n-1709]

áàáü¼[N.n-];sfx:¼;prd:210 áàáü#¼|ns[N.n-210]

äóáü¼[N.n-];sfx:¼;prd:210 äóáü#¼|ns[N.n-210]

ñâåæåâü¼[N.n-];sfx:¼;prd:210 ñâåæåâü#¼|ns[N.n-210]

öåâü¼[N.n.-];sfx:ü¼;prd:1433 öåâ#ü¼|n[N.n-1433]

æíèâü¼[N.n];sfx:¼;prd:1103 æíèâü#¼|n[N.n-1103]

ñóðîâü¼[N.n];sfx:¼;prd:210 ñóðîâü#¼|ns[N.n-210]

ìîñòîâü¼[N.n];sfx:¼;prd:210 ìîñòîâü#¼|ns[N.n-210]

Fig. 2: A portion of the su�x model. The format of the right column is:
lem#ma|lex-features[PosTag-paradigmID], where ma is a required ending of
the lemma for all items in the paradigm identi�ed by paradigmID.

The lemma is decorated with the following features (from right to left):

� The tag in brackets consists of two parts: part of speech (and, in the example
in Figure 2: gender) is followed by the appropriate paradigm ID from the aot
database; the two are separated by a hyphen. This is the information to be
predicted by the algorithm for unknown words. After processing the training
data, terminal nodes of the su�x trie link to a data structure representing
the distribution (relative frequency) of tags for the given su�x.
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� A su�x following a vertical bar is attached to the end of the lemma. This rep-
resents the available lexical knowledge about the lexical item in an encoded
form (n: neuter noun, *: undeclinable, s: singular only).

� Some paradigms are restricted to lemmas ending in a speci�c su�x. There is
a hash mark at the beginning of the su�x of the lemma that is required by
the given paradigm ID to be valid. The given paradigm ID is not applicable
to words not having that ending. E.g. all lemmas in paradigm 1433 must
end in ü¼.

5 Ranking

The su�x-trie-based ranking algorithm that we used was inspired by the su�x
guesser algorithm used in Brants' TnT tagger to estimate the lexical probability
of out-of-vocabulary words ([2]). However, that model did not prove to perform
well enough in this task. So we modi�ed the model step-by-step until we arrived
at a model that turned out to be simpler, yet to perform much better. The
paradigms are predicted by assigning a score to each paradigm for each word.
Then, the higher this score is for a paradigm tag for a certain word, the more
probable it is that the word belongs to that paradigm. We select the top-ranked
paradigm to be the predicted in�ectional class.

The score for each paradigm is calculated for all su�xes of the word, including
the lexical properties, from shortest to longest. For all tags, the rank is calculated
iteratively according to Formula 1.

ranki+1[tag] = sign× len_sfx× rel_freq + ranki[tag] (1)

where

sign
is negative if the su�x is shorter than the minimal su�x
required by the given paradigm

len_sfx is the length of su�x not including lexical properties

rel_freq is the relative frequency of tag for the su�x

ranki[tag]
is divided by len_sfx if len_sfx > 1
is negated if sign > 0 and ranki[tag] < 0
before calculating ranki+1[tag]

The applied ranking score clearly prefers the most frequent paradigm for the
longest matching su�x. Some examples for the ranked candidates are shown in
Figure 3.

6 Evaluation

Evaluation of the ranking algorithm was performed on di�erent training and
test set combinations. In each case, we applied �ve-fold crossvalidation. In order
to see how the performance of the algorithms is a�ected by the frequency of
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ãóðáà|f [N.f] [N.f:50]#2.857270 [N.f:175]#0.756756 [N.f:48]#0.293840

[N.f:105]#0.175658 [N.f:88]#0.098045 [N.f:103]#0.051742

[N.f:396]#0.03995 [N.f:611]#0.039730 [N.f:69]#0.029693

[N.f:121]#0.021167

äóðàêà|f [N.f] [N.f:88]#4.466005 [N.f:15]#1.341181 [N.f:273]#0.904291

[N.f:36]#0.738748 [N.f:50]#0.467147 [N.f:16]#0.443249

[N.f:39]#0.300179 [N.f:105]#0.175658 [N.f:96]#0.155983

[N.f:103]#0.051742

Fig. 3: The ten highest ranked paradigm candidates for the input words ãóðáà|f
and äóðàêà|f. The candidates are listed sorted by their rank, with the calculated
score separated by the # mark for each tag.

the lemmas in the training and test sets, we split the aot lexicon into parts
that contained rare words (LT10; not more than 10 occurrences in the Internet
corpus; 91,770 words), average words (LT100; between 11 and 100 occurrences;
33,990 words), and frequent words (MT1000; more than 1000 occurrences; 9,650
words). Moreover, we also evaluated performance on a random 20% sample of
the lemmas disregarding frequency (RAND; 159,935 words).

We used standard evaluation metrics for measuring performance. First-best
accuracy measures the ratio of having the correct paradigm ranked at the �rst
place. This re�ects the ability of the system to automatically classify new words
to paradigms. In addition, the accuracy values for 2nd to 9th ranks were also
calculated. Recall is the ratio of having the correct paradigm in the set of the �rst
ten highest ranked candidates. Following the metrics used by [7], precision was
calculated as average precision at maximum recall, i.e. 1/(1 + n) for each word,
where n is the rank of the correct paradigm. This measures the performance of
the ranking algorithm. As it might be the case that paradigm prediction is used
to aid human classi�cation, this metric re�ects the ratio of noise a human must
face with when verifying the results. Finally, f-measure is the harmonic mean of
precision and recall.

We evaluated our algorithm comparing it to two baseline methods. The �rst
one uses Brants' su�x guesser model ([2]) instead of the longest su�x matching
method. This model uses a θ factor to combine tag probability estimates for
endings of di�erent length in order to get a smoothed estimate. θ is set as the
standard deviation of the probabilities of tags. First, the probability distribution
for all su�xes is generated from the training set, then it is smoothed by successive
abstraction according to Formula 2.

P (t|ln−i+1, ...ln) =
P̂ (t|ln−i+1, ...ln) + θiP (t|ln−i, ...ln)

1 + θi
(2)

for i = m...0, with the initial setting P (t) = P̂ , where



8 A. Nov�ak

P̂ are maximum likelihood estimates from the frequencies in the lexicon

θi
weights are the standard deviation of the unconditioned maximum
likelihood probabilities of the tags in the training set for all i

The other baseline assigns the most frequent paradigm identi�er to each word
based on its part of speech and the additional features available (e.g. gender,
aspect, etc.). The results of these baselines compared to our system are shown
in Table 1. As expected, the second baseline, choosing the most frequent tag, has
a rather low accuracy, however, our longest su�x method outperforms the �rst
baseline as well. A key di�erence between the two models is that Brants' model
assigns more weight to unconditioned tag distributions and ones conditioned on
shorter su�xes than those conditioned on longer ones. This is just the other way
round in the longest su�x algorithm.

Table 1: First-best accuracy of paradigm identi�ers achieved by the longest su�x
match algorithm, Brants' model, and by assigning the most frequent paradigm
tag

Longest su�x Brants' model Most frequent tag

MT1000 0.768 0.587 0.410
LT100 0.876 0.593 0.473
LT10 0.887 0.698 0.480
RAND 0.862 0.632 0.466

The tags containing paradigms ID's as well as detailed PoS and subcategorial
features de�ne a very sophisticated classi�cation of words. However, some of the
features that distinguish two di�erent paradigms are not relevant from the as-
pect of their in�ectional behavior, such as the subtype of a non-in�ecting adverb.
Moreover, some of these features cannot even be predicted. In many cases, there
is stress variation, which does not a�ect the set of orthographic forms in the
paradigm, however, it yields a di�erent paradigm ID. Moreover, some paradigm
di�erences are irrelevant from the point of view of our dictionary lookup task,
because they do not a�ect the set of word forms in the paradigm. The case syn-
cretism di�erences between animate and inanimate nouns are examples of such
di�erences. To see how the algorithms perform in our original lemmatization
task, equivalence classes of paradigms were generated, and a prediction was con-
sidered correct if the set of in�ected forms generated by the predicted paradigm
was identical to the set of word forms generated by the correct paradigm. Of
the 2 767 di�erent paradigms, 921 non-unique paradigms could be collapsed into
283 equivalence classes. Table 2 shows the results for each setup, where rows
FULL, ID and EQUIP correspond to full tag, paradigm ID, and equivalence
class evaluations, respectively. In the rows marked by ID, instead of full tag
agreement, which might include hard-to-predict information like that the word
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is the name of an organization, only the paradigm identi�ers were considered.
Thus [N.n._nam:Org.--49], and [N.n.--49] were considered as equivalent.

Table 2: Results on full tag agreement (FULL), paradigm identi�ers (ID) and
equivalent paradigm classes (EQUIP). The results are measured by �rst-best
accuracy, precision, recall and f-measure.

MT1000 LT100 LT10 ALL/MT1000 ALL/LT100 ALL/LT10 RAND

F
U
L
L

0.752 0.849 0.879 0.759 0.855 0.872 0.848
0.819 0.903 0.926 0.823 0.910 0.923 0.903
0.903 0.979 0.991 0.923 0.989 0.994 0.982
0.859 0.940 0.958 0.870 0.948 0.957 0.941

ID

0.768 0.876 0.887 0.771 0.872 0.885 0.862
0.830 0.920 0.934 0.834 0.924 0.933 0.915
0.905 0.980 0.992 0.926 0.990 0.994 0.983
0.866 0.949 0.962 0.878 0.956 0.962 0.948

E
Q
U
IP

0.819 0.889 0.892 0.813 0.884 0.890 0.875
0.869 0.929 0.937 0.866 0.932 0.936 0.924
0.929 0.984 0.993 0.951 0.993 0.995 0.988
0.898 0.956 0.964 0.907 0.961 0.965 0.955

The three columns on the left show results where the models were trained
only on words in the same frequency class they were tested on. The test set was
always 20% of the lemmas in the given frequency range. Results in the next four
columns were obtained by training the models on the complement of the test set
w.r.t. the whole lexicon.

As the numbers show, our system performs best on rare words, while it
achieved the worst results on very frequent words. This is not very surprising,
as irregular words tend to be frequent words, while rare words have regular
in�ectional behavior. Correctly predicting the exact paradigm of an unknown
personal pronoun or an irregular verb is indeed a rather di�cult task. Since our
aim was to extend existing morphological lexicons, and such resources already
contain the most frequent words of the language, the results obtained for rare
words are the ones which are relevant for our task.

Also note that beside similar recall values, precision and �rst-best accuracy
are higher when equivalent paradigms are collapsed. The prediction algorithm
works reasonably well for extending resources for tasks that do not require full
morphological analysis such as indexing for information retrieval or dictionary
lookup.

Table 3 shows the �rst-best paradigm ID accuracy results for all words, nouns,
verbs and adjectives separately. The exact paradigm of verbs and adjectives
turned out to be more di�cult to guess than that of nouns. The results achieved
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for adjectives seem to be especially contradictory to the overall performance,
which can be explained by the unpredictable behavior of adjectives. Semantic
factors and hard-to-predict stress variation a�ecting paradigmatic classi�cation
are explained in the next section of this paper.

Table 3: First-best accuracy of paradigm ID prediction in the case of all types
of words, nouns, verbs and adjectives

ALL NOUNS VERBS ADJECTIVES

MT1000 0.768 0.814 0.702 0.683
LT100 0.876 0.935 0.802 0.772
LT10 0.887 0.968 0.869 0.732
RAND 0.862 0.947 0.848 0.682

7 Error analysis

The most frequent confusions of the longest su�x algorithm for infrequent words
are due to failure to correctly predict

� whether an adjective has synthetic comparative, superlative and/or short
predicative forms

� whether a -íèå-�nal abstract noun has an alternative -íüå spelling
� whether a noun has a second genitive (used in partitive constructions) or
locative form

� stress in past passive participles of certain verb classes and in short and
comparative forms of certain adjectives, or other optional stress variation
across the paradigm (this results in an å∼¼ contrast not normally re�ected
in orthography)

� whether a non-in�ecting noun can be interpreted as plural
� whether an imperfective verb has past passive participle forms

Except for stress-related issues and semantically motivated or idiosyncratic
defectivity, incorrect forms are very rarely predicted by the algorithm. Humans
would probably make similar mistakes for words they do not know, especially
if they do not know the meaning of the word either. The system sometimes
highlights inconsistencies in the original aot data that even the author of this
article, who is not a native or even advanced speaker of Russian, can identify
as errors, e.g. that while the name of the energy company Êóáàíüýíåðãî is
categorized as lexically non-plural, the similarly formed Ñàõàëèíýíåðãî does
not have this property.

When looking at errors the algorithm makes when applied to frequent words,
we �nd that the types of errors are similar. Nevertheless, failure to predict su-
perlatives, comparatives, second genitives or special locative forms is more preva-
lent for this data, as a much higher proportion of very frequent words have these
�irregular� forms.



Making morphologies the �easy� way 11

The most frequent errors of Brants' original su�x guesser algorithm, on the
other hand, include absurd errors that would not be made even by beginning
learners of Russian. This is due to overemphasizing distributions conditioned on
shorter su�xes over those on longer ones. The top-ranked candidate paradigm
is often totally inapplicable to words having the ending the given lexical item
has, such as the paradigm of -êèé-�nal adjectives to -íûé-�nal ones (the most
frequent error of that algorithm for infrequent words).

8 Conclusion

In this article, we presented and evaluated a su�x-trie-based supervised learning
algorithm capable of predicting in�ectional paradigms for words based on the
ending of their lemma and some basic lexical properties. The algorithm can
be used to automatically extend the vocabulary of computational morphologies
lacking an independent rule component, which is often the case for resources
based on a morphological dictionary. The experiments were demonstrated for
Russian, however, with minimal adaptation the tool can be used for any language
provided there is a morphological resource available. Moreover, we assumed that
a dictionary with some lexical features is also available, thus such features could
be used for disambiguating paradigm candidates. The results showed that our
method can correctly identify the paradigm of unseen words with an accuracy
of about 90%, achieving the best performance on relatively rare words, which
are good candidates of being absent in the original lexicon. For rare nouns, the
paradigm identi�cation accuracy is 96.8%.

We found that assigning more weight to distributions conditioned on longer
su�xes than on shorter ones yields much better prediction performance, not only
in terms of the number of exact predicted paradigm matches, but especially
when taking into account what sorts of errors the system makes. While the
baseline su�x guesser algorithm often proposes paradigms inapplicable to the
given lexical item, our algorithm makes errors that arise due to the lack of lexical
semantic information. Humans would make similar errors in similar situations.
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