An extended spell checker for unknown words

Baldzs Indig
(Supervisor: Dr. Gdbor Proszéky)
indig.balazs @itk.ppke.hu

Abstract—Spell checking is considered a solved problem, but
with the rapid development of the natural language processing
the new results are slowly extending the means of spell checking
towards grammar checking. In this article I review some of
the spell checking error classes in a broader sense, the related
problems, their state-of-the-art solutions and their different
nature on different types of languages (English and Hungarian),
arguing that these methods are insufficient for some language
classes. Finally, I present my own method of batch spell checking
in large volumes of coherent text.

Keywords-spellchecking; context-sensitive; batch-correction

I. INTRODUCTION

Tools called “spell checkers” are widely used in current
word processing systems as an error correcting tool. By the
rapid changing of the Internet and computers, the current
spell checking is gaining an increasing importance in our
lives by the growing capacity of computers, because of the
increasing number of ways and volumes content created.
Traditionally, spell checkers did subsequent word-by-word
analysis, and then transferred to do the analysis while typing.
This made it possible for spell checkers to have significance
beyond word processors. Nowadays spell checkers can be
found everywhere from web browsers to e-mail clients and
people use them actively. As in the beginning, today as well
the basic principle is the word-by-word analysis, thus the spell
checking procedure is stuck at word level. Developers in the IT
industry concentrate on these local tools, for example the in-
creasingly better support of agglutinative languages and word
compounding appeared approximately 5-6 years ago[l], and
in the meantime dictionaries follow the changes of individual
languages (by adding new words). Meanwhile, in the field
of Natural Language Processing things are developing rapidly
as well, but these novel approaches have rarely been applied
in spell checking systems yet. A 10 million word English
corpus has less than 100,000 different word forms, a corpus
of the same size for Hungarian contains well over 800,000[2].
While an open class English word has about 46 different
word forms, it has several hundred or thousand different
productively suffixed forms in agglutinating languages[3]. The
standard tools, which have been proven good in English cannot
be applied without any modification. In the literature there
exist a lot of separate algorithms that have proven good for
partial problems in the English language. I am going to review
these state-of-the-art methods and I am going to argue that
they cannot be applied because of the nature of the Hungarian
language. I will describe my paradigm of spell checking in
detail.

B. Indig, “An extended spell checker for unknown words,”

All of the aforementioned methods have something in com-
mon. They are working with a larger volume of texts. I will
set another constraint: I will suppose that all the texts which
are examined are coherent. So I can rely on the text-level
information, which lies in the text to be extracted, examined
and used to improve spell checking performance.

I want to show that spelling errors can be widely different.
One must classify these errors and make special sub-solutions
for each class to locate and correct most of the errors found
in current Hungarian texts with the lowest false positive rate
as possible.

II. TYPES OF SPELLING ERRORS

The academic Hungarinan spelling rules are very complex.
They involve semantic features like substance names, occupa-
tion names, etc. and the way one should imagine the word: e.g.
“légikisérd” is written in one word because the word “kisérs”
is in the air physically and not figuratively. The rough listing
of the types of errors is as follows:

o in-word errors: One take a word, and modify it by
edit distance (e.g. the so called Damerau-Levenshtein
distance[4][5]), so the word does not become some other
valid word. This is the oldest error observed and most of
the errors in English can be corrected by searching the
word no more than one distance from the erroneous form.
The English language is so sparse that there are only a
few candidates. In Hungarian this type of error has not
been a problem for a long time. There are several models
for this type of errors (e.g. the Noisy Channel Model[6]),
but the rate of these errors is much lower then in English.

o real-word errors: One take a word, and modify it, so the
modified word becomes a valid meaningful word that has
nothing to do with its context. For example: “He had lots
of honey (money), he wanted to buy a bigger house.”
These errors must be approached differently. If one knows
that the writer has a specific mother tongue and English is
his second language one can collect statistical information
about the typical misspellings and use them to correct
errors [7]. In this type one must distinguish between the
words that changed their word species and those which
did not. (e.g. money — honey, defuse — diffuse) In
Hungarian there are more word species, so there are more
errors of this type.

o word compounding errors: One take two words, and write
them as one or take a compound word and write it in
two words. The real problem is that the former can be
detected and corrected at word level, but the latter cannot.

in Proceedings of the Interdisciplinary Doctoral School in the 2012-2013 Academic Year, T. Roska, G. Proszéky, P. Szolgay, Eds.

Faculty of Information Technology, Pazmany Péter Catholic University.
Budapest, Hungary: Pazmany University ePress, 2013, vol. 8, pp. 29-32.

29

The Hungarian Academy rules are so complex in this case
that in Hungarian a lot of errors fall into this class.

e Out of Vocabulary (OOV) errors: The traditional spell
checkers work with a list of words or the list of stems
and the production rules (these two are together called
lexicon), but there are open word-classes and the spell
checker must distinguish between the unknown or OOV
words and the misspelled ones. Not to mention the right
and consistent use of these words. This can only be
detected in a larger volume of coherent text.

o punctuation errors: The right punctuation in the text is
not closely related to spell checking, but helps people
and the programs to interpret the written text. And can
be checked and corrected with the same tool-set as the
aforementioned error classes.

o grammar errors: These kind of errors cannot be clearly
separated from the cases mentioned above, so I list this
class here.

A. How Hungarian and English differ

There are several tools that work language independently,
but the most important resources are language dependent.
With the help of the self-developed tools in the MTA-PPKE-
NLPG research group I can split any raw text to sentences
and tokenize it[8]. I can recognize named-entities for future
use[9]. Then with the POS-tagger I can couple every word with
a tag that reflects its distributional preferences and therefore
can classify them into groups[10]. The number of the groups
vary from language to language. For example, in English
there are only 36 and in Hungarian there are more than 1000
word class tags[11][12]. This makes the task much harder
for Hungarian, and the problem becomes even worse when
one restricts the domain to clinical texts[13]. As Hungarian is
a highly inflected language there are many word forms that
belong to the same stem. And there are many homonyms as
well, so all in all it is far less sparse than English. Therefore
the error types mentioned above cannot be corrected by word-
level easily. One can apply Machine Learning methods for
extracting features from the context and make decisions, but
the liberal word ordering of the Hungarian language makes
this task ineffective.

III. METHODS IN THE LITERATURE

The current state-of-the-art methods approaching different
parts of the whole spell checking. I will list some techniques
and argue that they cannot work in Hungarian.

o Take the function words and record their contextual
features, because subsequent function words can identify
what should come after them and that can be checked
for validity[14]. This technique has been successfully
applied for the German language on compound words
and punctuations. In Hungarian the function words can be
omitted and therefore this method cannot achieve much
success.

o Make a confusion set of the common misspellings and
their right forms[15]. This method can be successfully

30

applied for accenting and word-sense disambiguation. But
only on languages that are not inflected and have few
word forms. In Hungarian the morphological production
rules can be theoretically infinite, and the resources are
not available. If the right resource existed, then still one
would face the sparse data problem. This highlights other
problems: for example, to use stop words or not, and
when to use the real word form over the distributional tag.
It is desired to automatically choose the right candidate
suggestion, but the sufficient features cannot be retrieved
from the text because of data sparsity. One way to help
this is to rank the suggestions by weighing the edit
distance[16].

o One can approach by defining a hash function that collide
only on the misspelled and right spelled words and
therefore one gets automatically the correct word form
for the misspelled word[17][18]. This method can only
work if one has a list of misspelled words and the correct
forms to train the hash function to work as expected.

IV. MY OWN METHOD

Text corpora forms a consistent closely related text in one
topic. That information can be used. I am trying to reduce the
number of false positive results of traditional spell checking
algorithms. At the same time I want to collect information
of the new words and make their usage more consistent! by
the interaction of the user. I also want to reduce the time
consumed by the proofreading of the text by classifying the
spelling errors by the stems and guessed production paradigms,
so the user does not have to correct every occurrence of the
same misspelling (or those which belong to the same stem)
one-by-one[19]. This method would stay at word level, but
will not be restricted to a fixed lexicon that is integrated into
the spell checking programs. I use all of our tools in pipeline
and make statistical inferences from the decorated text.[20]

A. Statistical methods on the decorated text

The text was split into sentences and tokens, then I added the
POS-tag and lemma for every token with the information of
the candidate lemma-tag couples. I also added the information,
whether a token is recognised as a correct word form or not.
Then I examined the following features of the tokens:

o the frequency of each word form
o the frequency of lemmas of the incorrect words
« the combination of the above

While examining word forms classified by their lemmas,
one can find features that characterize the Hungarian mor-
phological production system, which is hard-coded in the
morphological analyser[21] for the fixed list of words. If one
can find a sufficient number and quality of word forms one
can construct an inflectional paradigm that makes a good point
to examine the less frequent words against. If these words
meet the expectations of their lemma’s paradigm, then they

las the program has no information about how the different forms of these
words should be spelled

are considered good, otherwise they are considered misspelled
and the user is asked to decide. The paradigm also helps
to generate suggestions of the misspelled word. They come
from the paradigm and it is not necessary for them to appear
in the text. The possibility of automatically correcting these
words becomes available. There is a threshold that must be
set in order to distinguish between low frequency misspelled
words and the ones that are too frequent to be misspelled.
This threshold can be set safely between 3-5. As the non-
systematic misspellings are so diverse that there cannot be such
coincidence. The systematic misspellings are considered to be
right as the program does not have any external information of
the text. Just helps to increase the consistence of the text. The
words that are above the threshold are considered “certainly
good”, the others need to be checked with the extended spell
checker. From “certainly good”, frequent word forms and their
lemmas, the program generates the paradigms. With that, the
program checks the other “possibly misspelled” words. The
traditional spell checkers’ engines can be extended to accept
the new words and generate an inflectional paradigm to work
with. This can save a lot of time and effort as generating the
suggestions is not a trivial task. The classified word forms with
their accompanying suggestions can be displayed to the user
at once and he can accept or decline the suggestions for each
occurrence by examining the context of the word without even
proofreading the whole document, just looking at the critical
parts of the text if it is necessary. To apply the changes at once
the program must map the corrected text to the original one.
This could be done for example by Dynamic Time Warping
(DTW)[22]. By finding anchors in the text and make the two
versions parallel. This could be very useful on environments
with special formatted texts, where the formatting is destroyed
during the preprocessing steps.

B. Adapting POS-tagger to the text with a posteriori informa-
tion

The tokenized text is passed to the POS-tagger, to couple
each word with its stem, tag and the possible other candidates.
For the known words this task is easy. The morphology module
can help the tagger, but when it comes to the new words, that
are not known either by the morphology module or by the
POS-tagger the number of candidates can grow from one up
to ten. These candidates mostly differ in the lemmas of the
words. The statistical module tries to guess the appropriate
lemmas. But this module does not care for the words seen
previously. Guessing is totally local to the word in the text.
No context is taken into account, but the information is lying
in the text. Therefore, after the preprocessing task my program
selects the lemmas of the unknown words (choosing also from
the candidates) in the text which are frequent enough to not
being noise (see table II). I feed these selected lemmas to the
POS-tagger. In another pass the POS-tagger selects the fed
lemma from the candidates unconditionally if he can. This
method can be repeated and all the repetitions improve the
performance of the guesser for the current text to a level and
decrease the number of the candidates which the POS-tagger

chooses from. (There can still be more candidate tags for the
same lemma.)

V. RESULTS

The efficiency of the method was tested on two corpora
(table I). One is a book (Orwell: 1984) full of theoretically
good, but self-invented words. Some of these words are not
known by the spell checker but those words are in control. The
other is taken from the Internet, contains newspaper articles
from a specific site. The size of the two corpora is almost
identical. The language model is taken from Szeged corpus 2.0
[12]. The table shows two stages before and after the following
heuristic filtering: I filtered out the tokens that were definitely
some affix or were not containing four alphabetic letters beside
each other (table I). With this filtering, I hope that the real
words come into view. Later, I worked with these set of tokens.

TABLE I
THE STATISTICS OF THE USED CORPORA
1984 Articles
Filtering: before | after before | after
Tokens: 99913 | 50586 | 74053 | 40716
Tokens (unique): 20393 | 18211 | 20916 | 18465
Not known by Humor: 301 283 1431 1224
Not known by Humor (unique): | 181 168 1029 886
TABLE 11
EXAMPLE OF WORD FORM FREQUENCIES
word form | frequency stem
Obama 40 Obama
Obamaarol 1 Obamaa
Obamak 1 Obama
Obama-kormany 1 Obama-kormany
Obamanak 3 Obam
Obamanak 3 Obama
Obamadra 1 Obama
Obamarol 3 Obam
Obamarol 3 Obama
Obamat 5 Obam
Obamat 5 Obamat
Obamaval 1 Obamaval

As seen in table III, there were many words that were found
to be good and with the traditional spell checking methods
would become false positives. There were word forms above
the threshold and these were selected to be the base of the
inflection paradigm for other flexed form of the same stem
(see table 1V). Finally, the remaining words were considered
to be misspellings and suggestions were generated (see table
V). In table V one can see the faults of the trivial suggestion
generation algorithm. This can be vastly improved by using
the engine of some traditional spell checker program.

VI. CONCLUSION

The described method can correct a wider class of the
aforementioned misspellings than the traditional spell check-
ers. This initial phase of the research shows that with my
new method the entire proofreading process becomes simpler
and faster as the size of the text grows. The amount of text
processed per unit of time clearly increases.

31

TABLE III

RESULTS
1984 | Articles
Stems altered: 34 65
Stems altered (unique): 19 48
Frequent stems: 14 55
Frequent word forms: 40 51
Inflection paradigms: 17 58
Suggestions (for new words): 3 8
TABLE IV
GOOD INFLECTION PARADIGMS
1984 Articles
Stem Stem
beszélir Obama
Good form | Rare form Good form | Rare form
beszélirba beszélirja Obamanak Obamaék
beszélirral beszélirtol Obamarol Obamara
beszélir Obamat Obamaval
beszélirt Obama
TABLE V
SUGGESTIONS
Articles
Misspelled word | Suggestion
Br.uxIr'1f0 B1:ux1pfo 7087
Gingrics Gingrich Misspelled word | Suggestion
Mtelekom MTelekom
— — aszondom Aszondom
Obamaarol Obamarol —— ——
Osama Obama .b/eszehrjz} b.e:szehrba
Sandber Sandberg i6gondol6 j6gondol
stent sztent
Unicredit UniCredit

VII. FUTURE WORK

The method is currently not able to make corrections
automatically, but beside this the other paths of future research
are:

extending the spell checker program’s lexicon efficiently
building a misspelling dictionary

making collaborated spell checking and correction easier
with shared lexica

rapid domain adaptation

These workflows are quite demanding today, with my pro-

pos

I

ed method it becomes much easier.

ACKNOWLEDGMENT

would like to thank my Professor and Colleagues for their

help.

(1]
(2]

(3]

[4]

32

REFERENCES

N. Lészl6. (2005, Jul.) Hunspell, hungarian spell checker. [Online].
Available: http://sourceforge.net/projects/hunspell/

C. Oravecz and P. Dienes, “Efficient stochastic part-of-speech tagging
for hungarian,” in In Proc. of the Third LREC, Las Palmas, Espanha,
2002, p. 710717.

0. Gyorgy and N. Attila, “Purepos — an open source morphological
disambiguator,” in Proceedings of the 9th International Workshop on
Natural Language Processing and Cognitive Science, 2012.

F. J. Damerau, “A technique for computer detection and correction of
spelling errors,” Commun. ACM, vol. 7, no. 3, pp. 171-176, Mar. 1964.
[Online]. Available: http://doi.acm.org/10.1145/363958.363994

[5]

(6]

(71

(8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

V. L. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals.” Soviet Physics Doklady., vol. 10, no. 8, pp. 707-710,
Feb. 1966.

M. D. Kernighan, K. W. Church, and W. A. Gale, “A spelling
correction program based on a noisy channel model,” in Proceedings
of the 13th conference on Computational linguistics - Volume
2, ser. COLING ’90. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1990, pp. 205-210. [Online]. Available:
http://dx.doi.org/10.3115/997939.997975

A. Rozovskaya and D. Roth, “Generating confusion sets for
context-sensitive error correction,” in Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing,
ser. EMNLP ’10. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2010, pp. 961-970. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1870658.1870752
B. Indig, “Puretoken: egy Uj tokenizdl6 eszkoz.”
Egyetem, 01/2013 2013.

R. Farkas, G. Szarvas, and R. Ormandi, “Improving a state-of-the-art
named entity recognition system using the world wide web,” in
Proceedings of the 7th industrial conference on Advances in data
mining: theoretical aspects and applications, ser. ICDM’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 163—172. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1770770.1770787

A. Novak, G. Orosz, and B. Indig, “Javaban taggeliink,” Szegedi
Egyetem. Szeged: Szegedi Egyetem, 12/2011 2011.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank,” COMPUTATIONAL
LINGUISTICS, vol. 19, no. 2, pp. 313-330, 1993.

D. Csendes, J. Csirik, and T. Gyimthy, “The szeged corpus: A pos tagged
and syntactically annotated hungarian natural language corpus.” in 75D,
ser. Lecture Notes in Computer Science, P. Sojka, 1. Kopecek, and
K. Pala, Eds., vol. 3206. Springer, 2004, pp. 41-48. [Online]. Available:
http://dblp.uni-trier.de/db/conf/tsd/tsd2004.html#CsendesCG04

B. Stomach and V. Hit, “Novel applications of the stomach-hit
algorithm,” Commun. ACM, vol. 8, no. 13, pp. 1687-1693, Apr. 1987.
[Online]. Available: http://doi.acm.org/14.1343/345538.356446

R. Kese, F. Dudda, G. Heyer, and M. Kugler, “Extended spelling
correction for german,” in Proceedings of the Third Conference on
Applied Natural Language Processing. Trento, Italy: Association
for Computational Linguistics, March 1992, pp. 126-132. [Online].
Available: http://www.aclweb.org/anthology/A92-1017

M. P. Jones and J. H. Martin, “Contextual spelling correction using
latent semantic analysis,” in Proceedings of the fifth conference on
Applied natural language processing, ser. ANLC "97. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1997, pp. 166—173.
[Online]. Available: http://dx.doi.org/10.3115/974557.974582

M. A. Elmi and M. Evens, “Spelling correction using context,” in In
Proceedings of COLING/ACL 98. Morgan Kaufmann Publishers, 1998,
pp. 360-364.

M. Reynaert, “Text-Induced Spelling Correction,” Ph.D. dissertation,
Tilburg University, Tilburg, The Netherlands, 2005. [Online]. Available:
http://ilk.uvt.nl/"mre/TISC.PhD.MartinReynaert.pdf.gz

——, “Text induced spelling correction,” in Proceedings of the 20th
international conference on Computational Linguistics, ser. COLING
’04. Stroudsburg, PA, USA: Association for Computational Linguistics,
2004. [Online]. Available: http://dx.doi.org/10.3115/1220355.1220475
B. Indig and G. Prészéky, “Ismeretlen szavak helyes kezelése kotegelt
helyesirds-ellen6rz6 programmal.” Szeged: Szegedi Egyetem, 01/2013
2013.

G. Proszéky and B. Kis, “A unification-based approach to morpho-
syntactic parsing of agglutinative and other (highly) inflectional
languages,” in Proceedings of the 37th annual meeting of
the Association for Computational Linguistics on Computational
Linguistics, ser. ACL ’99. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1999, pp. 261-268. [Online]. Available:
http://dx.doi.org/10.3115/1034678.1034723

A. Novdk and T. M. Pintér, “Milyen a még jobb humor?” Szegedi
Egyetem. Szeged: Szegedi Egyetem, 12/2006 2006.

R. Bellman and R. Kalaba, “On adaptive control processes,” Automatic
Control, IRE Transactions on, vol. 4, no. 2, pp. 1-9, Nov. 1959.
[Online]. Available: http://dx.doi.org/10.1109/tac.1959.1104847

Szeged: Szegedi

